沪科版-数学-七年级上册-1.2数轴 和数轴亲密接触
- 格式:doc
- 大小:76.50 KB
- 文档页数:2
2023-2024学年沪科版七年级数学上册教学设计:1.2数轴相反数和绝对值教学设计一. 教材分析数轴、相反数和绝对值是初中数学的基础知识,对于学生掌握数学概念和解决问题具有重要意义。
《沪科版七年级数学上册》的1.2节主要介绍数轴、相反数和绝对值的概念及其运用。
本节内容涉及数轴的定义、相反数的含义、绝对值的求法等,为后续数学学习奠定基础。
二. 学情分析七年级学生已具备一定的数理基础,但对于数轴、相反数和绝对值的概念可能尚有陌生。
因此,在教学过程中,要关注学生的认知水平,通过生动形象的实例和贴近生活的情境,激发学生的学习兴趣,引导学生理解和掌握概念。
三. 教学目标1.知识与技能:使学生了解数轴、相反数和绝对值的概念,学会在数轴上表示相反数和绝对值。
2.过程与方法:培养学生运用数轴、相反数和绝对值解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.数轴的概念及其表示方法。
2.相反数和绝对值的定义及其求法。
五. 教学方法1.情境教学法:通过生活实例和趣味故事,引发学生的学习兴趣,提高学生的参与度。
2.互动教学法:引导学生相互讨论、交流,培养学生的合作意识和团队精神。
3.实践教学法:让学生动手操作,加深对概念的理解和记忆。
六. 教学准备1.教学课件:制作生动形象的课件,辅助讲解和展示。
2.教学素材:准备与生活相关的实例和图片,用于引导学生思考和讨论。
3.数轴模型:准备数轴模型,方便学生直观地了解概念。
七. 教学过程1.导入(5分钟)利用趣味故事或生活实例,引出数轴、相反数和绝对值的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解数轴、相反数和绝对值的定义,通过课件和实物模型,让学生直观地了解概念。
3.操练(10分钟)让学生在数轴上表示相反数和绝对值,加深对概念的理解。
可以分组进行,培养学生的团队精神。
4.巩固(10分钟)通过填空、选择等形式,检测学生对数轴、相反数和绝对值的掌握程度。
1.2数轴、相反数和绝对值5.数轴上两点间的距离与点表示的数之间的关系(1)数轴使数和直线上的点建立了对应关系,它揭示了数和形的内在联系.正是这种联系,使得数轴上两点之间的距离与所表示的数之间存在密切关系.(2)数轴上表示数a的点与原点之间的距离:当a为一个正数时,它与原点的距离是a个单位长度,当a是负数时,它与原点的距离是|a|个单位长度;当a 是0时,距离为0.(3)注意:到某一点距离等于a(a是正数)的点有两个,在原点的左右两侧各一个.解技巧确定数轴上两点间的距离解决此类问题的最好方法是画出数轴,并表示出所求的数,再求两点间的距离.【例5-1】如图,A,B两点在数轴上,点A对应的数为2,若线段AB的长为3,求点B对应的数是多少?分析:由于点A对应的数为2,说明它到原点的距离为2,又线段AB的长为3,则点B对应的数就很容易确定了.解:因为点A对应的数为2,又线段AB的长为3,所以点B到原点的长为1.又因为点B在原点的左边,所以点B对应的数为-1.【例5-2】已知数轴上A,B表示的数互为相反数,并且A,B两点间的距离为6个单位长度,求A,B两点表示的数(A在B的左边).分析:互为相反数的数,位于原点的两侧,且到原点的距离相等,根据A,B的距离为6个单位长度,即可求出A,B两点表示的数.解:由点A,B表示的数互为相反数,且A,B两点间的距离为6,可知点A,B在原点的两侧,到原点距离都为3,又A在B的左边,所以A点表示-3,B 点表示3.6.运用相反数化简符号(1)理解:①在任意-个数前面添上“-”号,新的数就是原数的相反数.如:+5的相反数表示为-(+5),而5的相反数就是-5,所以-(+5)=-5.因此运用相反数可以进行符号化简.(2)分类:简单的符号化简共有3种情况:①-(+a )=-a ;②+(-a )=-a ;③-(-a )=a .(3)延伸:①-=-a ;-=a 等.②-0=0,表示0的相反数是0.多重符号的结果是由“-”号的个数决定的,与“+”号无关,据此可以对带有多重符号的数进行化简.化简时“+”号的个数不影响结果,可省去;而“-”号的个数是偶数个时也可全部省去,奇数个时,结果保留一个“-”号即可.【例6-1】 填空:(1)-⎝ ⎛⎭⎪⎫-127的相反数是__________; (2)如果-x =+(-80.5),那么x =__________.解析:(1)∵-⎝ ⎛⎭⎪⎫-127=127,因此此题实际上是求127的相反数,∴-⎝ ⎛⎭⎪⎫-127的相反数是-127;(2)是已知x 的相反数求原数x 的问题,∵-x =+(-80.5)=-80.5,∴x =80.5.答案:(1)-127 (2)80.5【例6-2】 化简下列各符号:(1)-;(2)+{-};(3)-{-{-…-(-6)…}}(共n 个负号).分析:化简的法则是:结果的符号与负号的个数有关,有偶数个负号时,结果为正;有奇数个负号时,结果为负.解:(1)-2;(2)5;(3)当n 为偶数时,为6;当n 为奇数时,为-6.7.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.解技巧 准确化简绝对值符号化简绝对值符号的关键是判断绝对值符号内的数是正数、负数或是0.【例7】 化简:(1)-⎪⎪⎪⎪⎪⎪-23; (2)+|-24|;(3)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫+312; (4)|-(-7.5)|.分析:先判断绝对值符号内数的符号,再求绝对值.解:(1)-⎪⎪⎪⎪⎪⎪-23=-23; (2)+|-24|=24;(3)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫+312=312; (4)|-(-7.5)|=7.5.8.字母表示的数的绝对值的求法应用因为用字母所表示的数既可以是正数也可以是负数,还可以是0.它具有不确定性,而求绝对值首先要考虑的就是符号,因此求字母表示的数的绝对值时,必须考虑题目中给定的条件,若有限定条件,就按限定条件求出,若没有限定条件,则要分正、负、0三种情况讨论.解技巧 求字母表示的数的绝对值(1)限制型逆用求法,如:|a |=6,那么a =±6;(2)开放型分类讨论求法:如求|x |+x 的值,当x >0时,|x |=x ,所以|x |+x =x +x =2x ,当x <0时,|x |=-x ,原式=0,当x =0时,原式=0;(3)化简型求法:如:|a |=|-8|,|-a |=|-8|,|-a |=|8|都能化为|a |=|8|=8解决.【例8-1】已知a=-5,|a|=|b|,则b的值等于().A.+5B.-5C.0 D.±5解析:因为a=-5,所以|a|=5.所以|b|=5.所以b=±5.注:本题常见的思维误区是由|a|=|b|推出a=b,错选 B.事实上,由|a|=|b|,可得b=±a,所以b=a或b=-a,即b=5或b=-5.答案:D【例8-2】下面推理正确的是().A.若|m|=|n|,则m=nB.若|m|=n,则m=nC.若|m|=-n,则m=nD.若m=n,则|m|=|n|解析:A中若|m|=|n|,则m=±n;B中若|m|=n(n一定是非负数),则m=±n,例如|±2|=2,此时m=±2,n=2,显然m=±n;C中若|m|=-n,则m=n 或m=-n,例如|±3|=-(-3)(n一定是非正数),此时m=±3,n=-3,所以m =±n.答案:D9.利用数轴解决生活中的实际问题本节知识常与运动问题结合在一起,利用数形结合将运动问题解决.这种利用数形结合解决问题的方法是中考考查的热点题型之一.数轴是一种数学工具,它使数和数轴上的点建立了对应关系,运用数轴可以直观表示点的移动,正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.解题时,通常根据题意正确地画出数轴,在选取长度单位时,要根据题目中的实际情况来确定,再在数轴上表示点的移动过程,用箭头和竖线来表示.【例9】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.分析:书店处于超市和玩具店之间,且书店与玩具店之间的距离是50米,书店与超市之间的距离是20米,这样可以画出数轴,即可表示出小明最后的位置.解决点的移动问题,可画出数轴,在数轴上表示点的移动,关键是确定原点,最后的点相对于原点来说,若在原点的右侧,表示的是正数,若在原点的左侧,则表示的是负数.解:根据题意可以画出如图所示的数轴,小明位于超市西边10米处.10.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题.利用绝对值求距离路程问题中,当出现用“+”、“-”号表示带方向的路程,求最后实际路程时,实际上是求绝对值的和.方法:①求各个数的绝对值;②求所有数的绝对值的和;③写出答案.【例10】一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”和“-”在本题中表示的是方向,而它们的绝对值是小王在营运中所行驶的路程,因此求共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时共行驶了87千米.。
沪科版七年级数学上册1-2 数轴、相反数和绝对值教案
第1课时数轴
沪科版七年级数学上册1-2数轴、相反数和绝对值
教案
了解数轴的概念,会画数轴,知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应.
【重点难点】
重点:理解数形结合的数学方法,掌握数轴画法和用数轴上的点表示有理数.
难点:正确理解有理数和数轴上的点的对应关系.
沪科版七年级数学上册1-2数轴、相反数和绝对值教案2.让学生阅读教科书上机器人走步取物实验
【教学小结】
沪科版七年级数学上册1-2数轴、相反数和绝对值
教案
第1课时数轴
1.数轴
2.任意一个有理数,都可以用数轴上的一个点来表示.
【教学反思】
从历史与现实生活实例引入新课,提高了学生的学习兴趣.在授课过程中教师注重了对学生自学能力的培养,让学生主动探究.在顺利完成本节课的内容之后,让学生预习下一节课的内容,培养学生良好的学习习惯.。
数学沪科七年级上册1.2《数轴、相反数和绝对值》【教案】系;4.借助数轴理解绝对值的概念,会求给定数的绝对值,知道给定数的绝对值,会求这个数。
【过程与方法目标】1.经历数轴概念的形成,学会将实际问题抽象成数学问题,逐步形成应用数学的意识;2.经历相反数、绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略。
【情感态度价值观目标】体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想的方法,激发学生学习数学的兴趣。
◆教学重难点【教学重点】1.掌握数轴的概念,并学会用数轴上的点表示有理数;2.掌握相反数的概念,归纳相反数在数轴上表示的点的特征;3.掌握绝对值的概念。
【教学难点】1.理解有理数和数轴上的点的对应关系;2.掌握负数的相反数的表示方法;3.对绝对值概念的理解。
◆课前准备多媒体课件、直尺。
◆教学过程一、情境引入让机器人在一条东西向的直路上作走步取物试验。
根据指令:它由点O处出发,向西走3m到达点A处,拿取物品,然后,返回点O处将物品放入篮中,再向东走2m到达点B处取物。
1.在如图1所示的直线上画出A、B两处的位置。
图12.把向东走记作“+”,向西走记作“-”,在上面的直线上标出与点A、B相对应的数。
我们可以用直线上的点来表示数,在数学上,我们引入了数轴的概念,通过数轴来表示任意一个有理数。
【设计意图】用具体的例子引出新课内容“数轴”,为学习数轴的概念做铺垫。
二、探究新知1.数轴的概念及画法。
问题:什么是数轴?(1)画一条直线,在这条直线上任取一点作为原点,用这点表示数0;(2)规定这条直线的一个方向为正方向,相反的方向就是负方向;(3)适当地选取某一长度作为单位长度。
这种规定了原点、正方向和单位长度的直线叫做数轴。
问题:怎样画数轴?(1)画直线;(2)定原点;(3)选正方向:一般的,我们选原点向右(或上)的方向为正方向,相反的方向为负方向;(4)统一单位长度:选取适当长度为单位长度;(5)在数轴上标出1、2、3、-1、-2、-3等各点。
和数轴亲密接触
数轴是“数”与“形”的第一次结合,它使抽象的“数”直观化,使数与直线上的点之间建立了对应关系,表明了数与形的内在联系,是理解有理数概念与运算的重要工具,并由此形成了数形结合的基础.同学们在初学时应注意以下几点:
1.理解数轴的定义
数轴:规定了原点、正方向和单位长度的直线叫做数轴.数轴的概念蕴含了三层含义:①原点、正方向、单位长度是数轴的三要素.原点的选定,正方向的选取,单位长度大小的确定,都是根据需要规定的.通常取向右为正方向,单位长度大小的确定,可根据各题的实际需要,灵活选取,有时可以每隔两个或多个单位长度取一个点;②正数总在原点的右边,负数总在原点的左边;③一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是
a
个单位长度;表示-a的点在原点的左边,与原点的距离是a个单位长度.
2.画数轴的步骤
正确画一条数轴的步骤可概括为:一画、二取、三选、四标
(1)画直线:就是先画一条直线,一般画成水平的直线;
(2)取原点:通常原点选在直线中间,若问题中负数的个数较多时,原点选靠右些;正数的个数较多时,原点选的靠左些.
(3)选正方向:通常取原点向右的方向为正方向.并选取适当的长度(如0.5cm)为单位长度(若在数轴上表示是0.1和-0.4则可取一个单位长度为0.1;在数轴上表示30与-40,则可规定一个单位长度为10.)
(4)标数:在数轴上依次标出1,2,3,4,―1,―2,―3,-4等各点.
3.画数轴应避免四种错误
请你指出下图中哪些不是数轴?并指出你判断的理由.
①②
③④
分析:在画数轴时,常出现以下几种错误:⑴没有方向,如图①;⑵没有原点,如图②;
⑶单位长度不统一,如图③;⑷标数不按顺序,如图④.所以①, ②, ③,④都不是数轴.
4.理解数轴与有理数间的关系
可以从以下两方面理解:①所有的有理数都可以用数轴上的点来表示,但数轴上的点并不都表示有理数,如数轴上表示π的点表示的就不是有理数(π是一个无限不循环小数,不能化成分数,所以不是有理数).②正数可用原点右边的点表示,反过来原点右边的点都表示正数;负数可用原点左边的点表示,反过来原点左边的点都表示负数;零用原点表示,反过来,原点表示零.
5.用数轴上的点表示有理数:
例1、(2007四川乐山)如图,数轴上一动点A向左移动2个
单位长度到达点B,再向右移动5个单位长度到达点C.若点C表
示的数为1,则点A表示的数为()
A.7B.3C.3
-D.2
-D
A
2
B
5
C
解析:本题可用逆向思维,由图知点B向右移动5个单位到点C,点C对应的数为1,故点B对应的数为-4,A点向左移动2个单位长度到达点B,所以A表示的数为-2.例2、(2006年盐城市)数轴上到原点的距离为2的点所表示的数是.
解析:此题可以通过画数轴来求解,如图所示, A B
到原点的距离为2的点应该有两个A、B,它们所表-2 O 2
示的数分别是-2和2.
温馨提示:由“数”想到“形”(数轴),用数轴表示点的运动非常直观,充分体现了数与形的转化,这是以后解答数学问题时常用的数形结合思想.。