图像质量评价
- 格式:doc
- 大小:17.50 KB
- 文档页数:5
图像质量评价标准|一、评价参数(一)对比度1、客观对比度:物体本身的差异,由被检体的密度和厚度决定。
2、x线对比度:穿过人体后,x线强度上的差异。
3、图像对比度:x线照片上所表现出的密度差。
客观对比度是成像的基础,图像对比度是图像的最基本特征。
下图很好的说明了以上三个对比度:1、客观对比度:骨骼、软组织、气体存在密度上的差别。
2、X线对比度:透过不同组织形成的X线强度上的差别。
3、图像对比度:图像上形成的黑白差别。
对比度分辨率是指将客观对比度转换成图像对比度的能力。
分辨率高的成像装置可将低对比的组织区分开;分辨率低的成像装置只能将高对比的组织区分开。
例如:CT与平片。
左图是普通平片,属于分辨率低的装置(X线机)摄取的片子;右图是胸部C T横断片,属于高分辨率的装置(CT机)摄取的片子。
对低对比的组织的区分能力,CT高于平片(即分辨率高的成像装置可将低对比的组织区分开),而平片只能区分差别较大组织(即分辨率低的成像装置只能将高对比的组织区分开)。
(二)模糊1、指物体的边界不清楚。
2、原因:每个物点的像向周围有不同程度的扩展。
3、影响:降低了图像的清晰度。
空间分辨率:区分相互靠近的两个物体细节的能力。
用LP/mm表示。
是评价影像设备性能优劣的重要指标。
以下是电影《神话》的一幅海报,表现的是图像的模糊。
下图是一幅分辨率较高的图片,图像较清晰。
(三)噪声1、定义:图像中可随机观察到的光密度变化。
2、表现为:斑点、雪花、网纹等。
3、原因:x线光子的随机分布。
4、描述:信噪比(SNR)。
SNR越大,图像质量越好。
(四)伪影1、定义:指图像中出现的被检体不存在的虚假信息。
2、影响:干扰正常结构,造成误诊。
(五)畸变定义:指物体的形态、大小和位置不同程度的改变。
图像质量评价算法及其在图像处理中的应用在当今数字图像处理领域,图像质量评价算法发挥着重要的作用。
图像质量评价算法可以借助数学模型和统计方法,对图像的质量进行准确评估,从而帮助图像处理系统优化图像效果,提高图像处理的精度和效率。
本文将介绍图像质量评价算法的基本原理与应用,并探讨其在图像处理中的具体应用。
图像质量评价算法主要分为主观评价和客观评价两类。
主观评价是通过人工观察和感知判断来评估图像质量,通常要求大量的测试人员进行评价,具有较高的精确度,但成本较高且耗时。
客观评价则是从图像的物理和统计特性出发,采用计算机算法对图像进行评价。
接下来将详细介绍客观评价中的几种主要算法。
首先,结构相似性算法(SSIM)是一种广泛应用的图像质量评价算法。
它通过比较原始图像和处理后图像的结构信息来评估图像质量。
具体而言,SSIM算法通过计算图像的亮度、对比度和结构三个方面的相似性来得到最终的评分。
SSIM算法能够很好地捕捉图像的细节和结构信息,对噪声和失真具有较高的容忍度,因此在图像去噪、图像压缩等领域中有着广泛的应用。
其次,峰值信噪比算法(PSNR)是评估图像质量的常用指标之一。
PSNR算法通过比较原始图像和处理后图像之间的均方误差来评估图像质量。
PSNR算法的优点是计算简单、直观易懂,且与人的主观感知有一定的相关性。
因此,在图像压缩、图像恢复等领域中广泛使用PSNR算法评估图像处理的效果。
然而,PSNR算法的缺点是对于失真严重的图像会有较低的敏感度,因此在处理低质量图像时需谨慎使用。
此外,结构相位一致性指标算法(SSIM-P)是在SSIM算法基础上进行改进的评价算法。
SSIM-P算法综合考虑了图像的亮度、对比度、结构和相位信息,更加全面地评估图像质量。
SSIM-P算法在保持SSIM算法的优点的同时,对于相移、坐标旋转等图像处理操作保持了较好的评价效果。
因此,在图像变换、图像配准等领域中,SSIM-P算法得到了广泛的应用。
图像质量评价指标研究一、引言图像质量评价是图像处理技术中的一个重要环节,通常用于评估图像处理算法的有效性、比较不同算法的优劣以及检测图像质量缺陷等。
目前,已经发展出多种图像质量评价指标,如均方误差(MSE)、峰值信噪比(PSNR)、结构相似性指数(SSIM)等。
本文将对这些图像质量评价指标进行深入研究和分析。
二、图像质量评价指标分类图像质量评价指标可分为主观评价和客观评价两类。
主观评价是通过人的主观视觉感受去评价图像质量的指标,客观评价是通过计算机处理来评价图像质量的指标。
1.主观评价指标主观评价指标是指通过人的主观视觉感受对图像的质量进行评估。
常用的主观评价方法有主观质量评估(Subjective Quality Assessment, SQA)和双重对比法(Double Stimulus Impairment Scale, DSIS)。
主观质量评估是将一组经过处理的图像与原始图像同时展示给受试者,然后根据受试者给出的主观评价分数来评估图像质量的方法。
该方法的缺点在于评价结果受到受试者个体差异的影响。
双重对比法是基于主观质量评估的基础上发展起来的一种方法。
该方法将经过处理的图像与原始图像同时展示给受试者,同时展示一张质量较低的图像,然后让受试者选择哪张图像的质量最高。
该方法可以消除受试者个体差异的影响,但是需要消耗大量的时间和人力物力。
2.客观评价指标客观评价指标是通过计算机处理来评价图像质量的指标,常用的客观评价方法有均方误差(Mean Square Error, MSE)、峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)、结构相似性指数(Structural Similarity Index, SSIM)等。
均方误差是一种最简单的图像评价指标,计算方法为:MSE=∑i=1n∑j=1m(I[i,j]−K[i,j])2/nm其中,n和m分别为图像的宽度和高度,I[i,j]和K[i,j]为原始图像和处理后图像的像素值。
图像质量评价标准图像质量评价是指对图像质量进行客观的、科学的、准确的评价,以便于对图像进行合理的处理和改进。
图像质量评价标准是对图像质量进行评价的标准化方法,其目的是为了使图像质量评价更加客观、准确。
一、图像质量评价的目的。
图像质量评价的目的是为了对图像的质量进行客观的评价,以便于对图像进行合理的处理和改进。
图像质量评价的目的主要包括以下几个方面:1. 评价图像的清晰度和细节表现,以便于对图像进行清晰度和细节的改进。
2. 评价图像的色彩还原度和色彩饱和度,以便于对图像的色彩进行合理的调整。
3. 评价图像的对比度和亮度,以便于对图像的对比度和亮度进行合理的调整。
4. 评价图像的噪点和失真程度,以便于对图像的噪点和失真进行合理的处理。
二、图像质量评价的方法。
图像质量评价的方法主要包括主观评价和客观评价。
1. 主观评价是指通过人眼对图像的质量进行评价,主观评价的方法主要包括对比观察法、分级评定法和直接感受法等。
2. 客观评价是指通过计算机对图像的质量进行评价,客观评价的方法主要包括结构相似性(SSIM)指标、峰值信噪比(PSNR)指标和均方误差(MSE)指标等。
三、图像质量评价的标准。
图像质量评价的标准是对图像质量进行评价的标准化方法,其目的是为了使图像质量评价更加客观、准确。
图像质量评价的标准主要包括以下几个方面:1. 清晰度评价标准,清晰度评价标准是评价图像的清晰度和细节表现的标准化方法,其主要包括对比度、锐度和细节度等指标。
2. 色彩评价标准,色彩评价标准是评价图像的色彩还原度和色彩饱和度的标准化方法,其主要包括色彩还原度、色彩饱和度和色彩准确度等指标。
3. 对比度评价标准,对比度评价标准是评价图像的对比度和亮度的标准化方法,其主要包括对比度和亮度等指标。
4. 噪点评价标准,噪点评价标准是评价图像的噪点和失真程度的标准化方法,其主要包括噪点和失真程度等指标。
四、图像质量评价的应用。
图像质量评价的应用主要包括以下几个方面:1. 图像采集设备的质量评价,对图像采集设备的质量进行评价,以便于选择合适的图像采集设备。
什么是图像质量评价(imagequalityassessment)
学习⽅法
寻找相关论⽂,归纳使⽤算法、⽅法等,再对其进⾏学习
图像质量评价(image quality assessment) 的google搜索关键词
python
deep learning
open cv
图像质量评价 -
确定准确度⽔平的过程称为图像质量评价(IQA)。
图像处理评价分为主观质量评价和客观质量评价
客观图像质量评价有:
1. 全参考图像质量评价
2. 半参考图像质量评价
3. ⽆参考图像质量评价
图像质量评价发展趋势:
1. 从单纯的客观评价算法转化为主客观相结合的评价算法
2. 半参考,⽆参考⽅法将成为主流研究对象
3. 如何对⽴体的图像进⾏评价也是以后要研究的领域
图像质量不应与图像保真度相混淆,两者不同。
图像质量评价研究的⽬标是设计出与主观评价相⼀致的客观评价算法。
算法的发展具有很⼤的应⽤潜⼒。
它们可⽤于控制质量系统中的图像质量监控,对图像处理系统和算法进⾏基准测试,以及优化成像系统。
图像质量评估图像质量评估是对一幅图像的视觉质量进行评估的过程。
在图像处理和计算机视觉领域中,图像质量评估是一个重要的研究领域,它帮助人们了解和提升图像质量,从而提高图像处理和计算机视觉应用的效果。
图像质量评估的目的是确定图像的整体视觉质量,衡量图像的清晰度、亮度、对比度、色彩准确性、失真程度等方面。
在实际应用中,图像质量评估可以帮助人们选择最优的图像处理算法、优化图像传输和压缩算法、改善图像渲染和显示效果。
图像质量评估的方法多种多样,常见的方法包括主观评估和客观评估。
主观评估是通过人眼观察和主观感受来评估图像质量的方法。
在主观评估中,一组受试者会观看一系列图像,对它们的质量进行评价,评价结果通过平均分数或者百分比来得到。
主观评估方法的优点是能够获得较为准确的图像质量评价结果,但是主观评估需要消耗大量的人力和时间,并且对于评价结果的一致性和可重复性要求较高。
客观评估是通过计算机算法和数学模型来评估图像质量的方法。
客观评估方法基于图像特征的度量和统计分析,通过提取图像的局部或全局特征,如图像的亮度、对比度、尖锐度等指标,来评估图像质量。
客观评估方法的优点是快速、自动化,并且能够对大量图像进行评估,但缺点是评估结果与人的主观感受可能存在一定差距。
常见的客观图像质量评估方法包括结构相似性指标(SSIM)、峰值信噪比(PSNR)、视觉感知的图像质量度量(VIF)、图像模糊度度量等。
这些方法通过对图像的不同方面进行分析和度量,给出一个数值化的评估结果,用来衡量图像的质量。
综上所述,图像质量评估是一个涉及人眼观察和计算机算法的复杂过程。
通过主观评估和客观评估相结合的方法,可以得到较为准确和全面的图像质量评价结果,帮助人们提升图像处理和计算机视觉应用的质量和效果。
放射科图像质量评价标准(修订)一、通常要求1、X线照片满足影像诊疗要求。
2、X线照片标识,左右标志正确,检验号、检验日期、检验医院、被检者姓名、性别、年纪、图像放大百分比或百分比尺等信息完整。
3、图像放大百分比一致:正位片和侧位片或斜位片放大百分比一致。
同一部位不一样时间摄片放大百分比一致。
4、整体画面布局美观,影像无失真变形。
二、优质图像标准1、密度适宜2、层次分明3、摄影体位标准:4、照射野大小适宜: 被检部位影像全部在照片上显示,但不应过多包含非检验部位,尤其是内分泌腺;关键组织界限清楚;脊柱应含相邻椎体;四肢长骨应最少包含1个邻近关节;肋骨应包含第1或第12肋骨。
5、无体外伪影。
6、无运动伪影。
7、特殊检验体位应标注。
8、胶片无污片、划片、粘片、指纹。
放射科图像质量评价内容及方法项目评价内容和方法扣分图像对比看电脑图片或胶片图像,对比欠佳 5 图像层次看电脑图片或胶片,层次欠分明5投照野控制投照野过大或包含不全 5伪影不影响诊疗伪影,如内衣扣、金属线 5有可能误认为病变伪影50伪影范围较大,掩盖诊疗区。
50呼吸伪影或运动伪影 5~10抽查胶片,有污片、划片、粘片5图像标识不完整 5图像关键标识如左右、姓名、性别错误50摄影体位不标准15~20特殊体位无标注,如腹部立位位,水平侧位10摄影部位错误对照申请单和摄影部位是否一致50图像放大百分比抽查胶片,图像放大百分比是否一致 5 用片统一,尺寸合理抽查胶片 5质量等级评价方法:结合DR影像质量要求,每份图像为100分,扣完为止。
优:≥90分良:80~89分合格:70~79分不合格:<70分。
图像质量客观评价方法
1. PSNR(峰值信噪比):通过比较原始图像和失真图像之间的均方根误差(MSE)来评估图像质量的度量标准。
2. SSIM(结构相似度指数):该指标在比较图像之前,对图像进行了多项处理,包括亮度平衡、对比度平衡和结构相似性分析,使得图像的评估结果更加贴近于实际的人眼观察。
3. VIF(可视信息嵌入度):该方法在JPEG2000的标准中被广泛应用,可以定量地评估图像的外观质量和信息损失比例等。
4. NIQE(自然图像质量估计指标):该指标基于自然图像的所有属性,包括对比度、清晰度、先验信息、图像失真等进行评估,可以定量地评估图像的自然度和感觉度。
5. BRISQUE(基于统计概率的图像质量评估):该方法是基于图像所包含的局部和全局图像特征的分析,从而提出一种定量的图像质量评估方法。
6. LPIPS(线性感知的像素相似性指数):该指标利用深度学习技术来定量地评估图像相似性,通过对图像特征的空间感知能力进行分析,减少了对图像造成干扰的因素。
图像处理中的图像质量评价算法图像处理是计算机视觉领域中的热门技术之一,其主要目的是对数字图像进行处理和分析,以提取有用的信息,改善图像的质量或实现特定的任务。
在实际应用中,我们经常需要对图像进行质量评价,以衡量处理结果的好坏。
本文将介绍图像质量评价算法中的一些常见方法和技术。
一、人眼主观评价法人眼是最常用的图像质量评价工具之一。
在这种方法中,根据受试者的主观感受,评估图像的质量。
通常,受试者会被要求将图像分为五个等级:极佳、好、一般、差、极差。
然后,将受试者的评分进行统计和分析,获得最终的质量评估结果。
人眼主观评价法的优点是易于理解和使用,可以得到比较准确的结果。
但是,它需要大量的人力和时间,并且只能得到一个相对的质量评估结果,缺乏客观性。
二、均方误差法均方误差法是一种经典的图像质量评价方法,早在上世纪50年代就被广泛应用于图像处理领域。
其核心思想是比较原始图像和处理后的图像之间的像素值之差。
均方误差可以通过以下公式计算:MSE = 1/N * ∑(i=1 to N) (xi-yi)^2其中,N代表像素数目,xi和yi分别表示原始图像和处理后图像中的像素值。
均方误差法的优点是计算简单,易于实现。
但是,它没有考虑视觉系统的感知差异,有时不能反映出人眼的真实感受。
三、结构相似性指数(SSIM)法结构相似性指数(SSIM)是一种模拟人眼感知过程的图像质量评价方法,可以更好地反映人类视觉的敏感性和感知机制。
其基本原理是通过比较两张图像之间的结构相似性来评估图像质量,其中结构相似性是指一组窗口像素之间的互相关系数。
SSIM指数可以通过以下公式计算:SSIM(x,y) = [l(x,y)*c(x,y)*s(x,y)] ^ α其中,l(x,y)、c(x,y)、s(x,y)分别表示亮度、对比度和结构相似性,α是一个权重参数。
SSIM法的优点是可以更好地反映人眼的感知结果,并且与其他评价方法相比,结果更具有客观性和可重复性。
放射科图像质量评价标准及评定规定
放射科图像质量评价标准及评定规定
本文旨在介绍放射科图像质量评价标准及评定规定。
以下是图像评价准入标准:
1.三级甲等:X线片、CR、DR优良率≥95%
2.三级乙等:X线片、CR、DR优良率≥90%
3.二级甲等:X线片、CR、DR优良率≥85%
4.二级乙等:X线片、CR、DR优良率≥80%
甲级片标准包括以下五个方面:
1.位置正确:包括投照肢体位置和X线中心准确,照片上下、左右边缘对称,胶片尺寸使用得当。
2.照片对比度清晰度良好:包括密度、对比度好,无明显的斑点感觉,肢体解剖结构显示清晰,失真度小;可制板。
3.无污染划损:包括照片上无污汁、划痕,无体外异物影及其他弊病。
4.被检者资料齐全、准确、整齐无误,照片标志与被照肢
体无重叠:包括姓名、性别、年龄、片号、左右等。
5.造影片造影剂涂抹均匀、充盈满意,充分显示解剖形态
及结构,能提供满意的诊断标准。
乙级片标准如下:
以上1~5项中有一项不符,但不影响诊断则定为乙级片。
丙级片标准如下:
以上1~5项中有两项不符,但不影响诊断则定为丙级片。
超声科图像质量评价评分标准细则
附表(一)
1.图像清晰度(10分)(一副图像显示不清晰扣1分)
2.图像均匀性(10分)(一副图像不均匀扣1分)
3.超声切面标准性(10分)(一副图像不标准扣1分,漏一个常规切面扣2分)
4.伪相识别(10分)(缺伪像图像相关图像扣5分)
5.彩色血流显示情况(10分)(缺规定血流图像一副扣2分) 6.图像于超声报告相关性(10分)(缺报告相关性常规切面图像一副扣1分)
7.图像有无斑点、雪花细粒、网纹(10分)(一副图像有斑点、雪花细粒、网纹扣1分)
8.图像与临床疾病相关性(10分)(报告所选图像与疾病相关性无关扣5分)
9.探测深度(要占1/2以上)(10分)(一副图像未达到1/2扣1分)
10.工作频率与脏器相关性(10分)(一副图像工作频率与脏器相关性不符扣1分)
超声科图像质量评价评分标准
1.图像清晰度10分2.图像均匀性10分3.超声切面标准性10分
4.伪相识别10分
5.图像与报告相关性10分
6.彩色血流显示情况10分
7.图像有无斑点、雪花细粒、网文10分
8.图像与临床疾病相关性10分
9.探测深度(要占1/2以上)10分
10.工作频率与脏器相关性10分
超声科图像质量评价细则附表
(二)
按照超声科常规切面操作规范规定细则如下:
1. 肝脏:正常肝脏6个切面(第一肝门,门静脉二维图像,门静脉血流频谱图像并有测值,第二肝门图像,肝脏工字状结构图像,肝左叶图像)。
异常肝脏8个切面(第一肝门,门静脉二维图像,门静脉血流频谱图像并有测值,第二肝门图像,肝脏工字状结构图像,肝左叶图像,异常部位二维及彩色)
2. 胆囊:正常1个切面(显示胆囊颈部,胆囊底部)异常2个切面(显示胆囊颈部+胆囊底部,异常部位图像)
3.胰腺:正常2个切面(胰腺的二维+彩色血流图像,显示胰头,胰体,胰尾,)
4.异常3个切面(胰头,胰体,胰尾,胰腺彩色血流图像)
5.脾脏:正常2个切面(脾脏全长及脾门彩色血流图像)异常3个切面(脾脏全长切面,异常二维及彩色血流图像)
5.泌尿系统:正常双肾2个切面(肾脏纵切面二维及彩色血流图像)异常双肾4个切面(肾脏纵切面二维及彩色血流图像,异常部位二维及彩色)
6.膀胱:正常2个切面(膀胱三角,膀胱底部)异常4个切面(膀胱三角,膀胱底部,异常部位二维及彩色)
7.前列腺:正常3个切面(前列腺纵切面,前列腺横切面,前列腺彩色血流图像)异常4个切面(前列腺纵切面,前列腺横切面,前列腺异常部位彩色血流图像)经直肠检查前列腺:4个切面(前列腺纵切面,前列腺
横切面,正常及异常前列腺彩色血流图像)
8睾丸:正常4个切面(睾丸纵切面,睾丸横切面,附睾纵切面,双侧精索静脉彩色血流情况)异常7个切面(睾丸纵切面,睾丸横切面+睾丸血流,附睾纵切面横切面,双侧精索静脉彩色血流情况,异常部位的二维及彩色)
9.妇科子宫:正常7个切面(子宫纵切面,子宫横切面,子宫彩色多普勒,左侧卵巢二维切面+彩色,右侧卵巢二维切面+彩色。
) 异常9个切面(子宫纵切面,子宫横切面,子宫彩色多普勒,左侧卵巢二维切面+彩色,右侧卵巢二维切面+彩色,异常部位二维及彩色血流图像)10.心脏:正常6个切面(左室长轴切面,心底短轴切面,四腔心切面,四腔心彩色血流切面,主动脉瓣口彩色血流频谱图像,二尖瓣血流频谱)异常8个切面(左室长轴切面,心底短轴切面,四腔心切面,四腔心彩色血流切面,主动脉瓣口彩色血流频谱图像,二尖瓣口彩色血流频谱,异常部位二维图像及彩色血流频谱图像,有心功能的要有测量图像显示。
)11.颈部血管:正常2个切面(二维,彩色及多普勒)异常3个切面(异常部位二维,彩色及多普勒+怀疑狭窄的要有横断面图像。
)
12.甲状腺:正常6个切面(甲状腺横断面二维+彩色,左侧叶最大长径切面二维+彩色,右侧叶最大长径二维+彩色。
) 异常6个切面(甲状腺横断面二维+彩色,左侧叶最大长经切面二维+彩色,右侧叶最大长经+彩色,峡部二维+彩色,异常部位二维+彩色)
13.乳腺:正常2个切面(横切面,纵切面) 异常4个切面(左右侧二维及彩色及频谱)
14.上肢浅静脉造瘘术前评估:正常2个切面(二维图像及血流图像)异常4个切面(异常部位二维图像,血流图像,正常部位血流+二维)15.上肢浅静脉造瘘术后评估:6个切面(瘘口图像二维+血流,引流静脉二维+血流, 供血动脉二维+血流)
16.其他上肢静脉:正常2个切面(二维图像及血流图像)异常4个切面(异常处二维图像及血流图像)
17.下肢动脉:正常6个切面(股总动脉二维及彩色,股浅动脉及股深动脉二维及彩色,腘动脉二维及彩色)异常8个切面(股总动脉二维及彩色,股浅动脉及股深动脉二维及彩色,腘动脉二维及彩色,异常部位二维及彩色)
18.下肢静脉:正常8个切面(股总静脉二维及彩色,大隐静脉二维及彩色,股浅静脉及股深静脉二维及彩色,腘静脉二维及彩色)异常10个切面(股总静脉二维及彩色,大隐静脉二维及彩色,股浅静脉及股深静脉二维及彩色,腘静脉二维及彩色,异常部位二维及彩色)
19.浅表:正常2个切面(二维+血流)异常2个切面(二维+血流)以上是每个脏器检查要求存储切面,各部位检查按总切面占百分比计算,减少一个部位按所占一个报告百分比扣分。
2017.1.13日修订。