钻柱分析
- 格式:doc
- 大小:593.50 KB
- 文档页数:25
第三章钻受力分析3.1 作用在钻柱上的根本载荷钻柱的受力状态与所选用的钻井方式有关,不同的位置上作用不同的载荷。
概括起来,作用在钻柱上的根本载荷有以下几种:〔1〕轴向力。
处于悬挂状态下的钻柱,在自重作用下,由上到下均受拉力。
最下端的拉力为零,井口处的拉力最大。
在钻井液中钻柱将受到浮力的作用,浮力使钻柱受拉减小。
起钻过程中,钻柱与井壁之间的摩擦力以及遇阻、遇卡,均会增大钻柱上的拉伸载荷。
下钻时钻柱的承载情况与起钻时相反。
循环系统在钻柱内及钻头水眼上所耗损的压力,也将使钻柱承受的拉力增大。
钻铤以自重给钻头加钻压,造成钻柱下部处于压缩状态。
〔2〕径向挤压力。
应用卡瓦进展起下钻作业时,由于卡瓦有一定的锥角,在钻柱上引起一定的挤压力。
中途测试时,钻柱上也要承受管外液柱的挤压力。
〔3〕弯曲力矩。
弯曲力矩的产生是因钻柱上有弯曲变形存在;引起钻校弯曲变形的主要因素是给定的钻压值超过了钻柱的临界值。
在转盘钻井中,钻柱在离心力的作用下,亦会造成弯曲。
由于钻柱在弯曲井眼内工作,也将产生弯曲。
在弯曲状态,钻柱如绕自身轴线旋转,那么会产生交变的弯曲应力。
〔4〕离心力。
钻柱在钻压的作用下会产生弯曲,在一定的条件下,弯曲钻柱会围绕井眼中心线旋转而产生离心力,促使钻柱更加弯曲。
〔5〕扭矩。
钻头破碎岩石的功率是由转盘通过方钻杆传递给钻柱的。
出于钻柱与井壁和钻井液有摩擦阻力,因此钻柱所承受的扭矩井口比井底大。
但在使用井底动力钻具〔涡轮钻具、迪纳钻具等〕时,作用在钻柱上的反扭矩,井底大于井口。
〔6〕振动载荷。
使钻柱产生振动的干扰力也是作用在钻柱的重要载荷〔图 2-1〕。
在钻井过程中,用钻柱将钻头送至井眼底部并向钻头传递动力,靠钻头的牙齿、切削刃和射流破碎岩石形成井筒;通过钻柱中心的圆管向井下传递高压钻井液,靠钻井液的流动把岩石碎屑携至地面并从钻井液中除掉岩屑。
为了控制井眼钻进的方向,靠近钻头的一段钻柱外径和抗弯刚度较大,并在一定位置上安放一定规格的稳定器,下部钻柱只有稳定器和钻头接触井壁,钻柱本体那么不与井壁接触。
水平井钻柱摩阻、摩扭分析张宗仁一、文献调研与综述在水平井中,由于重力的作用,钻具总是靠着井壁(或套管)的,其接触面积就比直井大很多所产生的摩擦力和扭矩将会大大的增加。
对管柱的摩擦阻力和轴向拉力研究计算,保证钻井管柱(钻柱或则套管,油管)的顺利上提和下放。
如今,国内外已经有很多关于磨阻计算的力学模型,主要分为两大类:一类为柔杆模型,另一类为柔杆加刚性模型。
1.1约翰西克柔杆模型:约翰西克(Johansick)在1983年首次对全井钻柱受力进行了研究,为了研究的方便,在研究过程中.他作了以下几点假设: (1)钻柱与井眼中心线一致; (2)钻柱与井壁连续接触:(3)假设钻柱为一条只有重量而无刚性的柔索; (4)忽略钻柱中剪力的存在:(5)除考虑钻井液的浮力外忽略其他与钻井液有关的因素。
在此假设条件下,建立了微单元力学模型,根据单元的力学平衡,推导出如下的拉力、扭矩计算公式:1222cos [(sin )(sin )]t T W NM NrN T T W αμμθααα∆=±∆==∆+∆+式中:T:钻柱单元下端的轴向拉力,N ; Mt:钻柱扭矩,N.m ;N:钻柱与井壁的接触正压力,N ; W:钻柱在钻井液中的重量,N ; u:钻柱与井壁的摩擦系数; r:钻柱单元半径;a,△a,△θ:平均井斜角,井斜角增量,方位角增量;起钻时取“+”,下钻时取“-”。
1.2二维模型:Maida 等人对拉力、扭矩进行了平面和空间的分析,建立了应用于现场的二维和三维的数学模型。
他建立的二维模型和三维模型如下:111211111**[(1)(sin sin )2(cos cos )]1exp[()](exp[()](Ai Ai B i i B i i BB i i B i i i i i qRF A F C a A a C a A a A a a A a a l l a a μμμμμ-------=+--+-+=-=---i 起钻)下钻)R=式中B μ为摩擦系数,li 计算点井深,FAi 为计算点轴向载荷,C1、C2为符号变量,其取值由表1-1给出:1111()()()()[()][()*()()*()()*()arccos[cos()*sin *sin cos *cos ]24()()(1)1Au B s N N b u b p i i i i i i i i s F q l C l q l dlq l q l q l q l q l q b l q l q p l l l R a a a a C l l μμθθγππ----=±=+===-=-+=-+式中u(l) , b(1) , p(1)分别为计算单元井段切线、副法线和主法线方向向量。
钻柱力学分析读者朋友,欢迎你来到这篇文章,这篇文章将为你提供一个深入的分析,关于叫做钻柱力学(Drilling Column Mechanics)的话题。
本文将概述钻柱力学的基本原理和它的在石油钻探中的应用,还将分析钻柱力学的可行性以及它在钻探方面的发展前景。
一、钻柱力学的基本原理钻柱力学的主要原理来自于两个优秀的物理原理:力的平衡和圆柱曲线力学。
力的平衡是指钻柱的各种力,如系统重力、钻柱扭矩、钻柱圆柱曲线力学及系统抗拉力,需要相互抵消,以维持力学稳定。
而圆柱曲线力学是指圆柱形轴向力的力学行为,可以用来计算钻柱的截面变形情况。
二、钻柱力学在石油钻探中的应用现代石油钻探技术中,钻柱力学是一个重要的因素,可以帮助工程师理解钻探过程中钻柱受力和变形的情况,以及如何确定在钻探过程中采取正确的措施。
此外,钻柱力学还可以用来估计井壁收敛变形,以及确定最佳钻柱尺寸,以减少钻井时间和成本。
三、钻柱力学的可行性在钻探过程中,钻柱受到各种不同的力,这些力会促使钻柱产生微小的变形,并在时间的推移中不断影响钻探过程的进展。
因此,利用钻柱力学可以有效地控制钻柱的受力状态,从而帮助钻探工程师在短时间内完成钻井。
此外,钻柱力学可以帮助建立仿真模型,以便工程师可以在实际钻探之前模拟出不同情况下的钻井受力和变形状况。
四、钻柱力学的发展前景由于石油钻探技术不断进步,钻柱力学在钻井过程中也将变得越来越重要。
目前,钻柱力学已经被广泛应用于石油钻探,但未来仍有很多空间可以改进和优化,如研发新型工具和材料,以及提高力学分析技术。
此外,研究人员正在尝试用钻柱力学来优化钻探布线,以减少钻探过程中的受力和变形。
总结以上是关于钻柱力学的详细介绍。
从上面可以看出,钻柱力学是一个非常重要的概念,它可以帮助工程师在短时间内完成钻井,而且在未来也会越来越受重视。
因此,为了提高石油钻探的效率,应该加强对钻柱力学的研究,以提升钻探技术水平。
第二节钻柱一、钻柱的作用与组成二、钻柱的工作状态与受力分析三、钻柱设计一、钻柱的组成与作用(一)钻柱的组成钻柱(Drilling String)是水龙头以下、钻头以上钢管柱的总称。
它包括方钻杆(Square Kelly)、钻杆(Drill Pipe)、钻挺(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下工具。
(一)钻柱组成(一)钻柱的组成钻柱是钻头以上,水龙头以下部分的钢管柱的总称.它包括方钻杆、钻杆、钻挺、各种接头(Joint)及稳定器等井下工具。
(二)钻柱的作用(见动画)(1)提供钻井液流动通道;(2)给钻头提供钻压;(3)传递扭矩;(4)起下钻头;(5)计量井深;(6)观察和了解井下情况(钻头工作情况、井眼状况、地层情况);(7)进行其它特殊作业(取芯、挤水泥、打捞等);(8)钻杆测试(Drill-Stem Testing),又称中途测试。
1. 钻杆(1)作用:传递扭矩和输送钻井液,延长钻柱。
(2)结构:管体+接头,由无缝钢管制成。
1. 钻杆(3)连接方式及现状:a.细丝扣连接,对应钻杆为有细扣钻杆。
b.对焊连接,对应钻杆为对焊钻杆。
1. 钻杆(4)管体两端加厚方式:常用的加厚形式有内加厚(a)、外加厚(b)、内外加厚(c)三种.(a) (b) (c)(5)规范壁厚:9 ~11mm 外径:长度:根据美国石油学会(American Petroleum Institute,简称API)的规定,钻杆按长度分为三类:"21,"21 ,"21,"87 ,835139.70 ,500.127 430.1144101.60390.88 273.00 230.60第一类 5.486~6.706米(18~22英尺);第二类8.230~9.144米(27~30英尺); 第三类11.582~13.716米(38~45英尺)。
常用钻杆规范(内径、外径、壁厚、线密度等)见表2-12(6)钢级与强度钻 杆 钢 级物 理 性 能D E95(X)105(G)135(S)MPa379.21517.11655.00723.95930.70最小屈服强度lb/in2550007500095000105000135000 MPa586.05723.95861.85930.791137.64最大屈服强度lb/in285000105000125000135000165000 MPa655.00689.48723.95792.90999.74最小抗拉强度lb/in295000100000105000115000145000钢级:钻杆钢材等级,由钻杆最小屈服强度决定。
钻柱工作状态及受力分析一、钻柱的工作状态在钻井过程中,钻柱主要是在起下钻和正常钻进这两种条件下工作。
在起下钻时,整个钻柱被悬挂起来,在自重力的作用下,钻柱处于受拉伸的直线稳定状态。
实际上,井眼并非是完全竖直的,钻柱将随井眼倾斜和弯曲。
在正常钻进时,部分钻柱(主要是钻铤)的重力作为钻压施加在钻头上,使得上部钻柱受拉伸而下部钻柱受压缩。
在钻压小和直井条大钻压,则会出现钻柱的第一次弯曲或更多次弯曲(图1)。
目前,旋转钻井所用钻压一般都超过了常用钻铤的临界压力值,如果不采取措施,下部钻柱将不可避免地发生弯曲。
在转盘钻井中,整个钻柱处于不停旋转的状态,作用在钻柱上的力,除拉力和压力外,还有由于旋转产生的离心力。
离心力的作用有可能加剧下部钻柱的弯曲变形。
钻柱上部的受拉伸部分,由于离心力的作用也可能呈现弯曲状态。
在钻进过程中,通过钻柱将转盘扭矩传送给钻头。
在扭矩的作用下,钻柱不可能呈平面弯曲状态,而是呈空间螺旋形弯曲状态。
根据井下钻柱的实际磨损情况和工作情况来分析,钻柱在井眼内的旋转运动形式可能是自转,钻柱像一根柔性轴,围绕自身轴线旋转;也可能是公转,钻柱像一个刚体,围绕着井眼轴线旋转并沿着井壁滑动;或者是公转与自转的结合及整个钻柱或部分钻柱做无规则的旋转摆动。
从理论上讲,如果钻柱的刚度在各个方向上是均匀一致的,那么钻柱是哪种运动形式取决于外界阻力(如钻井液阻力、井壁摩擦力等)的大小,但总以消耗能量最小的运动形式出现。
因此,一般认为弯曲钻柱旋转的主要形式是自转,但也可能产生公转或两种运动形式的结合,既有自转,也有公转。
在钻柱自转的情况下,离心力的总和等于零,对钻柱弯曲没有影响。
这样,钻柱弯曲就可以简化成不旋转钻柱弯曲的问题。
在井下动力钻井时,钻头破碎岩石的旋转扭矩来自井下动力钻具,其上部钻柱一般是不旋转的,故不存在离心力的作用。
另外,可用水力荷载给钻头加压,这就使得钻柱受力情况变得比较简单。
二、钻柱的受力分析钻柱在井下受到多种荷载(轴向拉力及压力、扭矩、弯曲力矩)作用,在不同的工作状态下,不同部位的钻柱的受力的情况是不同的。
钻柱一、钻柱的作用与组成二、钻柱的工作状态与受力分析三、钻柱设计一、钻柱的组成与功用(一)钻柱的组成钻柱(Drilling String)是钻头以上,水龙头以下部分的钢管柱的总称.它包括方钻杆(Square Kelly)、钻杆(Drill Pipe)、钻挺(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下工具。
(二)钻柱的功用(1)提供钻井液流动通道;(2)给钻头提供钻压;(3)传递扭矩;(4)起下钻头;(5)计量井深。
(6)观察和了解井下情况(钻头工作情况、井眼状况、地层情况);(7)进行其它特殊作业(取芯、挤水泥、打捞等);(8)钻杆测试 ( Drill-Stem Testing),又称中途测试。
1. 钻杆(1)作用:传递扭矩和输送钻井液,延长钻柱。
(2)结构:管体+接头(3)规范:壁厚:9 ~ 11mm外径:长度:根据美国石油学会(American Petroleum Institute,简称API)的规定,钻杆按长度分为三类:第一类 5.486~ 6.706米(18~22英尺);第二类 8.230~ 9.144米(27~30英尺);第三类 11.582~13.716米(38~45英尺)。
常用钻杆规范(内径、外径、壁厚、线密度等)见表2-12•丝扣连接条件:尺寸相等,丝扣类型相同,公母扣相匹配。
•钻杆接头特点:壁厚较大,外径较大,强度较高。
•钻杆接头类型:内平(IF)、贯眼(FH)、正规(REG); NC系列•内平式:主要用于外加厚钻杆。
特点是钻杆通体内径相同,钻井液流动阻力小;但外径较大,容易磨损。
贯眼式:主要用于内加厚钻杆。
其特点是钻杆有两个内径,钻井液流动阻力大于内平式,但其外径小于内平式。
正规式:主要用于内加厚钻杆及钻头、打捞工具。
其特点是接头内径<加厚处内径<管体内径,钻井液流动阻力大,但外径最小,强度较大。
三种类型接头均采用V型螺纹,但扣型、扣距、锥度及尺寸等都有很大的差别。
第五章 钻柱第一节 钻柱的工作状态及受力分析一、工作状态起下钻时:钻柱处于悬持状态--受拉伸(自重),直线稳定状态正常钻进:P<P1 直线稳定P1≤P<P2 一次弯曲P2≤P<P3 二次弯曲钻柱旋转→扭矩离心力→下部弯曲半波缩短上部弯曲半波增长(上部受拉)结论:变节距的空间螺旋弯曲曲线形状钻柱在井内可能有4种旋转形式:(P96)a.自转:b.公转:沿井壁滑动。
c.自转和公转的结合:沿井壁滚动。
d.整个钻柱作无规则的摆动:二、钻柱在井下的受力分析(1) 轴向拉应力与压应力拉应力:由钻柱自重产生,井口最大,起钻和卡钻时产生附加拉力。
压应力:由钻压产生,井底最大。
应力分布(P97,图3-2) 轴向力零点:钻柱上即不受拉也不受压的一点。
中和点:该点以下钻柱在液体中的重量等于钻压。
(2) 剪应力(扭矩):旋转钻柱和钻头所需的力,井口最大。
(3) 弯曲应力:钻柱弯曲并自转时产生交变的拉压应力。
井眼弯曲→钻柱弯曲 132(4) 纵向、横向、扭转振动(5) 其他外力:起下钻动载(惯性),井壁磨擦力,钻柱旋转时因离心力引起的弯曲。
综合以上分析:工况不同,应力作用不同,需根据实际工况确定应力状态。
(1) 钻进时钻柱下部:轴向压力、扭矩、弯曲力矩、交变应力;(2) 钻进和起下钻时井口钻柱:拉力、扭力最大+动载(3) 钻压、地层岩性变化引起中和点位移产生交变载荷。
第二节 钻井过程中各种应力的计算一、轴向应力计算(一)上部拉应力计算1、钻柱在泥浆中空悬浮力:αρ⋅⋅⋅⋅=F L g B mα——考虑钻杆接头和加厚影响的重量修正系数,1.05~1.10 钻柱在空气中的重力:αρ⋅⋅⋅⋅=F L g Q s a井口拉力:B Q Q a -=a f Q K Q ⋅=浮力系数:)1(s m f K ρρ-=ρs --钢的密度,7.85 g/cm 3拉应力:FQ t =σ 注意计算井口以下任一截面上的拉力不能直接用浮力系数法计算。
井下钻柱振动分析及DDS在现场的应用关键词:钻柱振动钻具加速度计 mwd一、井下钻具振动的定义及危害1.井下钻具振动的定义井下钻具震动是指井下钻具在受到外界震击以后,发生的周期性、围绕中心位置来回的弹性运动,进行能量释放的过程。
井下钻具的破坏方式主要有两种:1.1受到瞬间的强烈震击,碰撞对钻具造成破坏。
1.2受到外界能量输入以后,钻具自身发生的频繁的周期性的振动,使钻柱发生弹性破坏。
2.井下钻具振动的危害[2]破坏钻柱及钻头。
造成井下事故(如粘卡)浪费大量非生产时间,增加生产成本。
降低进尺,浪费不必要的能量在钻具振动上。
二、井下钻具振动的检测sperry-sun是通过dds(钻柱动力传感器)来测量井下钻具振动的。
而dds是由三个互成直角的加速计(x,y,z)组成。
x指钻柱中心在侧向上沿x轴上的加速度(axc)和钻柱径向上沿x轴方向上的离心加速度(rω2)的叠加,y指在侧向上钻柱中心沿与x 轴垂直的y轴上的加速度(ayc)和与离心力相垂直的加速度(rω)的叠加,r指钻柱的半径,ω指钻柱的转速(rpm)。
z指钻柱沿轴向方向的加速度(azc)[1]。
1.模拟/加速计板模拟/加速计板是一个被组合了加速计的模拟电路板。
模拟电路板用来监控,过滤和放大变频信号。
这种信号通过以下三种方式来体现:峰值,平均值和脉冲。
2.数字面板数字面板包含一个摩托罗拉8字节hc11处理器,512 kb ram, 32 kb eeprom(电子可擦只读内存)和一个温度传感器。
所有的数据(峰值,均值,脉冲和温度)计数范围为0-255。
三、钻柱振动的分类和影响因素1.振动机理及分类[1]:钻头和钻柱振动可分为三种类型:轴向:钻柱沿轴方向上的移动。
扭转:钻柱侧向扭转引起的移动。
横向:钻柱水平横向上的移动。
主要有以下六种常见的振动类型。
1.1钻头的跳动1.2粘/滑-扭矩引起的移动1.3钻头旋转-横向上的移动。
1.4钻具组合旋转- 横向上的移动。
钻柱一、钻柱的作用与组成二、钻柱的工作状态与受力分析三、钻柱设计一、钻柱的组成与功用(一)钻柱的组成钻柱(Drilling String)是钻头以上,水龙头以下部分的钢管柱的总称.它包括方钻杆(Square Kelly)、钻杆(Drill Pipe)、钻挺(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下工具。
(二)钻柱的功用(1)提供钻井液流动通道;(2)给钻头提供钻压;(3)传递扭矩;(4)起下钻头;(5)计量井深。
(6)观察和了解井下情况(钻头工作情况、井眼状况、地层情况);(7)进行其它特殊作业(取芯、挤水泥、打捞等);(8)钻杆测试 ( Drill-Stem Testing),又称中途测试。
1. 钻杆(1)作用:传递扭矩和输送钻井液,延长钻柱。
(2)结构:管体+接头(3)规范:壁厚:9 ~ 11mm外径:长度:根据美国石油学会(American Petroleum Institute,简称API)的规定,钻杆按长度分为三类:第一类 5.486~ 6.706米(18~22英尺);第二类 8.230~ 9.144米(27~30英尺);第三类 11.582~13.716米(38~45英尺)。
常用钻杆规范(内径、外径、壁厚、线密度等)见表2-12•丝扣连接条件:尺寸相等,丝扣类型相同,公母扣相匹配。
•钻杆接头特点:壁厚较大,外径较大,强度较高。
•钻杆接头类型:内平(IF)、贯眼(FH)、正规(REG); NC系列•内平式:主要用于外加厚钻杆。
特点是钻杆通体内径相同,钻井液流动阻力小;但外径较大,容易磨损。
贯眼式:主要用于内加厚钻杆。
其特点是钻杆有两个内径,钻井液流动阻力大于内平式,但其外径小于内平式。
正规式:主要用于内加厚钻杆及钻头、打捞工具。
其特点是接头内径<加厚处内径<管体内径,钻井液流动阻力大,但外径最小,强度较大。
三种类型接头均采用V型螺纹,但扣型、扣距、锥度及尺寸等都有很大的差别。
NC型系列接头NC23,NC26,NC31,NC35,NC38,NC40,NC44,NC46,NC50,NC56,NC61,NC70,NC77NC—National Coarse Thread,(美国)国家标准粗牙螺纹。
xx—表示基面丝扣节圆直径,用英寸表示的前两位数字乘以10。
如:NC26表示的节圆直径为2.668英寸。
NC螺纹也为V型螺纹, 表2-17所列的几种NC型接头与旧API标准接头有相同的节圆直2. 钻铤结构特点:管体两端直接车制丝扣,无专门接头;壁厚大(38-53毫米),重量大,刚度大。
主要作用:(1)给钻头施加钻压;(2)保证压缩应力条件下的必要强度;(3)减轻钻头的振动、摆动和跳动等,使钻头工作平稳;(4)控制井斜。
类型:光钻铤、螺旋钻铤、扁钻铤。
常用尺寸:6-1/4〃,7 〃,8 〃,9 〃3.方钻杆类型:四方形、六方形特点:壁厚较大,强度较高主要作用:传递扭矩和承受钻柱的全部重量。
常用尺寸:89mm(3.5英寸),108mm (4.5英寸),133.4mm (5.5英寸)。
4.稳定器类型:刚性稳定器、不转动橡胶套稳定器、滚轮稳定器。
作用:1)防斜; 2)控制井眼轨迹。
二、钻柱的工作状态及受力分析(一)钻柱的工作状态1. 起下钻工况下直井:直的拉伸、滑动。
斜井:随井眼倾斜和弯曲,滑动。
2. 正常钻进工况下上部受拉伸,下部受压弯曲;在扭矩作用下旋转运动。
下部钻柱弯曲的原钻压的作用使下部钻柱受压缩,当压力达到钻柱的临界压力,钻柱将失去直线稳定状态而发生弯曲并与井壁接触。
压力较大时可能发生多次弯曲。
3. 钻柱的旋转运动形式(1)自转钻柱象一根柔性轴,围绕自身轴线旋转。
均匀磨损,易发生疲劳破坏。
(2)公转钻柱象一个刚体,围绕着井眼轴线旋转并沿着井壁滑动。
产生偏磨。
(3)公转与自转的结合弯曲钻柱围绕井眼轴线旋转,同时围绕自身轴线运动。
(4)纵向振动钻头振动引起,产生交变应力。
(5)扭转振动由井底对钻头旋转阻力的变化引起,产生交变扭剪应力.(6)横向摆振达到某一临界转速,可能产生无规则摆动,产生交变弯曲应力。
一般认为弯曲钻柱旋转的主要形式是自转,但也可能产生公转或两种运动形式的结合。
由于在转动过程中受到阻力的作用,钻具的转动是不平稳的。
三、钻柱的受力分析1. 概述(1)自重产生的拉力(2)钻压产生的压力(3)钻井液的浮力(4)摩擦阻力(5)循环压降产生的附加拉力(7)起下钻时产生的动载荷(8)扭矩(9)弯曲应力(10)离心力(11)外挤力(12)振动产生的交变应力钻柱受力最严重的部位:1)井口断面拉力最大,扭矩最大;2)下部受压弯曲部分交变轴向应力、弯曲应力、扭剪应力3)中性点拉压交变载荷。
2 . 轴向力和中性点(1)自重产生的轴向拉力(井内掏空时):式中:称为“浮力减轻系数”(3)正常钻进时的轴向力:(4)其它轴向力的计算•循环压降引起的附加轴向拉力:•滑动摩擦阻力:•动载荷:•(5)起下钻时钻柱轴向力:(5)中性点钻柱上轴向力等于零的点(N点)(亦称中和点,Neutral Point )。
垂直井眼中钻柱的中性点高度:•式中:L N—中性点距井底的高度,m。
重要意义:1)设计钻柱时要确保中性点始终落在钻铤上?2)指导松扣、造扣等特殊作业。
3)中性点附近钻柱受交变应力作用,易疲劳破坏。
三、钻柱设计设计内容:(1)尺寸选择(2)钻铤柱长度计算(3)钻杆柱强度设计及较核。
设计原则:(1)满足强度(抗拉、抗挤强度等)要求,保证钻柱安全工作;(2)尽量减轻整个钻柱的重力,以便在现有的抗负荷能力下钻更深的井。
一)、钻柱尺寸选择1. 依据:(1)钻机的提升能力;(2)井眼尺寸;(3)地质条件;(4)工艺要求;(5)供货情况。
2. 经验配合关系量选用大尺寸方钻杆。
2.在钻机提升能力允许的情况下,选择大尺寸钻杆是有利的。
3.钻铤尺寸一般选用与钻杆接头外径相等或相近的尺寸,有时根据防斜措施来选择钻铤的直径。
使用大直径钻铤具有下列优点(1)可用较少的钻铤满足所需钻压的要求,可减少钻铤,从而减少起下钻时连接钻铤的时间;(2)提高了钻头附近钻柱的刚度,有利于改善钻头工况;(3)钻铤和井壁的间隙较小,可减少连接部分的疲劳破坏;(4)有利于防斜。
(二)钻铤长度的确定原则保证在最大钻压时钻杆不承受压缩载荷,即保持中性点始终处在钻铤上。
计算公式•式中 L C—钻铤长度,m;W max—设计的最大钻压,kN;S N—安全系数,一般取 S N =1.15 ~1.25;q c—每米钻铤在空气中的重力,kN/m;K B—浮力系数;α—井斜角,0°。
三、钻杆柱强度设计1.强度条件F t≤F a(2-13)式中:F t—钻杆柱任一截面上的静拉伸载荷,kN;F a —钻杆柱的最大安全静拉力,kN。
(1)钻杆在屈服强度下的抗拉载荷:钻杆材料的屈服强度所允许的最大抗拉载荷。
(2-14)式中:—钻杆的横截面积,cm2;—钻杆钢材的最小屈服强度,MPa;—最小屈服强度下的抗拉载荷,kN。
可以计算,也可以从表2-14中查出。
(2)钻杆的最大允许拉伸力F p:式中:—钻杆的最大允许拉伸载荷,kN。
(3)钻杆的最大安全静拉力F a:①安全系数法(考虑起下钻时的动载及摩擦力)式中:—安全系数,一般取1.30。
②设计系数法(考虑卡瓦挤压)③拉力余量法式中:MOP—拉力余量,一般取200~500KN。
以上三者取最小者作为Fa。
2. 钻杆柱强度设计按最大安全静拉力F a设计钻杆柱的最大允许下深(长度)。
(1)单一钻杆柱设计强度条件:最大允许下深:2)复合钻杆柱设计(深井)思路:由下而上,所受拉伸载荷逐渐增大,强度应逐渐增大。
故由钻铤上面第一段钻杆开始,先选择强度较低的钻杆,确定其许用长度;再逐段向上选择强度更高的钻杆进行设计。
这样设计出来的钻杆柱,由下而上强度逐级增大以满足抗拉强度的要求。
每段钻杆满足强度条件钻铤上面第一、二、三、四段钻杆的长度; 相应各段钻杆的最大安全静拉力; 相应各段钻杆在空气中的单位长度重力;3. 强度较核(1)抗外挤强度较核:式中: ──最大安全外挤载荷,MPa;──钻杆的最小抗挤压力,MPa;──安全系数,一般应不小于1.125。
(2)抗扭强度较核:式中:M - 钻杆承受的扭矩,kN·m;P - 使钻柱旋转所需的功率,kW;n - 转速,rpm。
(3)抗内压强度较核:不同尺寸、钢级和级别的钻杆的最小抗内压力可在API RP 7G标准中查得,用适当的安全系数去除它,即得其许用净内压力.4.典型钻柱的设计举例(1)设计参数①井深:5000m;②井径:215.9mm(8-1/2in);③钻井液密度:1.2g/cm3;④钻压:180kN;⑤井斜角:3°;⑥拉力余量:200kN(本例假设);⑦卡瓦长度:406.4mm;⑧安全系数:1.30(本例假设)。
(2)钻铤选择:①选用外径158.75mm(6-1/4in)、内径57.15mm(2-1/4in)钻铤,每米重力q c=1.35kN/m。
②计算钻铤长度:式中: ─最大钻压,180 kN;─安全系数,取 =1.18;─每米钻铤在空气中的重力,1.35 kN/m;─浮力系数,计算得 =0.85;─井斜角, =3°。
计算得:=180×1.18/1.35×0.85×cos3°=185(m)按每米钻铤10m计,需用19根钻铤,总长190m。
(3)选择第一段钻杆(接钻铤)①选用外径127mm、内径108.6mm,每米重284.69N/m,E级新钻杆,最小抗拉载荷=1760KN。
②最大长度计算:最大安全静拉载荷为:F a1=0.9F y /S t=0.9×1760/1.30=1218.46(kN)F a1=0.9F y /(σy /σt) =0.9×1760/1.42=1115.49(kN)F a1=0.9F y -MOP=0.9×1760-200=1384(kN)•=1115.49/284.69×10-3×0.856-190×1.35/284.69×10-3=3675(m)(4)选择第二段钻杆①选用外径127mm,内径108.6mm,每米重284.69N/m,X-95级新钻杆,最小抗拉载荷为=2229.71 kN。
②最大长度计算:最大安全静拉载荷计算如下:F a2=0.9×2229.71/1.30=1543.645(kN)F a2=0.9×2229.71/1.42=1413.196(kN)F a2=0.9×2229.71-200=1806.739(kN)那么,第二段钻杆的最大允许长度为:=1413.196/287.69×10-3×0.856-.35×190+284.69×10-3×3675/284.69×10-3 =1221(m)钻柱总长已超过设计井深。