当前位置:文档之家› PCR产物电泳结果分析

PCR产物电泳结果分析

PCR产物电泳结果分析
PCR产物电泳结果分析

产物检测时间

一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚至消失。

假阴性,不出现扩增条带:

PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及,④PCR循环条件。寻找原因亦应针对上述环节进行分析研究。

模板:①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。⑤模板核酸变性不彻底。在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应固定不宜随意更改。

酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而导致假阴性。需注意的是有时忘加Taq酶或溴乙锭。

引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不理想、容易弥散的常见原因。有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单位。②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。④引物设计不合理,如引物长度不够,引物之间形成二聚体等。

Mg2+浓度:Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR 扩增的特异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。

反应体积的改变:通常进行PCR扩增采用的体积为20ul、30ul、50ul。或100ul,应用多大体积进行PCR扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul后,再做大体积时,一定要摸索条件,否则容易失败。

物理原因:变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率。有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR 失败的原因之一。

靶序列变异:如靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某段缺失使引物与模板失去互补序列,其PCR扩增是不会成功的。

假阳性

出现的PCR扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高。

引物设计不合适:选择的扩增序列与非目的扩增序列有同源性,因而在进行PCR扩增时,扩增出的PCR产物为非目的性的序列。靶序列太短或引物太短,容易出现假阳性。需重新设计引物。

靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性。这种假阳性可用以下方法解决:①操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外。②除酶及不能耐高温的物质外,所有试剂或器材均应高压消毒。所用离心管及样进枪头等均应一次性使用。

③必要时,在加标本前,反应管和试剂用紫外线照射,以破坏存在的核酸。二是空气中的小片段核酸污染,这些小片段比靶序列短,但有一定的同源性。可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用巢式PCR 方法来减轻或消除。

出现非特异性扩增带

PCR扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带与非特异性扩增带。非特异性条带的出现,其原因:一是引物与靶序列不完全互补、或引物聚合形成二聚体。二是Mg2+离子浓度过高、退火温度过低,及PCR循环次数过多有关。其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶则不出现,酶量过多有时也会出现非特异性扩增。其

对策有:①必要时重新设计引物。②减低酶量或调换另一来源的酶。③降低引物量,适当增加模板量,减少循环次数。④适当提高退火温度或采用二温度点法(93℃变性,65℃左右退火与延伸)。

出现片状拖带或涂抹带

PCR扩增有时出现涂抹带或片状带或地毯样带。其原因往往由于酶量过多或酶的质量差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起。其对策有:①减少酶量,或调换另一来源的酶。②减少dNTP的浓度。③适当降低Mg2+浓度。④增加模板量,减少循环次数。

琼脂糖凝胶电泳常见问题分析

琼脂糖凝胶电泳常见问题分析

DNA凝胶电泳简介 一、实验原理 DNA电泳是基因工程中最基本的技术,DNA制备及浓度测定、目的DNA片段的分离,重组子的酶切鉴定等均需要电泳完成。根据分离的DNA大小及类型的不同,DNA电泳主要分两类:

1、聚丙烯酰胺凝胶电泳适合分离1kb以下的片段,最高分辨率可达1bp,也用于分离寡核苷酸,在引物的纯化中也常用此中凝胶进行纯化,也称PAGE纯化。 2、琼脂糖凝胶电泳可分离的DNA片段大小因胶浓度的不同而异,胶浓度为0.5~0.6%的凝胶可以分离的DNA片段范围为20bp~50kb。电泳结果用溴化乙锭(EB)染色后可直接在紫外下观察,并且可观察的DNA条带浓度为纳克级,而且整个过程一般1小时即可完成。由于该方法操作的简便和快速,在基因工程中较常用。 二、琼脂糖凝胶 琼脂糖是从琼脂中分离得到,由1,3连接的吡喃型b-D-半乳糖和1,4连接的3,6脱水吡喃型阿a-L-半乳糖组成,形成相对分子量为104~105的长链。琼脂糖加热溶解后分子呈随机线团状分布,当温度降低时链间糖分子上的羟基通过氢键作用相连接,形成孔径结构,而随着琼脂糖浓度不同形成不同大小的孔径。表1给出了不同浓度凝胶对DNA片段的线性分离范围。 表1不同类型琼脂糖分离DNA片段大小的范围 由于琼脂糖凝胶是通过氢键的作用,因此过酸或过碱等破坏氢键形成的方法常用于凝胶的再溶化,象NaClO4能用于凝胶的裂解,一般的凝胶回收试剂盒利用的也是这一原理。 随着实验技术的发展,也针对不同用途开发了各种类型的琼脂糖凝胶:(1)低熔点琼脂糖凝胶,用于DNA片段的回收,且由于该种凝胶中无抑制酶,可在胶中进行酶切、连接等;(2)高熔点凝胶,可分离小于1kb的DNA片段,专用于PCR产物的分析;(3)快速凝胶,电泳速度比普通凝胶中快一倍,可节省实验时间;(4)适用于DNA大片段的分离。(5)其它类型。各生产商还开发很多类型的凝胶,可根据实验要求选择不同类型的,选择原则是考虑合适的机械强度和熔点。

DNA电泳常见问题分析

DNA电泳常见问题 凝胶电泳操作注意事项 1、琼脂糖:不同厂家、不同批号的琼脂糖,其杂质含量不同,影响DNA的迁移及荧光背景的强度,应有选择地使用。 2、?凝胶的制备:凝胶中所加缓冲液应与电泳槽中的相一致,溶化的凝胶应及时倒入板中,避免倒入前凝固结块。倒入板中的凝胶应避免出现气泡,以免影响电泳结果。 3、?电泳缓冲液:为保持电泳所需的离子强度和pH,应经常更新电泳缓冲液。 4、?样品加入量:一般情况下,宽的梳子可加μg的DNA量,加样量的多少依据加样孔的大小及DNA中片段的数量和大小而定.当加样孔大时,样品上样量应相应加大,否则会造成条带浅甚至辨认不清;反之则应适当减少加样量,但是上样量过多会造成加样孔超载,从而导致拖尾或弥散,对于较大的DNA此现象更明显。 5、?DNA样品中盐浓度会影响DNA的迁移率,平行对照样品应使用同样的缓冲条件以消除这种影响。 6、?DNA迁移率取决于琼脂糖凝胶的浓度,迁移分子的形状及大小。采用不同浓度的凝胶有可能分辩范围广泛的DNA分子,制备琼脂糖凝胶可根据DNA分子的范围来决定凝胶的浓度。小片段DNA的检测应采用聚丙烯酰胺凝胶电泳,以提高分辨率。 7.选择的实验材料要新鲜,处理时间不易过长。 8.在加入细胞裂解缓冲液前,细胞必须均匀分散,以减少DNA团块形成。 9. 提取的DNA不易溶解:不纯,含杂质较多;加溶解液太少使浓度过大。沉淀物太干燥,也将使溶解变得很困难。 10. 电泳检测时DNA成涂布状:操作不慎;污染核酸酶等。

11.分光光度分析DNA的A280/A260小于;不纯,含有蛋白质等杂质。在这种情况下,应加入SDS至终浓度为%,并重复步骤2~8。 12.酚/氯仿/异戊醇抽提后,其上清液太黏不易吸取:含高浓度的DNA,可加大抽提前缓冲液的量或减少所取组织的量 DNA电泳常见问题分析之一 1? 请问配制聚丙烯酰胺凝胶电泳胶时,促凝的是TEMED还是过硫酸铵胶聚时间很长如何解决 过硫酸铵提供驱动丙烯酰胺和双丙烯酰胺聚合所需的自由基,而TEMED通过催化过硫酸铵形成自由基而加速它俩的聚合。胶聚合时间长可能是TEMED失效了,过硫酸铵固体时间过久也会失效的。 一个让PAGE胶很快聚合的方法: 不要先配AP(过硫酸铵)溶液,因为AP很容易变质。在保证TEMED和AP质量的情况下,每次配胶时,直接称一定量的AP粉剂溶入液体状态的PAGE中,这样可以保证AP的催化能力,而且可以多加一点。配25ml的PAGE胶,加克AP粉剂,最后加入25ulTEMED,20分钟左右就可以凝固(当然这个时候拔梳子,会有少量未凝固的PAGE在孔里形成丝状干扰,使加的样品看起来不太漂亮,但一般不影响跑胶效果和条带的形状和位置)。?? 2? DNA电泳的MARKER怎么是扭曲的? 1、配制胶时的缓冲液需要和电泳缓冲液不是同时配制的.最好是同时配制.电泳时缓冲液高过液面1-2mm即可。 2、电泳时电压过高,可以在电泳前15分钟用较低电压(3V/cm),等条带出孔后比较漂亮了.然后再调电压。 3、上样时尽量慢慢加样,等样品自然沉降后再加电压。

凝胶电泳实验分析报告模板

凝胶电泳实验报告模板

————————————————————————————————作者:————————————————————————————————日期:

重庆大学研究生专业实验教学 实验报告书 重庆大学研究生院制 实验课程名称: 凝胶电泳实验 实验指导教师: 学 院: 专业及类别: 生物学 学 号: 姓 名: 实验日期: 成 绩:

一、实验目的 1.理解凝胶电泳的分类及琼脂糖和聚丙烯酰胺凝胶电泳实验的基本原理。 2.熟练琼脂糖凝胶电泳实验的基本操作。 3.通过实验了解凝胶电泳实验的注意事项并在以后的实验中尽量避免。 4.利用琼脂糖凝胶电泳检测DNA纯度、浓度和分子量以及分离大小不同的DNA 片段。 5.了解聚丙烯酰胺凝胶电泳测定DNA和蛋白分子量大小的方法。 二、实验材料、用具及试剂 1.材料:菌落PCR产物(待检测DNA片段); 2.用具:①琼脂糖凝胶电泳:电泳仪,水平板型电泳槽,电子天平,微量移液器 (10μl),枪头,三角瓶,点样板,梳子,微波炉, 凝胶成像仪; ②聚丙烯酰胺凝胶电泳:垂直板电泳槽,稳压稳流电泳仪,梳 子; 3.试剂:琼脂糖,1×TAE缓冲液,载样缓冲液(Loading buffer),goldviwe染料, DL5,000 DNA Marker (Takara)。 三、实验原理 核酸凝胶电泳是分子克隆核心技术之一,用于分离、鉴定和纯化DNA或RNA 片段,具有以下优点:便于分离、便于检测和便于回收。其工作原理相对而言比较简单、主要用到了物理学的电荷理论。 当一种分子被放置在电场当中时,它们就会以一定的速度移向适当的电极,这种电泳分子在电场作用下的迁移速度,叫做电泳的迁移率。它同电场的强度和电泳分子本身所携带的净电荷数成正比。也就是说,电场强度越大、电泳分子所携带的净电荷数量越多,其迁移的速度也就越快,反之则较慢。由于在电泳中使用了一种无反应活性的稳定的支持介质,如琼脂糖凝胶和聚丙烯酰胺胶等,从而

SDS-聚丙烯酰胺凝胶电泳实验报告.

分子生物学实验报告 实验名称:SDS-聚丙烯酰胺凝胶电泳 班级:生工xxx 姓名:xxx 同组人:xxx 学号:xxxx 日期:xxxx SDS-聚丙烯酰胺凝胶电泳 1 引言 SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)是目前分离蛋白质亚基并测定其分子量的常用方法,为检测电泳后凝胶中的蛋白质,一般使用考马斯亮蓝(CBB)染色[1]。本次实验的目的在于学习聚丙烯酰胺凝胶电泳的原理,并掌握聚丙烯酰胺凝胶垂直板电泳分离蛋白质的操作技术。 2 材料和方法 .1 实验原理 2.1.1 聚丙烯酰胺凝胶的性能及制备原理 2.1.1.1 性能 聚丙烯酰胺凝胶的机械性能好,有弹性,透明,相对地化学稳定,对pH和温度变化比较稳定,在很多溶剂中不溶,是非离子型的,没有

吸附和电渗作用。通过改变浓度和交联度,可以控制孔径在广泛的范围内变动,并且制备凝胶的重复性好。由于纯度高和不溶性,因此还适于少量样品的制备,不致污染样品。 2.1.1.2 制备原理 聚丙烯酰胺凝胶是用丙烯酰胺(Acr)和交联剂甲叉双丙烯酰胺(Bis)在催化剂的作用下聚合而成。聚丙烯酰胺凝胶聚合的催化系统有化学聚合和光聚合两种。本实验是用化学聚合。化学聚合的催化剂通常多采用过硫酸铵(AP)或过硫酸钾,此外还需要一种脂肪族叔胺作加速剂,最有效的加速剂是N,N,N’,N’-四甲基乙二胺(TEMED)。在叔胺的催化下,由过硫酸铵形成氧的自由基,后者又使单体形成自由基,从而引发聚合反应。叔胺要处于自由碱基状态下才有效,所以在低pH 时,常会延长聚合时间;分子氧阻止链的延长,妨碍聚合作用;一些金属也能抑制聚合;冷却可以使聚合速度变慢。通常控制这些因素使聚合在1小时内完成,以便使凝胶的性质稳定。 聚丙烯酰胺凝胶电泳和SDS-聚丙烯酰胺凝胶电泳有两种系统,即只有分离胶的连续系统和有浓缩胶与分离胶的不连续系统,不连续系统中最典型、国内外均广泛使用的是著名的Ornstein-Davis高pH碱性不连续系统,其浓缩胶丙烯酰胺浓度为4%,pH = 6.8,分离胶的丙烯酰胺浓度为12.5%,pH = 8.8。电极缓冲液的pH = 8.3,用Tris、SDS和甘氨酸配制。配胶的缓冲液用Tris、SDS和HCl配制。 样品在电泳过程中首先通过浓缩胶,在进入分离胶前由于等速电泳现象而被浓缩。这是由于在电泳缓冲液中主要存在三种阴离子,Cl-、甘氨酸阴离子以及蛋白质-SDS复合物,在浓缩胶的pH值下,甘氨酸只有少量的电离,所以其电泳迁移率最小,而Cl-的电泳迁移率最大。在电场的作用下,Cl-最初的迁移速度最快,这样在Cl-后面形成低离子浓度区域,即低电导区,而低电导区会产生较高的电场强度,因此Cl-后面的离子在较高的电场强度作用下会加速移动。达到稳定状态后,Cl -和甘氨酸之间形成稳定移动的界面。而蛋白质-SDS复合物由于相对量较少,聚集在甘氨酸和Cl-的界面附近而被浓缩成很窄的区带(可以被浓缩三百倍),所以在浓缩胶中Cl-是快离子(前导离子),甘氨酸是慢离子(尾随离子)。 当甘氨酸到达分离胶后,由于分离胶的pH值(通常pH = 8.8)较大,甘氨酸离解度加大,电泳迁移速度变大超过蛋白质-SDS复合物,甘氨酸和Cl-的界面很快超过蛋白质-SDS复合物。这时蛋白质-SDS

q-pcr结果分析报告

摘要: 现在最常用的两种分析实时定量PCR 实验数据的方法是绝对定量和相对定量。绝对定量通过标准曲线计算起始模板的拷贝数;相对定量方法则是比较经过处理的样品和未经处理的样品目标转录本之间的表达差异。2-△△CT方法是实时定量PCR 实验中分析基因表达相对变化的一种简便方法,即相对定量的一种简便方法。本文介绍了该方法的推导,假设及其应用。另外,在本文中我们还介绍了两种2-△△CT衍生方法的推导和应用,它们在实时定量 PCR 数据分析中可能会被用到。 关键词:反转录PCR 定量PCR 相对定量实时PCR Taqman 反转录 PCR (RT-PCR )是基因表达定量非常有用的一种方法(1 - 3 )。实时PCR 技术和RT-PCR 的结合产生了反转录定量 PCR 技术(4 ,5 )。实时定量 PCR 的数据分析方法有两种:绝对定量和相对定量。绝对定量一般通过定量标准曲线来确定我们所感兴趣的转录本的拷贝数;相对定量方法则是用来确定经过不同处理的样品目标转录本之间的表达差异或是目标转录本在不同时相的表达差异。 绝对定量通常在需要确定转录本绝对拷贝数的条件下使用。通过实时 PCR 进行绝对定量已有多篇报道(6 - 9 ),包括已发表的两篇研究论文(10,11 )。在有些情况下,并不需要对转录本进行绝对定量,只需要给出相对基因表达差异即可。显然,我们说 X 基因在经过某种处理後表达量增加 2.5 倍比说该基因的表达从1000 拷贝/ 细胞增加到2500 拷贝/ 细胞更加直观。 用实时PCR 对基因表达进行相对定量分析需要特殊的公式、假设以及对这些假设的验证。2-△△CT方法可用于定量PCR 实验来计算基因表达的相对变化:2-△△CT公式的推导,以及实验设计,有效性评估在Appl ied Biosystems User Bulletin No.2(P/N4303859)中有介绍。用2-△△CT方法分析基因表达数据在文献中也有报道(5,6)。本文介绍了该方法的推导、假设以及应用。另外,本文还介绍了2-△△CT两种衍生方法的推导和应用,它们在实时定量PCR 数据分析中都可能被用到。 1. 2-△△CT方法

凝胶电泳常见问题分析

凝胶电泳常见问题分析 2008-09-15 21:43 要跑琼脂糖凝胶电泳, 5ng 就能很清楚的跑出来是这样吗?能够照相的清楚的条带,至少需要多少量呢? 参考见解:5ng 已经可以了,但是或许20ng50ng-200ng效果好,在此范围内呈线性。 把210bp的pcr产物进行酶切,得到190+20bp的两个片段,请问能用琼脂糖凝胶电泳检测酶切结果吗?用多大浓度的胶和多大的电压呢? 参考见解:可以用琼脂糖凝胶电泳分开,电压不变,可用1.5%到2%的胶,20bp得片断不一定能看得到,所以应用未酶切的PCR片断作对照. 琼脂糖浓度(W/V)大小范围(bp) 0.6%1000-23000 0.8%800-10000 1.0%400-8000 1.2%300-7000 1.5%200-4000 2%100-3000 丙烯酰胺凝胶电泳更适合于分离纯化小分子量核酸(5-500bp)并且分辨率高,可以达到1个bp。所以建议进行丙烯酰胺凝胶电泳试试。 Marker做琼脂糖凝胶电泳,发现Marker在加样孔有一个明显的亮带,什么原因?参考见解:marker有时会出现这样的问题,应该是时间久了。新买时跑胶在点样孔没有,过一段时间就会在点样孔出现亮点。也可能是蛋白,有时DNA提的不纯含有蛋白时就会出现上样孔有条带的现象。 琼脂糖凝胶电泳检测DNA时,跑出的带后面出现拖尾现象,什么原因造成的? 参考见解: DNA带模糊??: 1、 DNA降解??避免核酸酶污染。 2、 DNA上样量过多??减少凝胶中DNA上样量。 3、所用电泳条件不合适??电泳时电压不应超过20V/cm,温度<30℃,巨大DNA 链,温度应<15℃,核查所用电泳缓冲液是否有足够的缓冲能力。 4、 DNA样含盐过高??电泳前通过乙醇沉淀去除过多的盐。 5、有蛋白污染??电泳前酚抽提去除蛋白。 6、 DNA变性,?电泳前勿加热,用20mM NaCl缓冲液稀释DNA。 将从组织提取的DNA进琼行脂糖凝胶电泳,用的1.5%的胶加了EB,80V跑1小时,溴酚蓝已经跑到头了,在紫外灯观察什么带也没有,只见孔里面有橘红色的亮光。好象没跑出来,是怎么回事? 参考见解: 1、根据目的条带长度来调整凝胶浓度,一般1.5%左右,也不一定。 2、紫外灯下没见带,不一定没有出孔,而是量少看不到,可以测一下浓度看一

PCR产物电泳结果分析

产物检测时间 一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚至消失。 假阴性,不出现扩增条带: PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及,④PCR循环条件。寻找原因亦应针对上述环节进行分析研究。 模板:①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。⑤模板核酸变性不彻底。在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应固定不宜随意更改。 酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而导致假阴性。需注意的是有时忘加Taq酶或溴乙锭。 引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不理想、容易弥散的常见原因。有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单位。②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。④引物设计不合理,如引物长度不够,引物之间形成二聚体等。 Mg2+浓度:Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR 扩增的特异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。 反应体积的改变:通常进行PCR扩增采用的体积为20ul、30ul、50ul。或100ul,应用多大体积进行PCR扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul后,再做大体积时,一定要摸索条件,否则容易失败。

《琼脂糖凝胶电泳进行PCR结果分析》教学设计

《琼脂糖凝胶电泳进行PCR结果分析》教学设计 一、教材分析 本节课是人教版高中生物选修1中专题5课题2 “多聚酶链式反应扩增DNA片段”的第3课时内容,是第1课时“基础知识”和第2课时“PCR实验”的延续,课时2的实验结果是本节课的检测对象,通过本节实验分析,才能得出最终的实验结论。从专题5技术应用来看,琼脂糖凝胶电泳技术不仅是课题2的检测方法,还是课题3“血红蛋白的提取和分离”的实验手段;从必修教材与选修教材间的知识脉络来看,电泳技术与必修2中“人类遗传病”等遗传内容存在联系;从学科间交叉内容来看,电泳技术与高中化学的“氧化还原反应”及“电解水”有密切关联。 二、学情分析 学生通过前两课时以及高中化学中“电解水”的学习,了解了PCR理论知识和电解的原理,并利用PCR技术扩增出了DNA片段,得到PCR产物,因此,学生既具备电泳实验的知识基础也具备电泳实验的检测对象;其次,通过之前学习,学生能正确使用实验仪器,并且具有一定合作探究和实验操作能力;再者,经过本节课的结果分析,可获得最终的实验结论,学生期待度高涨,实验兴趣浓厚。另一方面,学生对凝胶成像系统的紫外观察存在一定困难,教师在教学中需通过操作演示加以指导。 基于教材和学情的双重分析,根据生物课程标准的要求,我制定教学目标如下: 三、教学目标 知识目标 了解琼脂糖凝胶电泳技术原理。 能力目标 1. 运用琼脂糖凝胶电泳技术检测PCR产物; 2. 使用凝胶成像系统观察现象,并形成结果图。 情感态度与价值观 养成团队合作精神和严谨的科学态度。 四、教学重点和难点 运用琼脂糖凝胶电泳技术检测PCR产物,既是本节重点也是本节难点所在。 五、教法学法 情境教学法、微课教学法、展示法、演示法、互联网文件共享法和实验法,以及小组合

琼脂糖凝胶电泳实验报告

实验一:琼脂糖凝胶电泳对DNA提取 实验目的:学习使用水平式琼脂糖凝胶电泳进行DNA的提取。 实验原理:琼脂糖凝胶电泳是利用琼脂糖溶化再凝固后能形成带有一定孔隙的固体基质的特性。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。根据DNA分子量不同,采用外加电场使其分开,用生物染料嵌入DNA分子后在紫外下显色。 1)在电场的作用下及中性pH的缓冲条件下,带负电的核酸分子向正极迁移。由于糖——磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。 2)在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即DNA分子本身的大小和构型。具有不同的相对分子质量和不同构型的DNA片段泳动速度不一样,可进行分离。 3)生物染料在紫外光照射下能发射荧光,当DNA样品在琼脂糖凝胶中从负极向正极泳动时,生物染料从正极向负极移动,就会嵌入DNA分子中形成络合物,使DNA在紫外光下发射很强的荧光。在生物染料足够的情况下,荧光的强度正比于DNA的含量,这样就可以检测DNA的浓度。 实验材料:微量移液器(2μl和4μl),高压灭菌锅,电泳仪,琼脂糖平板电泳装置,微波炉等。TAE电泳缓冲液,琼脂糖凝胶,PCR 扩增样品 实验步骤: 1胶液的制备:称取0.2g琼脂糖,置于200ml锥形瓶中, 加入20ml TAE稀释缓冲液,放入微波炉里加热至琼脂糖全部熔化,沸腾。取出摇匀。加热时应盖上封口膜, 以减少水份蒸发。 2胶板的制备:将有机玻璃胶槽两端分别用透明胶带(宽约1cm)紧密封住。将封好的胶槽置于水平支持物上,插上样品梳子。 3向冷却至50-60℃的琼脂糖胶液中小心地倒入胶槽内, 使胶液形成均匀的胶层。检查有无气泡。 4室温下约20分钟后,琼脂糖溶液完全凝固,小心垂直拔出梳子和挡板,注意不要损伤梳底部的凝胶,清除碎胶。将凝胶放入电泳槽中。 5加入电泳缓冲液(TAE)至电泳槽中,使液面高于胶面约1mm。

PCR结果异常分析

PCR结果异常分析 PCR产物的电泳检测时间一般为48h以内,有些最好于当日电泳检测,大于48h 后带型不规则甚致消失。 PCR反应的关键环节有: ①模板核酸的制备;②引物的质量与特异性;③酶的质量及活性;④PCR 循环条件。 应寻找原因亦应针对上述环节进行分析研究。 1.假阴性,不出现扩增条带 (1)模板: ①模板中含有杂蛋白质; ②模板中含有Taq酶抑制剂; ③模板中蛋白质没有消化除净,特别是染色体中的组蛋白; ④在提取制备模板时丢失过多,或吸入酚; ⑤模板核酸变性不彻底。在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序应固定不宜随意更改。 (2)酶失活: 需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而导致假阴性。需注意的是有时忘加Taq酶或溴乙锭。 (3)引物: 引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不理想、容易弥散的常见原因。 有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为: ①选定一个好的引物合成单位。 ②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。 ③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。 ④引物设计不合理,如引物长度不够,引物之间形成二聚体等。 (4)Mg2+浓度: Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR扩增的特异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。 (5)反应体积的改变: 通常进行PCR扩增采用的体积为20l、30l、50l或100l,用多大体积进行PCR扩增,是根据科研和临床检测不同目的而设定,在做小体积如20l 后,再做大体积时,一定要模索条件,否则容易失败。 (6)物理原因: 变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率。有时还有必要用标准的温度计,检

PCR产物电泳结果分析

P C R产物电泳结果分析Last revision on 21 December 2020

产物检测时间 一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚至消失。假阴性,不出现扩增条带: PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及,④PCR循环条件。寻找原因亦应针对上述环节进行分析研究。 模板:①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。⑤模板核酸变性不彻底。在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应固定不宜随意更改。 酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而导致假阴性。需注意的是有时忘加Taq酶或溴乙锭。 引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不理想、容易弥散的常见原因。有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单位。 ②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。④引物设计不合理,如引物长度不够,引物之间形成二聚体等。

pcr数据分析

一般来讲,进行real-time qPCR MasterMix都是2×的浓缩液,只需要加入模板和引物就可以。由于real-time qPCR灵敏度高,所以每个样品至少要做3个平行孔,以防在后面的数据分析中,由于Ct相差较多或者SD太大,无法进行统计分析。通常来讲,反应体系的引物终浓度为100-400mM;模板如果是总RNA一般是10ng-500,如果cDNA,通常情况下是1ul或者1ul的10 倍稀释液,要根据目的基因的表达丰度进行调整。当然这些都是经验值,在操作过程中,还需要根据所用MasterMix,模板和引物的不同进行优化,达到一个最佳反应体系。在反应体系配置过程中,有下面几点需要注意: 1. MasterMix不要反复冻融,如果经常使用,最好溶解后放在4度。 2. 更多的配制Mix进行,减少加样误差。最好能在冰上操作。 一般来讲,进行real-time qPCR MasterMix都是2×的浓缩液,只需要加入模板和引物就可以。由于real-time qPCR灵敏度高,所以每个样品至少要做3个平行孔,以防在后面的数据分析中,由于Ct相差较多或者SD太大,无法进行统计分析。通常来讲,反应体系的引物终浓度为100-400mM;模板如果是总RNA一般是 10ng-500,如果cDNA,通常情况下是1ul或者1ul的10倍稀释液,要根据目的基因的表达丰度进行调整。当然这些都是经验值,在操作过程中,还需要根据所用MasterMix,模板和引物的不同进行优化,达到一个最佳反应体系。在反应体系配置过程中,有下面几点需要注意: 1. MasterMix不要反复冻融,如果经常使用,最好溶解后放在4度。 3. 每管或每孔都要换新枪头!不要连续用同一个枪头加样! 4. 所有成分加完后,离心去除气泡。 5. 每个样品至少3个平行孔。 参比或者校正染料(reference dye,passive dye)常用的是ROXTM(现在已经是ABI的注册商标了!) 或者其他染料,只要不影响检测PCR产物的荧光值就可以。参比染料的作用是标准化荧光定量反应中的非PCR震荡,校正加样误差或者是孔与孔之间的误差,提供一个稳定的基线。现在很多公司

分析real-time PCR数据

用2-△△Ct法分析real-time PCR数据-----联合应用LightCycler Data Analysis软件和MS Excel By netmee,netmee@https://www.doczj.com/doc/30862732.html, 引用请注明作者。 1、打开存取的数据文件,点击 2、依次点击,,这是适合SYBR green为染料的选项。点击step1:Baseline下的“change graph settings”小图标。取消弹出的Customize Graph 选项卡中的Logarithmis选项,点击“OK”按钮,退出选项卡。 3、点击下的“change graph settings”小图标 ,取消弹出的Customize Graph选项卡中的Logarithmis选项

,点击“OK”按钮,退出选项卡。 4、在选项卡中拖动红色标记线,选取个条曲线都为直线上升部位。 5、可以在选项卡中观察是否需选取的是曲线直线上升部分。观察绿线部分与S型曲线交叉的部分是否为直线。 6、如果确为直线,则左侧的“Crossing Point”值为所需要的Ct值。

7、依次选取下图菜单:将数据导出为文本文件。 8、打开所保存的文本文件,如图选取

“Calculated Concentration”列。

10、将目的基因,本例中为“iNOS”的Ct值按标本对应剪切入beta-actin值右侧一列。分别标记两列数据为“beta-actin”和“iNOS”。 11、设置所有Ct值的单元格格式 12、数字选项卡,分类选择为数值,点击确定。

13、将E列(目的基因Ct值右侧一列)输入公式“=D4-C4”,求出目的基因与同管beta-actin Ct值之差,即△Ct。 14、向下拉复制公式,将△Ct列数值计算出。

聚丙烯酰胺凝胶电泳实验分析

聚丙烯酰胺凝胶电泳实验分析 在很多地方看到大家都在讨论关于聚丙烯酰胺凝胶电泳的知识。看了好多观点以后,不如自己做一个实验来分析。更何况对于聚丙烯酰胺凝胶电泳分析必须要通过实验来验证观点。下面就是关于聚丙烯酰胺凝胶电泳实验分析: 明确实验目的:https://www.doczj.com/doc/30862732.html, 1.掌握聚丙烯酰胺凝胶电泳的原理。 2.熟悉聚丙烯酰胺凝胶电泳的操作过程。 3.了解聚丙烯酰胺凝胶电泳的特点和应用范围。 了解实验原理: 聚丙烯酰胺凝胶是由丙烯酰胺(简称Acr)和交联剂甲叉双丙烯酰胺(简称Bis)在催化剂的作用下,聚合交联而成的含有酰胺基侧链的脂肪族大分子化合物。 聚丙烯酰胺凝胶具有三维网状结构,能起分子筛作用。用它作电泳支持物,对样品的分离取决于各组分所带电荷的多少及分子大小。此外,聚丙烯酰胺凝胶电泳还具有浓缩效应,即在电泳开始阶段,由于不连续pH梯度作用,将样品压缩成一条狭窄区带,从而提高了分离效果。 聚丙烯酰胺凝胶电泳分为垂直平板电泳和圆盘电泳,两者的原理完全相同。由于垂直板形凝胶具有板薄、易冷却,分辨率高、操作简单、便于比较与扫描等优点,因而为大多数实验室采用。聚丙烯酰胺凝胶电泳的分辨率比纸电泳高得多,能检出10-9~10-12g样品,特别适合于分离和测定蛋白质、核酸等生物大分子化合物。它除了能对生物大分子物质进行定性、定量分析外,还可用以测定分子量,且是一种较先进的测定分子量的方法。 不连续变性聚丙烯酰胺凝胶电泳是使用最广泛的凝胶电泳。不连续是指电泳的pH值不连续(样品浓缩胶缓冲液pH 6.8, 电极缓冲液pH 8.3, 分离胶pH 8.8)、凝胶不连续(一般分成样品浓缩胶和样品分离胶两层)。变性是指样品蛋白经SDS和巯基乙醇作用后,所有蛋白质都解聚成为其构成亚基,并且都带上负电荷,形状都近似于长椭园棒状。这种SDS-蛋白质复合物,在凝胶电泳中的迁移率,不再受蛋白质原有电荷和形状的影响,而只与园棒的长度也就是蛋白质的分子量有关。 SDS聚丙烯酰胺凝胶的有效分离笵围取决于灌制凝胶时聚丙烯酰胺的浓度和交联度,二者决定凝胶分子筛的孔径大小,而孔径又是灌胶时所用丙烯酰胺和甲叉双丙烯酰胺绝对浓度的函数。用5~15%的丙烯酰胺所灌制凝胶的线性分离范围如下表: SDS聚丙烯酰胺凝胶的有效分离范围(*双丙烯酰胺~丙烯酰胺摩尔比为1:29) *丙烯酰胺浓度(%)线性分离范围(kD) 15 12~43 10 16~68 7.5 36~94 5.0 57~212 实验准备: 一、器材 1.垂直平板电泳仪全套。 2.刻度吸管、三角烧瓶、加样枪等。 二、试剂

SDS—PAGE凝胶电泳(细致分析)

SDS-PAGE电泳的基础原理和实验步骤 1.名称: SDS-PAGE(sodium dodecyl sulfate polyacrylamide gel electrophoresis) 十二烷基硫酸钠聚丙烯酰胺凝胶电泳 2.原理: 此项技术的原理,是根据样品中蛋白质分子量大小的不同,使其在电泳胶中分离。 不同的蛋白质在不同的pH值下表现出不同的电荷,同时蛋白质具有不同的大小和形状。为了使蛋白在电泳中的迁移率只与分子量有关,我们在上样前,通常会进行一些处理。 上样缓冲液由Tris-HCl(pH6.8)、甘油,10%SDS、β-巯基乙醇、0.1%溴酚蓝以及蒸馏水组成。其各自的作用如下述: SDS 即十二烷基硫酸钠,是一种阴离子表面活性剂,它可以断开分子内和分子间的氢键,破坏蛋白质分子的二级和三级结构;β-巯基乙醇是强还原剂,它可以断开半胱氨酸残基之间的二硫键。由于SDS和巯基乙醇的作用,蛋白质完全变性和解聚,解离成亚基或者单个肽链,因此测定结果只是亚基或者单个肽链的分子量。同时,SDS与蛋白质结合引起蛋白质的构象改变,形成长椭圆棒状,不同蛋白质短轴长度都一样,长轴随蛋白分子量不同而不同,这样就消除了性状的影响。另外,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。 甘油用以增大样品液密度,使加样时样品溶液可以快速沉入样品凹槽底部。

样品处理液中通常还加入溴酚蓝染料,用于监控整个电泳过程。 SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。 浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。样品液和浓缩胶中Tris-HCl均为pH6.8,上下槽缓冲液含Tris-甘氨酸(pH8.3),分离胶含Tris-HCl(Ph8.8). 电泳启动时,蛋白样品处于pH6.8 的上层,pH8.8 的分离胶层在下层,上槽为负极,下槽为正极。出现了pH 不连续和胶孔径大小不连续:启动时Clˉ解离度大,Proˉ解离度居中,甘aaCOOˉ解离度小,迁移顺序为(pH6.8)Clˉ> Proˉ >—COOˉ。在Clˉ与Proˉ之间和Proˉ与—COOˉ之间都将出现低离子区,同时也出现高电势,高电势迫使Proˉ向C lˉ迁移,—COOˉ向Proˉ迁移。如:一个Clˉ领路,—COOˉ推动,蛋白在中间,这样就起到浓缩的作用了。在浓缩胶运动中,由于胶联度小,孔径大,Proˉ受阻小,因此不同的蛋白质就浓缩到分离胶之上成层,起浓缩效应,使全部蛋白质处于同一起跑线上。当蛋白质进入分离胶时,此时Proˉ,Clˉ,甘aa 离子在pH8.8 的溶液中,Clˉ完全电离而很快到达正极,甘aa 电离度加大很快跃过蛋白质,而到达正极,只有蛋白质分子在分离胶中较为缓慢的移动,并被筛分而依各自的大小分离。 SDS-PAGE的有效分离范围取决于用于灌胶的聚丙烯酰胺的浓度和交联度。甲叉双丙烯酰胺和丙烯酰胺在过硫酸胺的作用下聚合形成胶。过硫酸铵(AP)在隔氧的状态下,最好现配现用,使用新鲜的。TEMED即四甲基乙二胺,为加速催化剂。

荧光定量PCR数据分析

利用实时定量PCR和2-△△CT法分析基因相对表达量 METHODS 25, 402–408 (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitati ve PCR and the 2-△△CT Method Kenneth J. Livak* and Thomas D. Schmittgen?,1 *Applied Biosystems, Foster City, California 94404; and ? Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington 99164-6534 摘要: 现在最常用的两种分析实时定量PCR 实验数据的方法是绝对定量和相对定量。绝对定量通过标准曲线计算起始模板的拷贝数;相对定量方法则是比较经过处理的样品和未经处理的样品目标转录本之间的表达差异。2-△△CT方法是实时定量P CR 实验中分析基因表达相对变化的一种简便方法,即相对定量的一种简便方法。本文介绍了该方法的推导,假设及其应用。另外,在本文中我们还介绍了两种2-△△CT衍生方法的推导和应用,它们在实时定量 PCR 数据分析中可能会被用到。 关键词:反转录PCR 定量PCR 相对定量实时PCR Taqman 反转录 PCR (RT-PCR )是基因表达定量非常有用的一种方法(1 - 3 )。实时PCR 技术和RT-PCR 的结合产生了反转录定量 PCR 技术(4 ,5 )。实时定量 P CR 的数据分析方法有两种:绝对定量和相对定量。绝对定量一般通过定量标准曲线来确定我们所感兴趣的转录本的拷贝数;相对定量方法则是用来确定经过不同处理的样品目标转录本之间的表达差异或是目标转录本在不同时相的表达差异。 绝对定量通常在需要确定转录本绝对拷贝数的条件下使用。通过实时 PCR 进行绝对定量已有多篇报道(6 - 9 ),包括已发表的两篇研究论文(10,11 )。在有些情况下,并不需要对转录本进行绝对定量,只需要给出相对基因表达差异即可。显然,我们说 X 基因在经过某种处理後表达量增加 2.5 倍比说该基因的表达从1000 拷贝/ 细胞增加到2500 拷贝/ 细胞更加直观。 用实时PCR 对基因表达进行相对定量分析需要特殊的公式、假设以及对这些假设的验证。2-△△CT方法可用于定量PCR 实验来计算基因表达的相对变化:2-△△CT 公式的推导,以及实验设计,有效性评估在Applied Biosystems User Bulleti n No.2(P/N4303859)中有介绍。用2-△△CT方法分析基因表达数据在文献中也有

相关主题
文本预览
相关文档 最新文档