吉林大学工程流体力学 流体动力学基础
- 格式:ppt
- 大小:5.47 MB
- 文档页数:126
流体动力学基础流体动力学是研究流体的运动规律和性质的科学,它是流体力学的分支之一,广泛应用于航空、航天、水力、能源等领域。
本文将介绍流体动力学的基础概念、基本方程以及常用方法。
一、流体动力学的基本概念1. 流体力学与流体静力学的区别流体力学研究流体在运动中的行为,包括流体的流动速度、压力、密度等参数的分布规律;而流体静力学则研究流体在静止状态下的平衡规律,主要关注流体的静压力和浮力等性质。
2. 流体的本构关系流体的本构关系描述了流体的应力与变形速率之间的关系。
常见的本构关系有牛顿黏性流体、非牛顿流体以及理想流体等。
3. 流体的运动描述流体的运动可以通过流体速度场来描述,流体速度场是空间中的矢量函数,它描述了流体的速度分布。
流体速度场的描述可以使用欧拉描述方法或者拉格朗日描述方法。
二、流体动力学的基本方程1. 连续性方程连续性方程描述了质量守恒的原理,即单位时间内通过某一截面的质量是恒定的。
对于稳定流动的不可压缩流体来说,连续性方程可表示为流体密度与速度之积在空间中的量级是恒定的。
2. 动量方程动量方程是描述质点运动定律的基本方程,对流体来说,动量方程体现了运动流体的动力学行为。
对于稳定流动的不可压缩流体来说,动量方程可表示为流体的密度乘以速度与压力梯度的叠加等于外力的结果。
3. 能量方程能量方程描述了热力学系统的能量守恒原则,对于流体来说,能量方程考虑了流体的流动对能量转移的影响,以及热源、做功所导致的能量变化。
三、流体动力学的常用方法1. 数值模拟方法数值模拟是流体动力学研究的重要工具,通过在计算机上建立流体动力学方程的数值解,可以模拟复杂流动现象,如湍流、多相流等。
2. 实验方法实验方法是流体动力学研究的另一重要手段,通过搭建实验平台,测量流体的压力、速度等参数,从而验证理论和数值模拟结果的准确性。
3. 理论分析方法理论分析方法是流体动力学研究中的基础,通过建立假设和推导数学表达式,可以得到流体动力学问题的解析解,为实验和数值模拟提供参考。
《工程流体力学》学习指南工程流体力学是一门基础性很强和应用性很广泛的学科,是力学的一个重要分支。
它是工程技术的重要基础,大量工程技术问题的解决包括高新技术的发展都离不开工程流体力学。
它的研究对象随着生产的需要与科学的发展在不断地更新、深化和扩大。
工程流体力学,是研究流体处在平衡状态和运动状态时的运动规律及其在工程技术领域中的应用。
具体讲,主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用。
同时将所得到的结论用于解决工程中出现的实际问题。
因此,流体力学知识已经成为工科学生知识结构中不可缺少的一部分。
学习本课程的目的:本课程是“热能与动力工程”及其相关专业的一门重要的专业基础课。
通过学习该门课程,使学生能够了解流体力学的基本概念、基本原理;学会基本实验方法和实验技能。
使学生正确掌握能够面向二十一世纪要求的流体力学知识。
为后续专业课的学习提供充分的理论准备,为将来从事专业工作和科学研究打下必备的理论基础。
学习本课程的基本要求:1)了解流体的基本概念和主要物理性质。
2)掌握流体静力学。
3)掌握流体运动学和动力学基本内容。
4)掌握理想流体的运动规律。
5)掌握黏性流体的受力情况、运动规律及能量损失。
6)掌握气体的一维流动。
学习本课程的基本方法:1)掌握先修知识。
学习前应先修完“高等数学”、“线性代数”、“工程力学”等课程。
2)应当重视理论联系实际,逐渐提高运用所学理论和知识分析和解决实际问题的能力。
“工程流体力学”是一门理论与实验紧密结合课程,理论分析和实验分析发挥着同样重要的作用。
应具备坚实的数学基础,和实际的动手能力。
学习过程中要从理论和实际两方面同时入手,提高对流体力学知识的理解和运用。
3)制订学习计划,合理安排好学习时间并按照计划进行学习。
学习一定要有计划,这是学好、考好本课程的关键。
可以拟订出季计划、月计划、周计划以及日计划,安排和处理好学习与生活的相互关系。
第3章 流体动力学基础3.1 解: zuu y u u x u u t u a x z x y x x x x ∂∂+∂∂+∂∂+∂∂=()()342246222222222=++++=+-++++=++=z y x t z y t y x t u u y xzu u yu u xu u tu a y zy yy xy y ∂∂+∂∂+∂∂+∂∂=()()32111=-++=-+++--=+-=z y x z x t z y t u u x yzu u y u u x u u t u a z z z y z x z z ∂∂+∂∂+∂∂+∂∂=()()112122211=++++=-+-+++=-+=z y x t z y t y x t u u z x222286.35s m a a a a z y x =++=3.2 解:(1)3235623=-=+=xy xy u xy y u a y x x222527310.3333231s m a a a y u y a y x y y =+===-=(2)二元流动(3)恒定流 (4)非均匀流 3.3 解:bh u y h u bdy h y u udA Q h hA m ax 07871m ax 071m ax 8787==⎪⎭⎫ ⎝⎛==⎰⎰ m ax 87u A Q v ==3.4 解:s m dd v v 02.011.02221221=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛= 3.5 解:Hd v d 1v 1q 1q 2223d 3v Dv 1dv 2(1)s m v d Q 332330785.04==πs m q Q Q 32321.0=+= s m Q q Q 321115.0=+=(2)s m d Q v 12.242111==πs m d Q v 18.342222==π 3.6 解:渠中:s m m m s m bh v Q 311612/3=⨯⨯==管中:2231242.1d v s m Q Q Q ⨯⨯==-=πm v Q d 0186.1422==π 3.7 解: s m d d v v ABB A62.04.05.1442222=⨯=⋅=ππ以过A 点的水平面为等压面,则OmH g v g p h H OmH g v g p H B B B A A A 2222226964.58.925.18.9405.128980.48.9268.9302=⨯++=++==⨯+=+=ρρ可以看出:A B H H >,水将从B 点流向A 点。