大学物理练习题Word版
- 格式:docx
- 大小:188.41 KB
- 文档页数:7
⼤学物理(下)考试题库MicrosoftWord⽂档(1)14汇总⼤学物理(下)试题库第九章静电场知识点1:电场、电场强度的概念 1、、【】下列说法不正确的是:A :只要有电荷存在,电荷周围就⼀定存在电场;B :电场是⼀种物质;C :电荷间的相互作⽤是通过电场⽽产⽣的;D :电荷间的相互作⽤是⼀种超距作⽤。
2、【】电场中有⼀点P ,下列说法中正确的是:A :若放在P 点的检验电荷的电量减半,则P 点的场强减半;B :若P 点没有试探电荷,则P 点场强为零;C : P 点的场强越⼤,则同⼀电荷在P 点受到的电场⼒越⼤;D : P 点的场强⽅向为就是放在该点的电荷受电场⼒的⽅向 3、【】关于电场线的说法,不正确的是: A :沿着电场线的⽅向电场强度越来越⼩; B :在没有电荷的地⽅,电场线不会中⽌;C :电场线是⼈们假设的,⽤以形象表⽰电场的强弱和⽅向,客观上并不存在:D :电场线是始于正电荷或⽆穷远,⽌于负电荷或⽆穷远。
4、【】下列性质中不属于静电场的是: A :物质性; B :叠加性;C :涡旋性;D :对其中的电荷有⼒的作⽤。
5、【】在坐标原点放⼀正电荷Q ,它在P 点(x=+1, y=0)产⽣的电场强度为E.现在,另外有⼀个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x>1. (B) x 轴上0(C) x 轴上x<0. (D) y 轴上y>06、真空中⼀点电荷的场强分布函数为:E= ___________________。
7、半径为R ,电量为Q 的均匀带电圆环,其圆⼼O 点的电场强度E=_____ 。
8、【】两个点电荷21q q 和固定在⼀条直线上。
相距为d ,把第三个点电荷3q 放在21,q q 的延长线上,与2q 相距为d ,故使3q 保持静⽌,则(A )212q q = (B )212q q -=(C )214q q -= (D )2122q q -=9、如图⼀半径为R 的带有⼀缺⼝的细圆环,缺⼝长度为d (d<场强⼤⼩E =__________,场强⽅向为___________ 。
5 波的干涉、衍射学号姓名 专业、班级 课程班序号一 选择题[ D ]1.如图所示, S 1 和 S 2 为两相干波源,它们的振动方向均垂直于图面, 发出波长为 的简谐波。
P 点是两列波相遇区域中的一点,已知 S 1P = 2, S 2 P = 2.2,两列波在P 点发生相消干涉。
若 S 的振动方程为 y = A cos(2t + 1) ,则 S 的振动方程为(A) 1 122y = A c os( 2 t - 1) S 122(B) y 2 = A c os( 2 t - (C) y 2 = A c os( 2 t +) 1)2(D) y 2 = A c os( 2 t - 0.1 )S 2[ C ]2. 在一根很长的弦线上形成的驻波是(A)由两列振幅相等的相干波,沿着相同方向传播叠加而形成的。
(B)由两列振幅不相等的相干波,沿着相同方向传播叠加而形成的。
(C)由两列振幅相等的相干波,沿着反方向传播叠加而形成的。
(D)由两列波,沿着反方向传播叠加而形成的。
[ B ]3. 在波长为 λ 的驻波中,两个相邻波腹之间的距离为 (A) λ/4 (B) λ/2 (C)3λ/4 (D)λ[ A ]4. 某时刻驻波波形曲线如图所示,则 a 、b 两点的位相差是 (A)(C)4(B)1 2(D) 0[ B ]5. 如图所示,为一向右传播的简谐波在 t 时刻的波形图,BC 为波密介质的反射面,波由 P 点反射,则反射波在 t 时刻的波形图为y A O- Aac2xbP[ B ]6. 电磁波的电场强度 E 、磁场强度 H 和传播速度 u 的关系是: (A) 三者互相垂直,而 E 和 H 相位相差12(B) 三者互相垂直,而且 E 、H 、u 构成右旋直角坐标系 (C) 三者中 E 和 H 是同方向的,但都与 u 垂直(D) 三者中 E 和 H 可以是任意方向的,但都必须与 u 垂直二 填空题1. 两相干波源 S 1 和 S 2 的振动方程分别是y 1 = A cost 和 y 2= A cos(t + 1) 。
大学物理试题库刚体力学 Word 文档大学物理试题库刚体力学word文档第三章刚体力学一、刚体运动学(定轴转动)---角位移、角速度、角加速度、线量与角量的关系1、刚体做定轴转动,下列表述错误的是:【】a;各质元具备相同的角速度;b:各质元具备相同的角加速度;c:各质元具备相同的线速度;d:各质元具备相同的角位移。
2、半径为0.2m的飞轮,从静止开始以20rad/s2的角加速度做定轴转动,则t=2s时,飞轮边缘上一点的切向加速度a?=____________,法向加速度an=____________,飞轮转过的角位移为_________________。
3、刚体任何复杂的运动均可理解为_____________和______________两种运动形式的合成。
二、转动惯量1、刚体的转动惯量与______________和___________________有关。
2、长度为l,质量为m的光滑木棒,顾其一端a点旋转时的转动惯量ja=_____________,拖其中心o点旋转时的转动惯量jo=_____________________。
3、半径为r、质量为m的光滑圆盘拖其中心轴(旋转轴盘面)旋转的转动惯量j=___________。
4、【】两个匀质圆盘a和b的密度分别就是?a和?b,若?a??b,但两圆盘的质量和厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为ja和jb则:(a)ja?jb;(b)ja?jb(c)ja?jb(d)不能确定三、刚体动力学----旋转定理、动能定理、角动量定理、角动量动量1、一短为l的轻质细杆,两端分别紧固质量为m和2m的小球,此系统在直角平面内可以绕开中点o且与杆横向的水平扁平紧固轴(o轴)旋转.已经开始时杆与水平成60°角,处在静止状态.无初输出功率地释放出来以后,杆球这一刚体系统拖o轴旋转.系统拖o轴的转动惯量j=___________.释放出来后,当杆转至水平边线时,刚体受的合外力矩m=______;角加速度______.2、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩mr外,还受到恒定外力矩m的作用.若m=20nm,轮子对固定轴的转动惯量为j=15kgm2.在t=10s内,轮子的角速度由??=0增大到?=10rad/s,则mr=_______.3、【】银河系有一可以视作物的天体,由于引力汇聚,体积不断膨胀。
大学物理习题(下)(共14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习 题 课(一)1-1 在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为 (A )aQ 034πε (B )a Q 032πε (C )a Q 06πε (D )a Q 012πε1-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A )302rU R (B )R U 0 (C )20r RU (D )r U 01-3 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是(A )内表面均匀,外表面也均匀。
(B )内表面不均匀,外表面均匀。
(C )内表面均匀,外表面不均匀。
(D )内表面不均匀,外表面也不均匀。
1-4 一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电量Q 、电场强度的大小E 和电场能量W 将发生如下变化 (A )Q 增大,E 增大,W 增大。
(B )Q 减小,E 减小,W 减小。
(C )Q 增大,E 减小,W 增大。
(D )Q 增大,E 增大,W 减小。
1-5 一半径为R 的均匀带电圆盘,电荷面密度为σ ,设无穷远处为电势零点,则圆盘中心O 点的电势U 0 = 。
1-6 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为+q 的点电荷,O 点有一电量为-q 的点电荷,线段BA = R ,现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为 。
1-7 两个电容器1和2,串联后接上电源充电。
在电源保证连接的情况下,若把电介质充入电容器2中,则电容器1上的电势差 ,电容器极板上的电量 。
(填增大、减小、不变)1-8 如图所示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2,设无穷远处为电势零点,求空腔内任一点的电势。
⼤学物理试题+Microsoft+Word+⽂档2005~2006第⼀学期《⼤学物理》农科考试试卷 (B)⼀、判断题(正确的在括号中画 “∨”,错误的画“×”,1’×10=10分)1. 物质存在的基本形式不包括场,场仅是传递物质间相互作⽤的媒质。
………………………………………………………………………() 2. 实物的基本形态只有三种:固体、液体和⽓体。
………………………() 3. 伯努利⽅程是能量守恒定律在理想流体作定常流动中的体现。
……() 4. ⽑细现象是由液体的表⾯张⼒引起的。
………………………………() 5. 当理想⽓体的状态改变时,内能⼀定跟着发⽣改变。
………………()6. 对单个⽓体分⼦说它的温度是没有意义的,⽽说它的压强是有意义的。
………………………………………………………………………() 7. 作简谐振动时,位移、速度、加速度不能同时为零。
…………………() 8. 孤⽴系统经历绝热过程(d Q = 0)其熵变⼀定为零。
………………()9. 明条纹的亮度随着⼲涉级数的增⼤⽽减⼩,是单缝夫琅和费衍射图样的显著特点;…………………………………………………………………()10. ⾃然光从双折射晶体射出后,就⽆所谓o 光和e 光,仅仅表⽰两束线偏振光。
……………………………………………………………………()⼆、单项选择题(2’×10=20分)1. 如图所⽰,圆柱形容器内盛有40 cm⾼的⽔,侧壁上分别在10 cm 和30 cm ⾼处开有两同样⼤⼩的⼩孔,则从上、下两孔中流出⽔体积流量之⽐为()A. 1:3 ;B. 1:3;C. 3:1 ;D.3:1 ;2. 在⼀⽔平放置的⽑细管中有⼀润湿管壁的⼩液滴,该液滴左右两端是对称的凹形弯曲液⾯,今在左端稍加⼀压强,则我们会看到()A. 液滴右移;B. 右端曲⾯形状改变;C. 左端曲⾯形状改变;D. 液滴不移动且曲⾯形状不变化3. 下列表述中正确的为() A. 系统从外界吸热时,内能必然增加,温度升⾼;B. 热量可以从⾼温物体传到低温物体,但不能从低温物体传到⾼温物体;C. 热机效率的⼀般表达式为1212/1/1T T Q Q -=-=η;D. 克劳修斯表述指出了热传导的不可逆性;4. 两个容器分别装有氮⽓和⼆氧化碳,它们的温度相同,则() A. 内能必然相等;B. 分⼦的平均速率必然相等;C. 分⼦的最概然速率必然相等;D.分⼦的平均平动动能必然相等;5. 两个质点作同频率、同振幅的简谐振动,它们在振幅⼀半的地⽅相遇,但运动⽅向相反,则两者之间的相位差为()A. 2π/3 ;B. π/2 ;C. π/3 ;D. π;单选题16. 频率为100 Hz ,传播速度为300 m ·s -1 的平⾯简谐波,波线上两点振动的相位差为π/3,则此两点相距为()A. 2m ;B. 2.19m ;C. 0.5m ;D. 28.6m ;7. 如图所⽰,⼀平⾏膜的折射率为n 2,其上⽅空间的折射率为n 1,其下⽅空间的折射率为n 3,则()A. 若n 1λk e n =+222的条件,透射光增强;B. 若n 1>n 2>n 3,满⾜λk e n =22的条件,透射光增强;C. 若n 1>n 2n 1n 3,满⾜λλ222的条件,D. 若透射光增强; 8. 根据空⽓劈尖等厚⼲涉原理,可检测⼯件的平整度,如图所⽰,判断⼯件a 处是() A. 凹下; B. 凸起;C. 平整;D. ⽆法判断;9. ⾃然光以π/3的⼊射⾓照射到⼀透明介质表⾯,反射光为线偏振光,则()A. 折射光为线偏振光,折射⾓为π/6;B. 折射光为部分偏振光,折射⾓为π/6;C. 折射光为线偏振光,折射⾓不能确定;D.折射光为部分偏振光,折射⾓不能确定;10. ⼀束⾃然光通过两个偏振⽚后,测得透射光强为零,这是因为()A. 起偏器与检偏器位置颠倒;B. 起偏器与检偏器的偏振化⽅向平⾏;C. 起偏器与检偏器的偏振化⽅向夹⾓为45°;D.起偏器与检偏器的偏振化⽅向垂直;三、填空题(2’×10=20分)1. 半径为R ,表⾯张⼒系数为α的肥皂泡内空⽓的计⽰压强为,肥皂膜内液体的压强为(设⼤⽓压强为P 0)。
大学物理习题册计算题及答案三 计算题1. 一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点。
弹簧的劲度系数k = 25N ·m -1。
(1) 求振动的周期T 和角频率.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相. (3) 写出振动的数值表达式。
解:(1) 1s 10/-==m k ω 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7。
5 cm,v 0 〈 0 由 2020)/(ωv +=x A得 3.1220-=--=x A ωv m/s π=-=-31)/(tg 001x ωφv 或 4/3∵ x 0 > 0 , ∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI )振动方程为)310cos(1015)cos(2πϕω+⨯=+=-t t A x (SI )﹡2. 在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为T = 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板。
解:选平板位于正最大位移处时开始计时,平板的振动方程为 t A x π4cos = (SI)t A x ππ4cos 162-=(SI ) (1) 对物体有 x m N mg=- ① t A mg x m mg N ππ4cos 162+=-= (SI) ② 物对板的压力为 t A mg N F ππ4cos 162--=-= (SI )t ππ4cos 28.16.192--= ③(2) 物体脱离平板时必须N = 0,由②式得 04cos 162=+t A mg ππ (SI )A qt 2164cos π-=π 若能脱离必须 14cos ≤t π (SI )即 221021.6)16/(-⨯=≥πg A m三 计算题﹡1。
大学物理练习题一、力学部分1. 一物体从静止开始沿水平面加速运动,经过5秒后速度达到10m/s。
求物体的加速度。
2. 质量为2kg的物体,在水平面上受到一个6N的力作用,若摩擦系数为0.2,求物体的加速度。
3. 一物体在斜面上匀速下滑,斜面倾角为30°,物体与斜面间的摩擦系数为0.3,求物体的质量。
4. 一物体在水平面上做匀速圆周运动,半径为2m,速度为4m/s,求物体的向心加速度。
5. 一物体在竖直平面内做匀速圆周运动,半径为1m,速度为5m/s,求物体在最高点的向心力。
二、热学部分1. 某理想气体在标准大气压下,温度从27℃升高到127℃,求气体体积的膨胀倍数。
2. 一理想气体在等压过程中,温度从300K升高到600K,求气体体积的变化倍数。
3. 已知某气体的摩尔体积为22.4L/mol,求在标准大气压下,1mol该气体的体积。
4. 一密闭容器内装有理想气体,温度为T,压强为P,现将容器体积缩小到原来的一半,求气体新的温度和压强。
5. 某理想气体在等温过程中,压强从2atm变为1atm,求气体体积的变化倍数。
三、电磁学部分1. 一长直导线通有电流10A,距离导线5cm处一点的磁场强度为0.01T,求该点的磁感应强度。
2. 一矩形线圈,长为10cm,宽为5cm,通有电流5A,求线圈中心处的磁感应强度。
3. 一半径为0.5m的圆形线圈,通有电流2A,求线圈中心处的磁感应强度。
4. 一长直导线通有电流20A,求距离导线2cm处的磁场强度。
5. 一闭合线圈在均匀磁场中转动,磁通量从最大值减小到零,求线圈中感应电动势的变化。
四、光学部分1. 一束光从空气射入水中,入射角为30°,求折射角。
2. 一束光从水中射入空气,折射角为45°,求入射角。
3. 一平面镜反射一束光,入射角为60°,求反射角。
4. 一凸透镜焦距为10cm,物距为20cm,求像距。
5. 一凹透镜焦距为15cm,物距为30cm,求像距。
大学物理习题集一、选择题1.一运动质点在时刻t 位于矢径r (x ,y ) 的末端处,其速度大小为 (A )trd d (B)td d r (C)td d r(D)22)()(ty t x d d d d + 2.质点作半径为R 的匀速率圆周运动,每T 秒转一圈. 在3T 时间间隔内其平均速度与平均速率分别为(A )T R T R ππ2 , 2 (B) TRπ2 , 0 (C) 0 ,0 (D)0 , 2TRπ 3.下列运动中,a 保持不变的是(A )单摆的摆动 (B) 匀速率圆周运动 (C )行星的椭圆轨道运动 (D) 抛体运动4.质点作曲线运动,位置矢量r ,路程s ,a τ 为切向加速度,a 为加速度大小,v 为速率,则有 (A )tva d d =(B) trv d d =(C) tsv d d =(D) ta d d v=τ 5. 如图所示,两个质量相同的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,并处于静止状态. 在剪断绳子的瞬间,球1和球2的加速度分别为(A )g ,g (B )0 ,g (C )g ,0 (D )2g ,06. 如图所示,物体A 置于水平面上,滑动摩擦因数为 μ. 现有一恒力F 作用于物体A 上,欲使物体A 获得最大加速度,则力F 与水平方向的夹角θ应满足(A )μθ=sin (B )μθ=tan (C )μθ=cos (D )μθ=cot 7. 如图所示,两物体A 和B 的质量分别为m 1和m 2,相互接触放在光滑水平面上,物体受到水平推力F 的作用,则物体A 对物体B 的作用力等于(A )F m m m 211+ (B ) F (C )F m m m 212+ (D )F m m125图题6图 7图8. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处时,其增加的动能为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 9. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处引力做功为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 10. 如图所示,倔强系数为k 的轻质弹簧竖直放置,下端系一质量为m 的小球,开始时弹簧处于原长状态而小球恰与地接触. 今将弹簧上端缓慢拉起,直到小球刚好脱离地面为止,在此过程中外力作功为(A )kg m 22(B )kg m 222(C )k g m 322(D )kg m 42210图11图11. 如图所示,A 、B 两弹簧的倔强系数分别为k A 和k B ,其质量均不计. 当系统静止时,两弹簧的弹性势能之比E pA / E pB 为(A )BA k k(B )AB k k(C )22BA k k (D )22AB k k12. 一质点在外力作用下运动时,下列说法哪个正确?(A )质点的动量改变时,质点的动能也一定改变. (B )质点的动能不变时,质点的动量也一定不变. (C )外力的功是零,外力的冲量一定是零. (D )外力的冲量是零,外力的功也一定是零. 13. 设速度为v 的子弹打穿一木板后速度降为v 21,子弹在运动中受到木板的阻力可看成是恒定的. 那么当子弹进入木块的深度是木块厚度的一半时,此时子弹的速度是(A )v 41 (B )v 43 (C )v 83(D )v 85 14. 一轻质弹簧竖直悬挂,下端系一小球,平衡时弹簧伸长量为d . 今托住小球,使弹簧处于自然长度状态,然后将其释放,不计一切阻力,则弹簧的最大伸长量为(A )d (B )2d (C )3d (D )d 2115. 下列关于功的说法中哪一种是正确的.(A )保守力作正功时,系统内相应的势能增加.(B )质点运动经一闭合路径,保守力对质点所作的功为零.(C )作用力与反作用力大小相等,方向相反,所以两者所作功的代数和必定为零. (D )质点系所受外力的矢量和为零,则外力作功的代数和也必定为零. 16. 质量为m 的小球,速度大小为v ,其方向与光滑壁面的夹角为30°. 小球与壁面发生完全弹性碰撞,则碰撞后小球的动量增量为(A )– mv i (B )mv i (C )– mv j (D )mv jm题16图 题17图 题18图17. 如图所示,质量为m 的小球用细绳系住,以速率v 在水平面上作半径为R 的圆周运动,当小球运动半周时,重力冲量的大小为(A )mv 2 (B )vm gRπ (C )0 (D )22)π()2(vmgR mv18. 如图所示,A 、B 两木块质量分别为m A 和m B =21m A ,两者用轻质弹簧相连接后置于光滑水平面上. 先用外力将两木块缓慢压近使弹簧压缩一段距离后再撤去外力,则以后两木块运动的动能之比kAkB E E 为(A )2 (B )21 (C )2 (D )119. 如图所示,光滑平面上放置质量相同的运动物体P 和静止物体Q ,Q 与弹簧和挡板M 相连,弹簧和挡板的质量忽略不计. P 与Q 碰撞后P 停止,而Q 以碰撞前P 的速度运动.则在碰撞过程中弹簧压缩量达到最大时,此时有(A )P 的速度正好变为零 (B )P 与Q 的速度相等(C )Q 正好开始运动 (D )Q 正好达到原来P 的速度题19图 题20图20. 如图所示,质量分别为m 1和m 2的小球用一轻质弹簧相连,置于光滑水平面上. 今以等值反向的力分别作用于两小球上,则由两小球与弹簧组成的系统(A )动量守恒,机械能守恒 (B )动量守恒,机械能不守恒 (C )动量不守恒,机械能守恒 (D )动量不守恒,机械能不守恒 20.当一质点作匀速率圆周运动时,以下说法正确的是 (A )它的动量不变,对圆心的角动量也不变(B )它的动量不变,但对圆心的角动量却不断变化 (C )它的动量不断改变,但对圆心的角动量却不变(D )它的动量不断改变,对圆心的角动量也不断改变21.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的二分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )02ω (D )02ω22.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的三分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )03ω (D )03ω23.如图所示,有一个小块物体置于光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔. 该物体以角速度ω 作匀速圆周运动,运动半径为R . 今将绳从小孔缓慢往下拉,则物体 ( )(A ) 动能不变,动量、角动量改变 (B )动量、角动量不变,动能改变 (C )角动量不变,动能、动量改变 (D )动能、动量、角动量都不变24.有一均匀直棒一端固定,另一端可绕通过其固定端的光滑水平轴在竖直平面内自由摆动. 开始时棒处于水平位置,今使棒由静止状态开始自由下落. 则在棒从水平位置摆到竖直位置的过程中,角速度ω和角加速度β 将会如何变化(A )ω和β 都将逐渐增大 (B )ω和β 都将逐渐减小 (C )ω逐渐增大、β 逐渐减小 (D )ω逐渐减小、β 逐渐增大 25.如果要将一带电体看作点电荷,则该带电体的 (A )线度很小 (B )电荷呈球形分布 (C )线度远小于其它有关长度 (D )电量很小.26.以下说法中哪一种是正确的?(A )电场中某点电场强度的方向,就是试验电荷在该点所受电场力的方向(B )电场中某点电场强度的方向可由E =F /q 0确定,其中q 0为试验电荷的电量,q 0可正、可负,F 为试验电荷所受的电场力(C )在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 (D )以上说法都不正确.27.一边长为b 的正方体,在其中心处放置一电量为q 的点电荷,则正方体顶点处电场强度的大小为(A )20π8b q ε (B )20π6b q ε (C )20π3b q ε (D )202πb q ε28. 某种球对称性静电场的场强大小E 随径向距离r 变化的关系如图所示,请指出该电场是由下列哪一种带电体产生的(A )点电荷 (B )半径为R 的均匀带电球面(C )半径为R 的均匀带电球体 (D )无限长均匀带电直线.29.由高斯定理的数学表达式⎰⋅SS E d =∑0/εi q 可知,下述各种说法中正确的是(A )高斯面内电荷的代数和为零时,高斯面上各点场强一定处处为零 (B )高斯面内的电荷代数和为零时,高斯面上各点场强不一定处处为零 (C )高斯面内的电荷代数和不为零时,高斯面上各点场强一定处处不为零 (D )高斯面内无电荷时,高斯面上各点场强一定为零.30. 如图所示,一均匀电场的电场强度为E . 另有一半径为R 的半球面,其底面与场强E 平行,则通过该半球面的电场强度通量为(A )0(B )E R 2π21(C ) E R 2π(D ) E R 2π223图题30图E题28图31.静电场中某点P 处电势的数值等于(A )试验电荷q 0置于P 点时具有的电势能 (B )单位试验电荷置于P 点时具有的电势能 (C )单位正电荷置于P 点时具有的电势能(D )把单位正电荷从P 点移到电势零点时外力所作的功. 32.在某一静电场中,任意两点P 1和P 2之间的电势差决定于 (A )P 1点的位置 (B )P 2点的位置(C )P 1和P 2两点的位置(D )P 1和P 2两点处的电场强度的大小和方向.33.半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则该带电体电场的电势U 随距球心的距离r 变化的曲线为(A ) (B ) (C ) (D ) 题33图34.一半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则球内(外)距离球心为r 的P 点处的电场强度的大小和电势为(A )0=E ,rq U 0π4ε= (B ) 20π4r q E ε=,rq U 0π4ε= (C )0=E ,Rq U 0π4ε=(D ) 20π4r q E ε=,Rq U 0π4ε=35. 如图所示,边长为a 的正方形线圈中通有电流I ,此线圈在A 点产生的磁感应强度B 的大小为 (A )aIπ420μ (B )aIπ320μ (C )aIπ220μ (D )aIπ20μ 36. 如图所示,四条皆垂直于纸面的无限长载流细导线,每条中的电流强度都为I . 这四条导线被纸面截得的断面及电流流向如图所示,它们组成了边长为a 的正方形的四个顶角,则在图中正方形中点O 的磁感应强度的大小B 为(A )aIπ20μ (B )aIπ220μ (C )aIπ230μ (D )II题35图 题36图 题37图 题38图37、 如图所示,一载流导线在同一平面内弯曲成图示状,O 点是半径为R 1和R 2的两个半圆弧的共同圆心,导线在无穷远处连接到电源上. 设导线中的电流强度为I ,则O 点磁感应强度的大小是______.(A )102010π444R I R I R I μμμ-+ (B )102010π444R IR I R I μμμ--(C )102010π444R IR I R I μμμ++(D )102010π444R IR I R I μμμ+-38. 如图所示,在一圆电流所在的平面内,选取一个与圆电流相套嵌的闭合回路,则由安培环路定理可知 (A )⎰=⋅Ldl B 0,且环路上任意一点0=B (B )⎰=⋅Ldl B 0,但环路上任意一点0≠B(C )0⎰≠⋅Ldl B ,且环路上任意一点0≠B (D )⎰≠⋅Ldl B 0, 但环路上任意一点=B 常量36 一通有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个单位长度匝数相等的螺线管(R=2r ),两螺线管中的磁感应强度大小B R 和B r 应满足:(A )B R =B r (B )2B R =B r (C )B R =2B r (D )B R =4B r39.如图:金属棒ab 在均匀磁场B 中绕过c 点的轴OO ’转动,ac 的长度小于bc ,则:(A )a 点与b 点等电位 (B )a 点比b 点电位高(C )a 点比b 点电位低 (D )无法确定40.将导线折成半径为R 的43圆弧,然后放在垂直纸面向里的均匀磁场里,导线沿aoe 的角平分线方向以速度v 向右运动. 导线中产生的感应电动势为:(A )0(B )BRv 23(C )BRv (D )BRv 241.金属杆aoc 以速度v 在均匀磁场B 中作切割磁力线运动. 如果oa=oc=L ,如图放置,那么杆中动生电动势为:(A )BLv =ε (B )θεsin BLv = (C )θεcos BLv = (D ))cos 1(θε+=BLva题39图 题40图 题41图二、填空题1.一物体沿直线运动,运动方程为t A y ωsin =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .2.一物体沿直线运动,运动方程为t A x ωcos =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .3.一质点的直线运动方程为x = 8t – t 2(SI ),则在t=0秒到t=5秒的时间间隔内,质点的位移为 ,在这段时间间隔内质点走过的路程为 .4.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点运动轨道最高处的曲率半径为5 m ,则抛出时质点初速度的大小v 0 = . (g=10 m·s -2)5.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点抛出时质点初速度的大小v 0 = sm 10 .(g=10 m·s -2) 则质点运动轨道最高处的曲率半径为 m ,则抛出时质点初速度的大小v 0= . (g=10 m·s -2)6.在oxy 平面内运动的一质点,其运动方程为 r =5cos5t i + 5sin5t j ,则t 时刻其速度v = ,其切向加速度τa = ,法向加速度a n = .7. 如图,质量为m 的小球用轻绳AB 、AC 连接. 在剪断AB 前后的瞬间,绳AC 中的张力比值 T / T ′=.m题7图 题8图 题9图 题10图8. 如图,一圆锥摆摆长为l ,摆锤质量为m ,在水平面上作匀速圆周运动,摆线与竖直方向的夹角为θ. 则:(1)摆线中张力T = ;(2)摆锤的速率v = .9. 一小球套在半径R 的光滑圆环上,该圆环可绕通过其中心且与圆环共面的铅直轴转动. 若在旋转中小环能离开圆环的底部而停在环上某一点,则圆环的旋转角速度ω 值应大于 .10. 如图,质量为m 的木块用平行于斜面的细线拉着放置在光滑斜面上. 若斜面向右方作减速运动,当绳中张力为零时,木块的加速度大小为 ;若斜面向右方作加速运动,当木块刚脱离斜面时,木块的加速度大小为 .11. 已知两物体的质量分别为m 1、m 2,当它们的间距由a 变为b 时,万有引力所作的功为 .12. 如图所示,一质点沿半径为R 的圆周运动. 质点所受外力中有一个是恒力F =F 1 i +F 2 j ,当质点从A 点沿逆时针方向走过43圆周到达B 点时,F 所作的功A= . 13. 如图所示,质量为m 的小球系在倔强系数为k 的轻弹簧一端,弹簧的另一端固定在O 点. 开始时小球位于水平位置A 点,此时弹簧处于自然长度l 0 状态. 当小球由位置A 自由释放,下落到O 点正下方位置B 时,弹簧的伸长量为nl 0,则小球到达B 点时的速度大小为v B = . 14. 一颗速率为800 m·s -1的子弹打穿一块木板后,速度降为600 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .15. 一颗速率为600 m·s -1的子弹打穿一块木板后,速度降为500 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .B题12图A题13图16. 某人拉住河中的船,使船相对于岸不动. 以地面为参照系,人对船所作的功 ;以流水为参照系,人对船所作的功 .(填 >0 ,=0,或 <0)17. 地球半径为R ,质量为M . 现有一质量为m 的物体,位于离地面高度为2R 处,以地球和物体为系统,若取地面为势能零点,则系统的引力势能为 ;若取无限远处为势能零点,则系统的引力势能为 . (万有引力常数为G )18. 质量为m 的小球自高度为h 处沿水平方向以速率u 抛出,与地面碰撞后跳起的最大高度为h 21,水平方向速度为u 21. 不计空气阻力,则碰撞过程中,(1)地面对小球的垂直冲量为 ; (2)地面对小球的水平冲量为 .题18图m题20图19. 一物体质量为20 kg ,受到外力F = 20 i +10t j (SI) 的作用,则在开始的两秒内物体受到的冲量为 ;若物体的初速度为v 0 =10i (单位为m ⋅s -1),则在2 s 末物体的速度为 .20. 如图所示,质量为m 的小球在水平面内以角速度ω 匀速转动. 在转动一周的过程中, (1)小球动量增量的大小是 ; (2)小球所受重力冲量的大小是 ; (3)小球所受绳中张力冲量的大小是 . 21. 质量为m 的质点,以不变速率v 越过一水平光滑轨道的120° 弯角时,轨道作用于质点的冲量大小I = .22.在光滑的水平面上有一质量为M =200 g 的静止木块,一质量为m =10.0 g 的子弹以速度v 0 = 400 m ⋅s -1沿水平方向射穿木块后,其动能减小为原来的1/16. 则(1)子弹射穿木块后,木块的动能为 ;(2)阻力对子弹所做的功为 ;(3)系统损失的机械能为 .23.如图所示有一匀质大圆盘,质量为M ,半径为R ,其绕过圆心O 点且垂直于盘面的转轴的转动惯量为221MR . 然后在大圆盘中挖去如图所示的一个小圆盘,小圆盘的质量为m ,半径为r ,该挖去的小圆盘对上述转轴的转动惯量为223mr ,则挖去小圆盘后大圆盘的剩余部分对原来转轴的转动惯量为 . 24、已知有一飞轮以角速度ω0绕某固定轴旋转,飞轮对该轴的转动惯量为J 1;现将另一个静止飞轮突然啮合到同一个转轴上,该飞轮对轴的转动惯量为J 2,且J 2=2 J 1. 则啮合后整个系统的转动角速度为 .25.如图所示,木块A 、B 和滑轮C 的质量分别为 m 1、m 2和m 3,滑轮C 的半径为R ,对轴的转动惯量为2321R m J =. 若桌面光滑,滑轮与轴承之间无摩擦,绳的质量不计且不易伸长,绳与滑轮之间无相对滑动,则木块B 的加速度大小为 .23图25图26.有一半径为R 的匀质圆形水平转台,可绕过中心O 且垂直于盘面的竖直固定轴旋转,转台对轴的转动惯量为J . 有一质量为m 的人站于台上,当他站在离转轴距离为r 处时(r <R ),转台和人一起以角速度ω0绕轴旋转. 若轴承处摩擦可以忽略,则当人走到转台边缘时,转台和人一起转动的角速度为 .27.如图所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其单位长度的带电量分别为1λ和2λ,则场强等于零的P 点与直线1的距离为______.28.方向如图,A 、B 为真空中两块“无限大”的均匀带电平行平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/2. 则A 、B 两平面上电荷面密度分别为=A σ________,=B σ________. 29.如图所示,两块“无限大”的带电平行平面,其电荷面密度分别为σ-(σ>0)及σ3.试写出各区域的电场强度E :Ⅰ区E 的大小______,方向______;Ⅱ区E 的大小______,方向______;Ⅲ区E 的大小______,方向______.30.真空中一半径为R 的均匀带电球面,总电量为Q (Q<0) . 今在球面上挖去一块非常小的面积S ∆(连同电荷),且假设不影响原来的电荷分布,则挖去S ∆后球心处电场强度的大小E=______,其方向为______.1λ2λ12A BⅡⅢ-σ3σⅠOR△S题27图 题28图 题29图 题30图31.在静电场中,任意作一闭合曲面,通过该闭合曲面的电通量⎰⋅SS E d 的值仅取决于______,而与______无关.32.在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合曲面S 1、S 2、S 3,则通过这些闭合曲面的电场强度通量分别为=1Φ______,=2Φ______,=3Φ______.题32图 题33图33.如图所示,半径为R 的半球面置于场强为E 的均匀电场中,若其对称轴与场强方向一致,则通过该半球面的电场强度通量为______,若其对称轴与场强方向垂直,则通过该半球面的电场强度通量为______.34.在电量为q 的点电荷的静电场中,与点电荷相距分别为r 1和r 2的A 、B 两点之间的电势差U A -U B =______.35.一个球形的橡皮膜气球,电荷q 均匀分布在其表面,在吹大此气球的过程中,半径由r 1变到r 2. 若选取无穷远处为电势零点,则半径为R (r 1<R <r 2)的高斯球面上任一点的场强大小E 由______变为______;电势U 由______变为______.36.如图所示,在电量为+Q 的点电荷产生的电场中,电量为q 的试验电荷沿半径为R 的圆弧由A 点移动3/4圆弧轨道到D 点,在此过程中,电场力作功为______;若从D 点移到无穷远处,此过程中电场力作功为______.题36图 题37图 题38图 题39图37. 如图所示,无限长直导线在P 处弯成半径为R 的圆,导线在P 点绝缘. 当通以电流I 时,则在圆心O 点的磁感应强度大小=B ________.38. 如图所示,用均匀细金属丝构成一半径为R 的圆环,电流I 由导线CA 流入圆环A 点,而后由圆环B 点流出,进入导线BD . 设导线CA 和导线BD 与圆环共面,则环心O 处的磁感应强度大小为________,方向________.39. 一同轴电缆由内圆柱体和外圆筒导体组成,其尺寸如图所示. 它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向相反,则(1)在r <R 1处磁感应强度大小为________;(2)在r >R 3处磁感应强度大小为________.40.如图所示,在一根通有电流I 的长直导线旁,与之共面地放着一个长宽各为a 和b 的矩形线框ABCD .线框AD 边与载流长直导线平行,且二者相距为2b . 在此情形中,线框内的磁通量=Φ________.41. 如图所示,两根长直导线通有电流I ,对图示环路1L 、2L 、3L 上B 的环流有:=⋅⎰1L dl B ________;=⋅⎰2L dl B ________;=⋅⎰L dl B ________.III题40图 题41图 题44图42. 一带电粒子平行磁感应线射入匀强磁场,则它作________运动;一带电粒子垂直磁感应线射入匀强磁场,则它作________运动;一带电粒子与磁感应线成任意角度射入匀强磁场,则它作_________运动.43. 在电场强度E 和磁场强度B 方向一致的匀强电场和匀强磁场中,有一运动着的电子质量为m 、电量为e ,某一时刻其速度v 的方向如图(a )和图(b )所示,则该时刻运动电子的法向和切向加速度的大小分别为:在图(a )所示情况下,=n a ______,=t a ______;在图(b )所示情况下,=n a ______,=t a ______. 44.两无限长直导线通相同的电流I ,且方向相同,平行地放在水平面上,相距为2l . 如果使长为l 的直导线AB 以匀速率v 从图中的位置向左移动t 秒时,(导线AB 仍在两电流之间),AB 两端的动生电动势大小为______. A 、B 两端,电势高的一端是______. 45.四根辐条的金属轮子在均匀磁场B 中转动,转轴与B 平行. 轮子和辐条都是导体. 辐条长为R ,轮子转速为n ,则轮子中心a 与轮边缘b 之间的感应电动势为______,电势最高点是在______处.BE BE题45图 题43图三、计算、问答1.有一质量为m 的物体悬挂在一根轻绳的一端,绳的另一端绕在一轮轴的轴上,如图所示. 轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的水平固定轴承之上,绳子不易伸长且与轴之间无相对滑动. 当物体由静止释放后,在时间t 内下降了一段距离s ,试求整个轮轴的转动惯量J (用m 、r 、t 和s 表示).mλxO2. 如图所示,质量M=2.0 kg 的沙箱,用一根长l=2.0 m 的细绳悬挂着. 今有一质量为m=20 g 的子弹以速度v 0 = 500 m ⋅s -1水平射入并穿出沙箱,射出沙箱时子弹的速度为v= 100 m ⋅s -1,设穿透时间极短. 求:(1)子弹刚穿出沙箱时绳中张力的大小;(2)子弹在穿透过程中受到的冲量大小.3. 有一均匀带电的半径为R 的球体,体密度为ρ,试用高斯定理求解其内外电场及电势分布。
三、简答题:热学部分:1、等压摩尔热容和等容摩尔热容的物理含义是什么?它们分别决定于哪些因素?答:等压摩尔热容:1mol物质在等压过程中温度升高1K时所吸收的热量,Cp=(i+2)R/2,只与气体的自由度有关;等容摩尔热容:1mol物质在等容过程中温度升高1K时所吸收Cv=iR/2,只与气体的自由度有关。
2、理想气体等压过程的特征是什么?在此过程中热量、作功和内能如何表示?答:等压过程中,热力学第一定律的三个量(热能,内能和功)都在变化。
当气体等压膨胀时,气体体积增大,系统对外界做正功,同时温度升高,气体的内能增大,系统从外界吸收能量;当气体等压压缩时,气体体积减小,外界对系统做功,即系统对外界做负功,气体温度降低,系统内能减小,此时,系统向外界放出热量。
Qp= W= E=3、理想气体等容过程的特征是什么?在此过程中热量、作功和内能如何表示?答:等容过程中,理性气体对外做功为零热量等于内能的增量。
当气体等容降压时,气体温度降低,内能减小,系统向外界放出热量。
当气体等容升压时,气体温度升高,内能增大,系统从外界吸收热量。
Qv= W= E=4、理想气体等温过程的特征是什么?在此过程中热量、作功和内能如何表示?答:等温过程中,理想气体内能保持不变,内能增量为零,系统吸收的热量等于系统对外做的功。
等温膨胀时,气体体积增大,气体对外界做正功,从外界吸收热量;等温压缩式时,气体体积减小,外界对系统做功,即系统对外界做负功,系统向外界放出热量。
Qt= W= E=5、简述卡诺循环过程;提高热机效率的途径有哪些?答:卡诺循环包括四个步骤:一、等温膨胀,在这个过程中,系统从高温热源吸收热量,对外做功;二、绝热膨胀,在这个过程中,系统对环境做功,温度降低;三、等温压缩,在这个过程中,系统向环境放出热量,体积压缩;四、绝热压缩,在这个过程中,系统恢复原来状态。
提高热机效率的途径:一、提高高温热库的温度;二、降低低温热库的温度。
1已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( )(A )222cos()33x t ππ=- (B )222cos()33x t ππ=+(C) 422cos()33x t ππ=-(D )422cos()33x t ππ=+2. 机械波的表达式为0.05cos(60.06)y t x ππ=+,式中y 和x 的单位为m ,t 的单位为s ,则( )(A )波长为5m (B )波速为10 m/s (C )周期为13s (D )波沿x 轴正方向传播 3. 两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为( )(A )60o (B ) 90o (C )120o (D ) 180o4.三个偏振片P 1,P 2,P 3堆叠在一起,P 1与P 3的偏振化方向相互垂直,P 2与P 3的偏振化方向间的夹角为30o,强度为I 0的自然光入射于偏振片P 1,并依次通过偏振片P 1,P 2,P 3,则通过三个偏振片后的光强为( ) (A )0316I (B )038I (C)0332I (D )0 5.用平行单色光垂直照射在单缝时,可观察夫琅禾费衍射。
若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为( ) (A )3个 (B )4个 (C)5个 (D ) 6个6.在波长为λ的驻波中,两个相邻波腹之间的距离为( ) (A )4λ (B )2λ(C)34λ (D )λ7.波长为550 nm 的单色光垂直入射于光栅常数为1.0×10-4cm 的光栅上,可能观察到的光谱线的最大级数为( )(A )4 (B ) 3 (C) 2 (D )1 8.三个容器A ,B ,C 中,装有同种理想气体,其分子数密度相同,而方均根速率之比为1:2:4, 则压强之比为( )(A )1:2:4 (B ) 1:4:8 (C) 1:4:16 (D )4:2:1 9.根据热力学第二定律( )(A )自然界中的一切自发过程都是不可逆的 (B )不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (D )任何过程总是沿着熵增加的方向进行10.如图,一定量的理想气体经历ac 过程时,吸热700 J ,则经历acbda 过程时吸热为( ) (A )-700 J(B )500 J (C )-500 J(D )-1200 J11.简谐运动的振动曲线如图所示,则此简谐运动的运动周期是( )。
(x 的单位为cm ,t 的单位为s ) (A )1.25 s (B )1.5 s(C )1.75 s (D )2 s12. 图中所画的是两个简谐运动的曲线,若这两个简谐运动可以叠加,则合成的余弦振动的初相位为( )(A )32π(B )12π(C )π (D) 013. 已知平面简谐波的波函数为y=Acos(at-bx),(a,b 为正值),则( ) (A )波的频率为a (B )波的传播速度为b/a (C )波长为bπ(D)波的周期为 2a π14.三个偏振片P 1,P 2,P 3堆叠在一起,P 1与P 3的偏振化方向相互垂直,P 2与P 3的偏振化方向间的夹角为45o,强度为I 0的自然光入射于偏振片P 1,并依次通过偏振片P 1,P 2,P 3,则通过三个偏振片后的光强为( ) (A )0116I (B )038I (C)018I (D )014I 15.在单缝夫琅禾费衍射试验中,波长为λ的单色光垂直入射在宽度为3λ的单缝上,对应衍射角为300的方向,单缝处波阵面可分为半波带的数目为( ) (A) 2个 (B) 3个 (C) 4个 (D)6个 16.在波长为λ的驻波中,两个相邻波腹之间的距离为( ) (A )4λ (B )2λ(C)34λ (D )λ17.波长为550 nm 的单色光垂直入射于光栅常数为1.0×10-4cm 的光栅上,可能观察到的光谱线的最大级数为( )(A )4 (B ) 3 (C) 2 (D )118.处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )(A )温度,压强均不同 (B )温度相同,但氦气压强大于氮气压强1144P /(1.0×10pa)V /(1.0×10-3m 3)a d c e bOvtt 1t 2t 3t 4(C )温度压强都相同 (D )温度相同,但氦气压强小于氮气压强 19.根据热力学第二定律( )(A )自然界中的一切自发过程都是不可逆的 (B )不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (D )任何过程总是沿着熵增加的方向进行20.如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中,气体做功与吸收热量的情况是( )(A )b1a 情况放热,做负功;b2a 过程放热,做负功 (B )b1a 情况吸热,做负功;b2a 过程放热,做负功 (C )b1a 情况吸热,做正功;b2a 过程吸热,做负功 (D )b1a 情况放热,做正功;b2a 过程吸热,做正功21. 某质点作直线运动的运动方程为x=3t-5t 2+6,则该质点 [ ](A )匀加速直线运动,加速度沿X 轴正向。
(B )匀加速直线运动,加速度沿X 轴负向。
(C )变加速直线运动,加速度沿X 轴正向。
(D )变加速直线运动,加速度沿X 轴负向。
22. 以下四种运动,加速度保持不变的运动是 [ ](A) 单摆的运动; (B) 圆周运动; (C) 抛体运动; (D) 匀速率曲线运动.23 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)[ ](A )dtdv(B )Rv 2(C )Rv dt dv 2+(D )2/1242)]()[(Rv dt dv +24. 一个作直线运动的物体,其速度v 与时间t 的关系曲线如图1所示.设时刻t 1至t 2间外力作功为W 1 ;时刻t 2至t 3间外力作功为W 2 ;时刻t 3至t 4间外力作功为W 3 ,则 [ ](A) W 1>0,W 2<0,W 3<0. (B) W 1>0,W 2<0,W 3>0.(C) W 1=0,W 2<0,W 3>0.(D) W 1=0,W 2<0,W 3<025. 质量为m 的小孩站在半径为R 的水平平台边缘上,平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J 。
平台和小孩开始时均静止。
当小孩突然以相对于地面为V 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A ))(2R V J mR =ω,顺时针。
(B ))(2RVJ mR =ω,逆时针。
[ ] (C ))(22R V mR J mR +=ω顺时针。
(D ))(22RVmR J mR +=ω,逆时针。
26.一台工作于温度分别为327℃和27℃的高温热源和低温热源之间的卡诺热机,每经历一个循环吸热1000J ,则对外做功 [ ](A) 500J (B) 750J . (C) 1500J . (D) 2000J . 7. 图3为一列在均匀介质中传播的简谐横波在t =4s 时刻的波形图,若已知振源在坐标原点O 处,波速为2m/s ,则[ ] (A) 振源O 开始振动时的方向沿y 轴正方向 (B) P 点振幅比Q 点振幅小(C) 再经过△t =4s ,质点P 将向右移动8m27.如图所示,劲度系数为k 的轻弹簧,系一质量为m 1的物体,在水平面上做振幅为A 的简谐运动。
有一质量为m 2的粘土,从高度h 处自由下落,正好在m 1物体通过平衡位置时落在物体上,则振动周期 ,振幅 。
(填变大,变小,不变)。
28. 一警车以30m/s 的速度在静止的空气中行驶,假设车上警笛的频率为800Hz ,则静止站在路边的人听到警车驶近时的频率为 ,远离时的频率为 。
(设空气中的声速为330m/s.)29.如图所示,两振动方向相同的平面简谐波波源分别位于A, B 两点,设它们相位相同,且频率均为30 Hz ,波速为0.5 m/s, 则P 点处两列波的相位差为 。
30. 最概然速率p ν,平均速率v ,方均根速率2v 的大小关系是 > > 。
31. 使2摩尔的理想气体,在T=400K 的等温状态下,体积从V 膨胀到2V ,则此过程中气体的熵增加 。
若此气体是在绝热状态下进行的,则气体的熵增为 。
x /m y /cm5 O 2 3 1 4 -557 6 8 PQ 1图 3图3cm300PA B32.为了测量月球表面的重力加速度,宇航员将地球上的秒摆(周期为2秒)拿到月球上去,如测得周期为 4.9秒,地球表面的重力加速度为9.8 m/s 2, 则月球表面的重力加速度是 。
33. 一警车以25 m/s 的速度在静止的空气中行驶,假设车上警笛的频率为800Hz ,如果警车追赶一辆速度为15 m/s 的客车,则客车上人听到的警车的频率为 。
(设空气中的声速为330m/s.)34. 气体处于平衡状态时,分子任何一个自由度的平均能量都相等,均为 。
若某理想气体是由双原子分子组成,则每个该气体分子的平均能量为 ,1mol 该理想气体的内能为 。
35. 最概然速率p ν,平均速率v ,方均根速率2v 的大小关系是 > > 。
36. 人体每天大约向周围环境散发68.9910⨯J 的热量,人体的温度为37℃,环境的温度为37℃保持不变,忽略人进食时带进体内的熵。
试估算人体每天产生多少熵 。
38.如图为简谐运动质点的速度与时间的关系曲线,且振幅为2 cm ,求:(1)振动周期;(2)加速度的最大值;(3)运动方程。
39.如图所示为一平面简谐波在t=0时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程。
40.如图所示,将一折射率为1.58的云母片覆盖于杨氏双缝的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹,假定波长λ为550 nm ,求(1)条纹如何移动;(2)云母片厚度d 。
3cm 300P A B S 1O41. 一卡诺机在温度为270C 及1270C 两个热源之间运转,(1)若在正循环中该机从高温热源吸收5000J的热量,则将向低温热源放出多少热量?对外做功多少?(2)若使该机反向运转,当从低温热源吸收5000J 的热量,则向高温热源放出多少热量?外界做功多少?42. 若简谐运动方程为0.10cos(20)4x t ππ=+,式中x 的单位为m ,t 的单位为s ,求:(1)振幅、频率、角频率、周期、初相;(2)t=2s 时的位移、速度、加速度。