随机过程-习题-第6章
- 格式:doc
- 大小:794.00 KB
- 文档页数:12
随机过程习题解答第一章习题解答1.设随机变量X 服从几何分布,即:(),0,1,2,kP X k pqk ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtk k X k f t E ee pq ∞===∑ =()1jt k jtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑(其中 0(1)nnnn n n nx n x x ∞∞∞====+-∑∑∑)令 0()(1)nn S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰同理 2(1)2kkkk k k k k kx k x kx x ∞∞∞∞=====+--∑∑∑∑令2()(1)kk S x k x ∞==+∑ 则211()(1)(1)xkk kk k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为(2) 其期望和方差;(3)证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则 (2)'1()(0)Xp E X fjb∴==(4)若(,)i i X p b Γ 1,2i = 则同理可得:()()i i P X b f t b jt∑=∑-3、设ln (),()(kZ F X E Zk =并求是常数)。
X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)ln (),()(kZ F X E Z k =并求是常数)。
解(1)11{()}{()}[()]P F x y P x F y F F y y --<=<==(01y ≤≤) ∴00()0111y F y yy y <⎧⎪=≤≤⎨⎪>⎩∴()F x 在区间[0,1]上服从均匀分布()F x ∴的特征函数为11001()(1)jtx jtx jt X e f t e dx e jt jt ===-⎰ (2)ln ()()()[]jtz jt F x Z f t E e E e ===1ln 01jt ye dy ⋅⎰=111jty dy jt =+⎰4、设12n X X X ,,相互独立,且有相同的几何分布,试求1nkk X =∑的分布。
第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间;(2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则 (1){,1,2,}i Y i =L 是否为Markov 链? (2)令1nn ii X Y ==∑,问{,1,2,}iX i =L 是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================L L L L L因此,{,1,2,}n Y n =L 是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++L 为1n U -的函数,记为1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L因此{,1,2,}n X n =L 是马尔可夫链.3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值. (1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P tn i i ===++=⎩⎨⎧≤>ij i j a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j i j iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间; (2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则(1){,1,2,}i Y i =L 是否为Markov 链? (2)令1nn ii X Y ==∑,问{,1,2,}iX i =L 是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================L L L L L因此,{,1,2,}n Y n =L 是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++L 为1n U -的函数,记为1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L因此{,1,2,}n X n =L 是马尔可夫链.3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n 产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值.(1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P t n i i ===++=⎩⎨⎧≤>i j ij a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j ij iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
中科院研究生院2012~2013第一学期 随机过程讲稿 孙应飞第六章 高斯过程(维纳过程) 习题1、 设有随机过程Y ,∞<<−=t X t t 0,1)(2X 是正态随机变量,期望为0,方差为。
2X σ(1) 过程Y 是否正态过程?是否平稳过程?均需说明理由;)(t (2) 过程,在均方可积意义下是否存在?存在的话,试求其相关函数。
0,)()(0>=∫t ds s Y t Z t2、 设是初值为零的标准布朗运动,令0,)(≥t t B 10)],1/([)1()(<≤−−=t t t B t t ξ,的常数,试求随机过程0,0),12>≥−a t at η()(=−e B e t at )(t ξ和)(t η的均值函数和相关函数,并说明)(t ξ和)(t η是否是正态过程。
3、 设是标准的布朗运动,试求与的相关系数,其中:。
}0,)({≥t t B 1≤≤t )(t B ∫10)(du u B 04、 已知是初值为0的标准布朗运动,求在0),(>t t B 0)1(=B 时的条件概率分布密度函数。
)10()(<<t t B 5、 已知是初值为零的标准布朗运动,令0,)(≥t t B b t B a t +=)()(ξ,b at B t +=)()(η,其中常数a ,t 。
试分析此两随机过程的前二阶矩是否相同?此两过程是否同分布?说明理由。
0>b ,0>0≥6、 设{为零初值的标准布朗运动,试求:}0),(≥t t B (1) 在的条件下,的条件概率密度函数,其中t ;01)(x t B =)(2t B 12t >(2) 布朗运动的对称性,即证明:当 t 时,有0,00>>t 2/1})()({})()({00000000==≤+==>+x t B x t t B P x t B x t t B P ;(3) 令:T })(,0:inf{a t B t t a =>=a ,T 表示布朗运动首次到达a 的时刻,当时,试求T 的分布函数。
(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。
解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。
解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。
习题4以下如果没有指明变量t 的取值范围,一般视为R t ∈,平稳过程指宽平稳过程。
1. 设Ut t X sin )(=,这里U 为)2,0(π上的均匀分布.(a ) 若 ,2,1=t ,证明},2,1),({ =t t X 是宽平稳但不是严平稳, (b ) 设),0[∞∈t ,证明}0),({≥t t X 既不是严平稳也不是宽平稳过程. 证明:(a )验证宽平稳的性质,2,1,0)cos (2121)sin()sin()(2020==-=•==⎰t Ut tdU Ut Ut E t EX ππππ))cos()(cos(21)sin (sin ))(),((U s t U s t E Us Ut E s X t X COV ---=•=t U s t s t U s t s t πππ21}])[cos(1])[cos(1{212020•+++--= s t ≠=,021Ut Esin ))(),((2==t X t X COV (b) ,)),2cos(1(21)(有关与t t t t EX ππ-=.)2sin(8121DX(t)有关,不平稳,与t t tππ-=2. 设},2,1,{ =n X n 是平稳序列,定义 ,2,1},,2,1,{)(==i n X i n 为,,)1(1)1()2(1)1(---=-=n n n n n n X X X X X X ,证明:这些序列仍是平稳的. 证明:已知,)(),(,,2t X X COV DX m EX t t n n n γσ===+2121)1(1)1()1(2)(,0σγσ≡+=-==-=--n n n n n n X X D DX EX EX EX)1()1()(2),(),(),(),(),(),(111111)1()1(++--=+--=--=--+-+-++--+++t t t X X COV X X COV X X COV X X COV X X X X COV X X COV n t n n t n n t n n t n n n t n t n n t n γγγ显然,)1(n X 为平稳过程.同理可证, ,,)3()2(n n X X 亦为平稳过程.3.设1)nn k k k k Z a n u σ==-∑这里k σ和k a 为正常数,k=1,....n; 1,...n u u 是(0,2π)上独立均匀分布随机变量。
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 Γ 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 (n)n P P = 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑ 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
1.为it(e-1)e λ。
2. 1(sin(t+1)-sin t)2ωω。
3. 1λ4. Γ 5. 212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。
6.(n)nP P =。
随机过程习题及答案第二章随机过程分析1.1学习指导1.1.1要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。
1.随机过程的概念随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。
可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。
2.随机过程的分布函数和概率密度函数如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。
ξ(t 1)小于或等于某一数值x 1的概率为P [ξ(t 1)≤x 1],随机过程ξ(t )的一维分布函数为F 1(x 1,t 1)=P [ξ(t 1)≤x 1](2-1)如果F 1(x 1,t 1)的偏导数存在,则ξ(t )的一维概率密度函数为对于任意时刻t 1和t 2,把ξ(t 1)≤x 1和ξ(t 2)≤x 2同时成立的概率称为随机过程?(t )的二维分布函数。
如果存在,则称f 2(x 1,x 2;t 1,t 2)为随机过程?(t )的二维概率密度函数。
对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5)=≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程?(t )的n 维分布函数。
如果存在,则称f n (x 1,x 2,…,x n ;t 1,t 2,…,t n )为随机过程?(t )的n 维概率密度函数。
3.随机过程的数字特征随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。
随机过程?(t )在任意给定时刻t 的取值?(t )是一个随机变量,其均值为其中,f 1(x ,t )为?(t )的概率密度函数。
随机过程?(t )的均值是时间的确定函数,记作a (t ),它表示随机过程?(t )的n 个样本函数曲线的摆动中心。
湖南大学本科课程《随机过程》习题集主讲教师:何松华 教授第一章:概述及概率论复习1.1 设一批产品共50个,其中45个合格,5个为次品,从这一批产品中任意抽取3个,求其中有次品的概率。
1.2 设一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第3次才取得合格品的概率。
1.3 设一袋中有N 个球,其中有M 个红球,甲、乙两人先后各从袋中取出一个球,求乙取得红球的概率(甲取出的球不放回)。
1.4 设一批产品有N 个,其中有M 个次品,每次从其中任取一个来检查,取出后再放回,求连续n 次取得合格品的概率。
1.5设随机变量X 的概率分布函数为连续的,且0()00xA Be x F x x λ-⎧+≥=⎨<⎩其中λ≥0为常数,求常数A 、B 的值。
1.6设随机变量X 的分布函数为 ()() (-<<)F x A Barctg x x =+∞∞(1) 求系数A 、B ;(2)求随机变量落在(-1,1)内的概率;(3)求其概率密度函数。
1.7已知二维随机变量(X,Y)的联合概率密度分布函数为6(2)0,1(,)0XY xy x y x y f x y elsewhere --≤≤⎧=⎨⎩(1)求条件概率密度函数|(|)X Y f x y 、|(|)Y X f y x ;(2)问X 、Y 是否相互独立?1.8已知随机变量X 的概率密度分布函数为22()()]2X X X x m f x σ-=- 随机变量Y 与X 的关系为 Y=cX+b ,其中c ,b 为常数。
求Y 的概率密度分布函数。
1.9设X 、Y 是两个相互独立的随机变量,其概率密度分布函数分别为101()0X x f x elsewhere ≤≤⎧=⎨⎩,0()0y Y e y f y elsewhere-⎧<=⎨⎩ 求随机变量Z=X+Y 的概率密度分布函数。
1.10设随机变量Y 与X 的关系为对数关系,Y=ln(X),随机变量Y 服从均值为m Y 、标准差为σY 的正态分布,求X 的概率密度分布。
第6章习题答案6.1 设)(t x 为实函数,试证(1))(t x 为t 的奇函数时,它的希尔伯特变换为t 的偶函数; (2))(t x 为t 的偶函数时,它的希尔伯特变换为t 的奇函数。
证明(1):)(t x =)(t x --tt x t xπ1)()(ˆ*= )(ˆ1)(1)()(1)()(1)()(ˆt xt t x t t x t t x t t x t x=*=*=-*-=-*-=-∴ππππ (2))(t x =)(t x -)(ˆ1)()(1)()(1)()(ˆt xtt x t t x t t x t x-=*-=-*=-*-=-∴πππ6.3 设)(t a ∞<<∞-t 是具有频谱)(ωA 的已知实函数,假定ωω∆>||时,)(ωA =0,且满足ωω∆≥0,求(1)t t a 0cos )(ω和 )ex p()(210t j t a ω的傅立叶变换以及两个傅氏变换的关系; (2)t t a 0sin )(ω 和 )ex p()(20t j t a jω-的傅立叶变换以及两个傅氏变换的关系;(3)t t a 0cos )(ω 和 t t a 0sin )(ω的傅立叶变换关系。
解:(1)t t a t x 0cos )()(ω= 且 )exp()(21)(0t j t a t y ω=)]()([21)(00ωωωωω-++=∴A A X)(21)(0ωωω-=A Y(2)t t a t x 0sin )()(ω= 且)ex p()(2)(0t j t a jt y ω-=)]()([2)(00ωωωωω--+=∴A A jX)(2)(0ωωω--=A jY6.4 对于窄带平稳随机过程t t Y t t X t Z 00sin )(cos )()(ωω-=。
若已知τωττ0cos )()(a R Z =,求证:)()(ττa R X =。
解法一、证: ⎩⎨⎧+=-=t t Y t t X t Z tt Y t t X t Z 0000cos )(sin )()(ˆsin )(cos )()(ωωωω,故有⎩⎨⎧-=+=tt Z t t Z t Y t t Z t t Z t X 0000sin )(cos )(ˆ)(sin )(ˆcos )()(ωωωω[])()()(ττ+=t X t X E R X[][]{})(sin )(ˆ)(cos )(sin )(ˆcos )(0000τωττωτωω++++++=t t Z t t Z t t Z t t Z E )(cos sin )()(sin cos )()(sin sin )()(cos cos )(00ˆ00ˆ00ˆ00τωωττωωττωωττωωτ+++++++=t t R t t R t t R t t R Z Z Z Z Z Z又因为任一实平稳随机过程)(t Z 与其希尔伯特变换)(ˆt Z满足: )()(ˆττZ Z R R =,)(ˆ)(ˆττZ ZZ R R =,)(ˆ)(ˆττZ Z Z R R -=。
湖南大学本科课程《随机过程》第6章习题及参考答案主讲教师:何松华 教授1. 给定实数x 和一个平稳随机过程()X t ,定义理想门限系统的特性为1()()0()X t xY t X t x≤⎧=⎨>⎩ 试证:(1) [()]()X E Y t F x =;(2) ()](,,)Y X R F x x ττ=证:(1) ()Y t 在任意时刻为只有两种取值1,0的随机变量,则[()]1{()1}0{()0}{()1}{()}(,)() ()X X E Y t P Y t P Y t P Y t P X t x F x t F x =⨯=+⨯====≤==根据平稳性(2)根据相关函数定义,有()][()()]11{()1,()1}01{()0,()1} 10{()1,()0}00{()0,()0}{()1,()1}{(),()}(,;,)(,;) ()Y X X R E Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P X t x X t x F x x t t F x x ττττττττττ=+=⨯⨯+==+⨯⨯+==+⨯⨯+==+⨯⨯+===+===+≤≤=+=根据平稳性2.设平方律检波器的传输特性为2y x =,在检波器输入端加入一窄带高斯随机过程()X t ,其概率密度函数为22()()}2X Xx a f x σ-=- 在检波器后联接一个理想低通滤波器,求低通滤波器输出过程的一维概率密度和均值;当0a =时结果有何变化。
解:根据题意,()X t 为非零均值的中频窄带随机过程,可以表示为:00()()cos()()sin()C S X t a A t t A t t ωω=+-其中()C A t 、()S A t 为零均值窄带随机过程的同向分量以及正交分量,都服从均值为0、方差为2X σ的正态分布,且在同一时刻互不相关,则检波器输出信号22002222200000()[()cos()()sin()]1111()()2()cos()()cos(2)()cos(2)2222 2()sin()()()sin(2)C S C S C C S S C S X t a A t t A t t a A t A t aA t t A t t A t t aA t t A t A t t ωωωωωωω=+-=++++--- 通过理想低通滤波后,滤波器输出信号为2221()[()()]2C S Z t a A t A t =++由于随机变量()C A t 、()S A t 为互不相关(正态分布情况与独立等价)的正态随机变量,则22122()()()C S XXA t A t Z t σσ=+服从自由度为2的卡方分布,即11121/22/211221()22(2/2)z z Z z ef z e ---==Γ 221()()2X Z t Z t a σ=+,2122[()]()[()]XZ t a Z t h Z t σ-==,根据随机变量函数的概率密度关系,()Z t 的一维概率密度分布函数为22122()1()[()] ()X z a Z Z Xdh z f z f h z e z a dz σσ--==≥2222222211[()]{[()()]}[]22C S X X X E Z t E a A t A t a a σσσ=++=++=+当0a =时,221() (0)X zZ Xf z e z σσ-=≥,2[()]X E Z t σ=。
随机过程习题和答案一、设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==设离散型随机变量X 服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每对应随机变量一个确定的t=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数 BA ,.),()(),2,0(~),4,1(~,21t t R t m UB N A X X 及则且立为多少?一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
4030(30)((1)40)!k k P N e k -=≤=∑。
在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。
解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。
解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。
、1.1设二维随机变量(X , F)的联合概率密度函数为:=—i—[l241-ι>⅛= "k"QTh Xl-JF)1.2 设离散型随机变量X服从几何分布:Hm=(Ip)HPJt=U-试求/的特征函数,并以此求其期望E(X)与方差I K X)¾0 = Efr ir) = ∑e⅛ = *)解:一=⅛α-ri M P=√^∑^α-p)t U O-P) ⅛J1—(I-JI)1—q/(O)=α⅛24(1-小丄0<y<x<l苴它试求:在OJu <■ 1时,求I『F)解:J;240 H)JKfc0<y<l Jj2Jf(I_y)3 0<JF<1P 其它^{θ其它当OJXI 时,Aw)2OT(Xy)y<x<l其它所以:-⅛(0)二丄f PZUr=J Er3-(JEIf)3=^^-^=4PPp2.1袋中有一个白球,两个红球,每隔单位时间从袋中任取一球后放回,对每一个确定的t 对应随机变量x(t^3如果对t时取得红球e t如果对t时取得白球试求这个随机过程的一维分布函数族2.2设随机过程 W 加吨MIF)∙ gZ I叫,其中吗是常数,/与F是相互独立的随机变量,F服从区间(°2刘上的均匀分布,/服从瑞利分布,其概率密度为x>0x≤0试证明Xu)为宽平稳过程。
解:( 1)⑷+F)} q啊诚如+ f)}= 与无关(2)枚F(M 仪加血I(Q/伽说如")汁F(才),f _ t t⅛(Q) =-J PQ ÷g)= -te^t∣Γ÷p ^dt =-2σ1e^i∣Γ=2σ3所以必U)啟0⑴卜"(3)R lM壊M∞¼⅛+Hl∕∞Ψ⅛+y)]}=豺]£{oKs(A +Γ)∞<β(A +Γ)}=2^Jtt 2{α≈(0A + β⅛+ y)-rasfflfc A)I^⅛心’皿叫仏Z L)只与时间间隔有关,所以XU)为宽平稳过程2.3设随机过程 X(t)=Ucos2t,其中U是随机变量,且 E(U)= 5, D(U)= 5.求: (1)均值函数;(2)协方差函数;(3)方差函数2.4设有两个随机过程 X(t)=Ut2, Y(t)=Ut3,其中U是随机变量,且D(U) = 5.试求它们的互协方差函数2.5设代B是两个随机变量,试求随机过程X(t) =At ∙3B,t∙ T =(」:「:)的均值函数和自相关函数若A, B相互独立,且A~ N(1,4), B ~U (0,2),则mχ (t)及Rχ(t1,t2)为多少?3.1 一队学生顺次等候体检。
标准教材:随机过程基础及其应用/赵希人,彭秀艳编著索书号:O211.6/Z35-2备用教材:(这个非常多,内容一样一样的)工程随机过程/彭秀艳编著索书号:TB114/P50历年试题(页码对应备用教材)2007一、习题0.7(1)二、习题1.4三、例2.5.1—P80四、例2.1.2—P47五、习题2.2六、例3.2.2—P992008一、习题0.5二、习题1.4三、定理2.5.1—P76四、定理2.5.6—P80五、1、例2.5.1—P802、例2.2.2—P53六、例3.2.3—P992009(回忆版)一、习题1.12二、例2.2.3—P53三、例1.4.2与例1.5.5的融合四、定理2.5.3—P76五、习题0.8六、例3.2.22010一、习题0.4(附加条件给出两个新随机变量表达二、例1.2.1三、例2.1.4四、例2.2.2五、习题2.6六、习题3.3引理1.3.1 解法纠正 许瓦兹不等式()222E XY E X E Y ⎡⎤⎡⎤≤⎡⎤⎣⎦⎣⎦⎣⎦证明:()()()()222222222220440E X Y E X E XY E Y E XY E X E Y E XY E X E Y λλλ +⎡⎤⎡⎤=++≥⎣⎦⎣⎦∴∆≤⎡⎤⎡⎤∴-≤⎡⎤⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤∴≤⎡⎤⎣⎦⎣⎦⎣⎦例1.4.2 解法详解已知随机过程(){},X t t T ∈的均值为零,相关函数为()121212,,,,0a t t t t et t T a --Γ=∈>为常数。
求其积分过程()(){},t Y t X d t T ττ=∈⎰的均值函数()Y m t 和相关函数()12,Y t t Γ。
解:()0Y m t =不妨设12t t >()()()()()()1212222112121122122100,,Y t t t t t t t t t EY t Y t E X d X d d d τττττττττΓ===Γ⎰⎰⎰⎰()()()()()222121122221222112222212221212121212000220022002200222211||111111||211ττττττττττττττττττττττττ--------------=+-=+=---=+-+⎡=++--⎣⎰⎰⎰⎰⎰⎰⎰⎰t t t a a t t a a a a t t t a a at a t a at t a t t at at ed d ed de d e d a ae d e d a a t t e e a a a a t e e e a a⎤⎦同理当21t t >时()()2112112221,1a t t at at Y t t t e e e a a----⎡⎤Γ=++--⎣⎦ (此处书上印刷有误)例1.5.5解法同上例1.5.6 解法详解 普松过程公式推导:(){}()()()()()()()()()()()1lim !lim 1!!!1lim 1!!lim 1lim !lim lim !第一项可看做幂级数展开:第二项将分子的阶乘进行变换:→∞-→∞-→∞---∆-→∞→∞-→∞→∞===-∆∆-⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦⎡⎤⎡⎤-∆==⎢⎥⎣⎦⎣⎦⎡⎤⋅∆=∆⎢⎥--⎣⎦N k N N kkN N k kN N kN kq t qtN N k N kk k N N P X t k C P N q t q t k N k N q t q t N k k q t e e N N N q t q t N k N ()()()()()!lim 1!-→∞⎡⎤⎢⎥⎣⎦⎡⎤⎡⎤=∆⋅=⋅=⎢⎥⎣⎦-⎣⎦N k k k k kN k N q t N qt qt N k (){}()()()()!1lim 1!!!N kkN kqt P X t k N q t q t N k k qt ek -→∞-∴=⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦=例2.1.2 解法详解设(){},X t t -∞<<+∞为零均值正交增量过程且()()2212121,E X t X t t t t t -=->⎡⎤⎣⎦,令()()()1Y t X t X t =--,试证明(){},Y t t -∞<<+∞为平稳过程。
|.设有n 维随机矢量)(21n ξξξξτ =服从正态分布,各分量的均值为n i a E i ,,2,1, ==ξ,其协方差矩阵为⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=2222222000000σσσσσσσa a a B试求其特征函数。
解:n 元正态分布的特征函数为}21exp{),,,(21][Bt t t j t t t n '-'=μφξn i a E i ,,2,1, ==ξ ),,,(21n t t t t =' ,则>∑=='ni ijat t j 1μ()()),,,(2122322222121'++='n n t tt t t a t t a t t Bt t σσσσσσ=22223232222221221σσσσσσn t t a t t t a t t t ++++++ =∑∑-=+=+1121122n i i i ni i a t t t σσ∴]21exp[)]21(exp[),,,(112112221][∑∑-=+=--=n i i i ni i i n a t t t jat t t t σσφξ. 设n 维正态分布随机矢量)(21n T ξξξξ =各分量的均值为i E i =ξ,n i ,3,2,1=,各分量间的协方差为n i m i m n b i m ,3,2,1,|,|,=--=设有随机变量∑==ni i 1ξη,求的特征函数。
[解:易得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n ξξξη 21]111[2)1(][][11+===∑∑==n n i E E ni n i i ξη 协方差矩阵为: ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=n nn n n n n n n n321312211121B所以 ]111[]111['⋅⋅= B ηD =223n n +由于高斯分布的随机变量的线形组合依旧是高斯分布的,所以η的特征函数为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+=2456822)1(exp )(t n n n t n n j t ηΦ设有三维正态分布随机矢量)(321ξξξξ=T ,其各分量的均值为零,即0][=i E ξ)3,2,1(=i ,其协方差矩阵为⎪⎪⎪⎭⎫ ⎝⎛=333231232221131211b b b b b b b b b B {其中,2332211σ===b b b ,试求:(1)[]321ξξξE(2)[]232221ξξξE (3))])()([(223222221σξσξσξ---E 解:(1) 由教材467P 页可看出()()3,2,1,,,,321321=Φ-=∂Φ∂i t t t u t t t t i i()()()j i j i t t t u u t t t b t t t t t j i ij ji ≠=Φ+Φ-=∂∂Φ∂且3,2,1,,,,,,,3213213212,&()()()()()()()3213211232133123213213211233212133213123213213,,,,,,,,,,,,t t t u u u u b u b u b t t t u u u t t t u b t t t u b t t t u b t t t t t t Φ-++=Φ-Φ+Φ+Φ=∂∂∂Φ∂ 其中:()321,,t t t Φ为零均值的三元正态分布随机变量321,,ξξξ的特征函数()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=Φ∑=3132121exp ,,k k k u t t t t∑==31i i ki k t b u令0321===t t t ,则()3,2,1,0,10,0,0===Φk u k ,所以[]()()0,,032132133213213=∂∂∂Φ∂====-t t t t t t t t t jE ξξξ(2)设()321123213312u u u u b u b u b N -++=,则()()3213213213,,,,t t t N t t t t t t Φ=∂∂∂Φ∂《21333123321333123312321233122321222132312221133112321111231312123131222213332122231133221132132222u u b u u b u u b b b b b t Nu u b u u b u u b b b b b t Nu u b u u b u u b b b b b t Nb b b b b b b b b b b b t t t N---+=∂∂---+=∂∂---+=∂∂++++=∂∂∂∂()()()()()()()2313123322110132321223132123213212321321303213213023222132164,,,,,,,,,,,,321321321b b b b b b t N t t t t t t N t t t t t t N t t t t t t t t t t t N t t t t t t N t t t t t t t t t t t t t t t -=⎪⎪⎭⎫ ⎝⎛∂∂∂∂Φ∂+∂∂∂∂Φ∂+∂∂∂∂Φ∂+Φ∂∂∂∂=∂∂∂Φ∂=∂∂∂Φ∂========= []()()()()231312332211023222132162322214,,63216b b b b b b jt t t t t t jE t t t -=∂∂∂Φ∂=--===ξξξ(3)()()()[]()()()()[]()2121122221222121122122112221121222112121122122221214,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂()()()[]()()()()[]()3131132321332131132133113231121333113131133122321314,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂()()()[]()()()()[]()3232232322332232232233223232222333223232233222322324,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂[]()21222110222121422212,21b b b t t t t E t t +=∂∂Φ∂===ξξ[]()21333110232131423212,31b b b t t t t E t t +=∂∂Φ∂===ξξ ,[]()22333220232232423222,32b b b t t t t E t t +=∂∂Φ∂===ξξ ()()()[][][][][]()()()22321321222313126232221423222321222122322212232222212224b b b b b b E E E E E E E E ++--=-+++++-=---σσξξξσξξξξξξσξξξσξσξσξ另一种方法是利用设有三维正态分布的随机矢量T ξ=[1ξ,2ξ,3ξ]的概率密度为f []ξ(x 1,x 2,x 3)=C )}422(21exp{2321222121x x x x x x x +-+--(1)证明经过线性变换η=A ξ=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---100721021411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321ξξξ 得矢量T η=[321,,ηηη],则321,,ηηη是相互统计独立的随机变量。
(2)求C 值。
(解:2331222121422x x x x x x x +-+-=[x 1,x 2,x 3]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----401015.015.02[x 1,x 2,x 3]TB 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----401015.015.02,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡75.15.015.07212461,B =61 (1)32124111ξξξη--= 37222ξξη-=33ξη=E[21ηη]=E[23713221321412241317221ξξξξξξξξξξ+-+--]=0同样可得:E[31ηη]=0,E[32ηη]=0 所以321,,ηηη是相互统计独立的随机变量 (2) C=212)2(1Bn π=2133)61()2(1π=ππ61】、设有零均值平稳实高斯随机过程)(t ξ,其功率谱密度为其它频率范围)(0)()(2{)(0f f f P S f S ∆<∆==ξ如果对该过程每隔f ∆21秒作一次抽样,得到样本值),0(ξ ),22(),21(ff ∆∆ξξ (1) 写出前面n 个样本点)(t ξ所取值))21(),0((fn ∆-ξξ 的n 维联合概率密度。
(2) 定义随机变量∑-=∆=10)2(1n k n fkn ξη 求概率}{aP P n >η的表示式,α为常数,α>0。
解:(1) 首先由功率谱密度求出自相关函数,参见P345,图5-5结论。
τπτπττππτξf f P f f f S R ∆∆=∆∆⋅∆=2)2sin()2sin()(0`)(t ξ是零均值的、平稳实高斯过程均值向量μ=0,协方差阵1,1,0,)],2()2(cov[,)(-=∆∆==⨯n k i fk f i b b B ik n n ik ξξ其中 由功率谱密度的表达式,我们可以看到,该信号最大频率分量为f ∆,而对该过程的采样频率取为2f ∆,这样所得样本值),0(ξ ),22(),21(ff ∆∆ξξ为相互统计独立的随机变量,其协方差阵B 为对角阵,P R b ii ==)0(ξ,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P P P B 所求的n 元正态分布的联合概率密度为)}()(21exp{)2(1),,,(121221][μμπξ-'--⋅=-X B X Bx x x f nn=}21exp{)2(112212∑=-⋅ni i n Px Pπ (2) 记∑-=∆=10)2(1n k n f kn ξη=ξa ',其中]111[nn na ='。
根据线性变换前后的关系,得∑-==∆=100)]2([1n k n f kE n E ξη,22nP Ba a ='=ησ.所以,}2exp{2)(222Pn x Pn x f -⋅=πηdx x f dx x f P P P Pn ⎰⎰+∞-∞-+=>αηαηαη)()(}{=. 设有图题6-12所示的接收机。