17 S-L 本征值问题
- 格式:pdf
- 大小:298.26 KB
- 文档页数:16
第八章:自旋[1]在x σˆ表象中,求x σˆ的本征态 (解) 设泡利算符2σ,x σ,的共同本征函数组是: ()z s x 21 和()z s x21- (1)或者简单地记作α和β,因为这两个波函数并不是x σˆ的本征函数,但它们构成一个完整系,所以任何自旋态都能用这两个本征函数的线性式表示(叠加原理),x σˆ的本征函数可表示:βαχ21c c += (2)21,c c 待定常数,又设x σˆ的本征值λ,则x σˆ的本征方程式是: λχχσ=x ˆ (3) 将(2)代入(3):()()βαλβασ2121ˆc c c c x +=+ (4) 根据本章问题6(P .264),x σˆ对z σˆ表象基矢的运算法则是: βασ=x ˆ αβσ=x ˆ 此外又假设x σˆ的本征矢(2)是归一花的,将(5)代入(4):βλαλαβ2111c c c c +=+比较βα,的系数(这二者线性不相关),再加的归一化条件,有:)6()6()6(122211221c b a c c c c c c ------------------------------------⎪⎩⎪⎨⎧=+==λλ 前二式得12=λ,即1=λ,或1-=λ当时1=λ,代入(6a )得21c c =,再代入(6c),得: δi e c 211=δi e c 212=δ 是任意的相位因子。
当时1-=λ,代入(6a )得21c c -=代入(6c),得:δi e c 211=δi e c 212-=最后得x σˆ的本征函数: )(21βαδ+=i e x 对应本征值1)(22βαδ-=i e x 对应本征值-1以上是利用寻常的波函数表示法,但在2ˆˆσσx 共同表象中,采用z s 作自变量时,既是坐标表象,同时又是角动量表象。
可用矩阵表示算符和本征矢。
⎥⎦⎤⎢⎣⎡=01α ⎥⎦⎤⎢⎣⎡=10β ⎥⎦⎤⎢⎣⎡=21c c χ (7)x σˆ的矩阵已证明是 ⎥⎦⎤⎢⎣⎡=0110ˆx σ因此x σˆ的矩阵式本征方程式是: ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡21211010c c c c λ (8) 其余步骤与坐标表象的方法相同,x σˆ本征矢的矩阵形式是: ⎥⎦⎤⎢⎣⎡=1121δi e x ⎥⎦⎤⎢⎣⎡-=1122δi e x[2]在z σ表象中,求n⋅σ的本征态,)cos ,sin sin ,cos (sin θϕθϕθn 是),(ϕθ方向的单位矢。
北师大 结构化学 课后习题 第一章 量子理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电子等实物粒子具有波动性被称作物质波。
物质波的波动性是和微粒行为的统计性联系在一起的。
对大量粒子而言,衍射强度(即波的强度)大的地方,粒子出现的数目就多,而衍射强度小的地方,粒子出现的数目就少。
对一个粒子而言,通过晶体到达底片的位置不能准确预测。
若将相同速度的粒子,在相同的条件下重复多次相同的实验,一定会在衍射强度大的地方出现的机会多,在衍射强度小的地方出现的机会少。
因此按照波恩物质波的统计解释,对于单个粒子,ψψ=ψ*2代表粒子的几率密度,在时刻t ,空间q 点附近体积元τd 内粒子的几率应为τd 2ψ;在整个空间找到一个粒子的几率应为 12=ψ⎰τd 。
表示波函数具有归一性。
2 如何理解合格波函数的基本条件? 参考答案合格波函数的基本条件是单值,连续和平方可积。
由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒子运动状态的波函数首先必须是单值的,因为只有当波函数ψ在空间每一点只有一个值时,才能保证概率密度的单值性;至于连续的要求是由于粒子运动状态要符合Schrödinger 方程,该方程是二阶方程,就要求波函数具有连续性的特点;平方可积的是因为在整个空间中发现粒子的概率一定是100%,所以积分⎰τψψd *必为一个有限数。
3 如何理解态叠加原理? 参考答案在经典理论中,一个波可由若干个波叠加组成。
这个合成的波含有原来若干波的各种成份(如各种不同的波长和频率)。
而在量子力学中,按波函数的统计解释,态叠加原理有更深刻的含义。
某一物理量Q 的对应不同本征值的本征态的叠加,使粒子部分地处于Q 1状态,部分地处于Q 2态,……。
各种态都有自己的权重(即成份)。
这就导致了在态叠加下测量结果的不确定性。
但量子力学可以计算出测量的平均值。
4 测不准原理的根源是什么? 参考答案根源就在于微观粒子的波粒二象性。
习题十七17-1 计算电子经过V U 1001=和V U 100002=的电压加速后,它的德布罗意波长1λ和2λ分别是多少?分析 本题考察的是德布罗意物质波的波长与该运动粒子的运动速度之间的关系。
解:电子经电压U 加速后,其动能为eU E k =,因此电子的速度为:m2e v U = 根据德布罗意物质波关系式,电子波的波长为:)(23.12nm U emU h m h ==v =λ若V U 1001=,则12301.=λnm ;若V U 100002=,则012302.=λnm 。
17-2 子弹质量m =40 g, 速率m/s 100=v ,试问:(1) 与子弹相联系的物质波波长等于多少?(2) 为什么子弹的物质波性不能通过衍射效应显示出来?分析 本题考察德布罗意波长的计算。
解:(1)子弹的动量)s /m kg (410010403⋅=⨯⨯==-v m p与子弹相联系的德布罗意波长)m (1066.141063.63434--⨯=⨯==p h λ (2) 由于子弹的物质波波长的数量级为m 1034-, 比原子核的大小(约m 1014-)还小得多,因此不能通过衍射效应显示出来.17-3 电子和光子各具有波长0.2nm ,它们的动量和总能量各是多少?分析 本题考察的是德布罗意物质波的波长公式。
解:由于电子和光子具有相同的波长,所以它们的动量相同,即为: )/(1032.3102.01063.624934s m kg hp ⋅⨯=⨯⨯==---λ 电子的总能量为:)(1030.81420J hcc m E e -⨯=+=λ而光子的总能量为:)(1095.916J hcE -⨯==λ17-4 试求下列两种情况下,电子速度的不确定量:(1)电视显像管中电子的加速电压为9kV ,电子枪枪口直径取0.10mm ;(2)原子中的电子,原子的线度为1010-m 。
分析 本题考察的是海森堡不确定关系。
解:(1)由不确定关系可得: 2≥∆⋅∆x p x 依题意此时的mm x 10.01=∆,因此有:)/(6.021s m x m m p x =∆≥∆=∆ x v 电子经过9kV 电压加速后,速度约为s m /1067⨯。
第三章 碱金属原子结构及光谱碱金属原子: Li, Na, K, Rb, Cs, Fr (周期表中I 族元素) 特点: 最外层只有一个电子, 内层形成“闭合壳层”(中学化学:原子中电子分层排列,每层排满2n 2个电子形成“闭合壳层”,第四章介绍)。
只考虑最外层的那一个电子和“闭合壳层+原子核=原子实”的作用。
§3.1 能级和光谱---最外层电子和原子实作用形成 3.1.1 能级和能级图(玻尔理论为基础的维象理论) 1, 能级 对氢原子:E n = -2nhcR H , (和l, m 无关)对碱金属原子,和最外层电子的状态有关: E n = E n,l = - 2)(l n Rhcδ-。
(1)Note : (i) R = R ∞ →R H ; (n -δl )→ n ; δl (量子数亏损),和n , l 有关;(ii) E n 对l 的“简并”消除,E =E n,l 。
一个n , 对应l (0,1,2,3,…n -1)个E n,l 。
对: l = 0, 1, 2, 3, 4, …,描述的电子 表示: s, p, d, f, g, …, δl : δs , δp , δd , δf , δg ,…。
2, N a 原子(Z=11)的能级图 − 格罗春图 纵轴:E n,l / eV最右边一列:H (对比, 只和n 有关); 第一列 (S 能级): s 电子; n =3,4,5,…,(无 n =1,2, Why ?:2n 2) 。
第四列 (F 能级):f 电子; n =4,5,6,…,(无 n =3,2,1 , Why ?: l max = n-1 ) 问题:Li 、K 、。
能级图特点? 3.1.2 光谱和能级跃迁规律- Na 原子为例 仅存在: ∆ l =±1 (2-67)的跃迁,由此构成四个主要线系。
1, 锐线系(nS →3P, n =4,5,6,…, ) ∆ l =-1nS 能级能量: E n,s = - 2)(s n Rhc δ-; 3P 能级能量:E 3,p = - 2)3(p Rhcδ- ;nS →3P 的波数:由, E n,s - E 3,p = h ν=hc/λ= hc σσ = 2)3(p Rδ--2)(s n Rδ- (2)2, 主线系(nP →3S, n =3,4,5,…, ) ∆ l =1σ = 2)3(s Rδ--2)(p n Rδ- (3)3, 漫线系(nD →3P, n =3,4,5,…, ) ∆ l =1σ = 2)3(p Rδ--2)(d n Rδ- (4)4, 柏格曼线系(nF →3D, n =4,5,6,…, ) ∆ l =1σ = 2)3(d Rδ--2)(f n Rδ- (5)问题:Li 、K 、。