固体物理索末菲模型
- 格式:pptx
- 大小:390.43 KB
- 文档页数:25
一、晶体宏观特征(必考其一)1.晶体的自限性(自范性):自发形成封闭几何外形的能力。
2.晶面角守恒定律:同一种晶体在相同的温度和压力下,对应晶面之间的夹角不变。
3.晶体的解理性(Cleave property):晶体受到外力作用时会沿着某一个或几个特定的晶面劈裂开的性质称为解理性。
4-晶体的各向异性(anisotropy):沿晶体内部的不同方向上有不同的物理性质。
5.晶体的均匀性(homogeneity ):内部各部分的宏观性质相同。
6.晶体的对称性(symmetry):由于内部质点有规则排列而形成的特殊性质。
7.晶体的稳定性:与同种物质的其他形态(气态、液态、非晶态、等离子态等)相比,晶体的内能最小、最稳定。
晶体具有固定的熔点,而非晶体则没有固定的熔点。
二、空间点阵(基元、原胞(primitive cell)> 晶胞(conventional cell)> B 格子、WS 原胞)1.基元:组成晶体的最小结构单元。
2.初基原胞(原胞):一个晶格最小的周期性单元,称为原胞。
3.惯用原胞(晶胞):能使原胞同时反映晶体对称性和周期性特征的重复单元,称为晶胞。
4.B格子:如果晶体只由一种原子构成,且基元是一个原子,则原子中心与阵点重合,这种晶格称为布拉菲格子,或称B格子。
5.WS原胞:WS原胞是以晶格中某一格点为中心,作其与近邻的所有格点连线的垂直平分面,这些平面所围成的以该点为中心的凸多面体即为该点的WS原胞。
作法:(1)任选一格点为原点;(2)将原点与各级近邻的格点连线,得到几组格矢;(3)作这几组格矢的中垂面,这些中垂面绕原点围成的最小区域称W-S原胞。
三、第一布里渊区(二维):从倒格子点阵的原点出发,作出它最近邻点的倒格子点阵矢量,并作出每个矢量的垂直平分面,可得到倒格子的WS原胞,称为第一布里渊区。
注:写出二维坐标系j> b P b2( b为倒格子基矢)。
四、晶体的对称性、晶系、密堆积、配位数(一至二);1.晶体的对称性:晶体经过某种对称操作后物体能自身重合的性质,2.晶系:根据晶体空间点阵中6个点阵参数之间相对关系的特点而将其分为7类,各自称一晶系。
固体物理的思考题1.解理⾯是⾯指数低的晶⾯还是⾯指数⾼的晶⾯,为什么?答:解理⾯是指⾯与⾯之间的相互作⽤⼒⽐较弱,容易解离的⾯,若⾯间距⽐较⼤,则容易形成解理,晶⾯指数越⼤,⾯间距越⼩,晶⾯指数越⼩,⾯间距越⼤,所以是⾯指数低的晶⾯容易解离。
2.⾼指数的晶⾯族与低指数的晶⾯族相⽐,对于同级衍射,那⼀晶⾯族衍射光弱?为什么?答:由布拉格衍射公式,其中θ为⼊射x射线的掠射⾓,⾼指数的晶⾯族晶⾯间距d⽐较⼩,对于同级衍射,d越⼤,则越⼩,光的透射能⼒就越弱,此时形成的衍射光就⽐较弱。
也可以从另⼀⽅⾯考虑,晶⾯指数越⼤,晶⾯间距越⼩,原⼦密度也越⼩,此时对⼊射光的反射作⽤就⽐较弱,所以⾼指数晶⾯组的衍射光弱。
3.对于x射线衍射,可否将⼊射光改为可见光?答:不可以,主要由于原⼦的间距在?的数量级,根据布拉格衍射公式,可知⼊射光波的波长也应在?的数量级,然⽽可见光的波长⼀般为⼏百nm所以不可以改为可见光⼊射,常⽤的⼊射光⼀般为Cu的线1.54?。
4.在⼀般的单式格⼦中是否存在强烈的红外吸收,为什么?答:在离⼦晶体中的长光学⽀格波有特别重要的作⽤,因为不同离⼦间的相对振动产⽣电偶极矩,从⽽可以和电磁波相互作⽤,长光学波与红外光波的共振,引起对⼊射波的强烈吸收,但是对于单式格⼦(简单晶格)⽽⾔,由于是只包含单个原⼦,并不存在光学⽀格波,所以不会引起对红外光波的强烈吸收。
5.⾊散曲线中,能否判断哪知格波的模式密度⽐较⼤,是光学⽀格波还是声学⽀格波?答:在⾊散曲线中,光学⽀格波的⾊散曲线⽐较平缓,⽽声学⽀的⾊散曲线⽐较陡峭,模式密度表⽰在频率ω附近单位频率间隔内的格波数,由于光学⽀格波⾊散曲线变化平缓,对应⼩的ω区间就具有了较⼤的波⽮q的变化,所以光学⽀格波的模式密度⽐较⼤。
6.拉曼散射中光⼦会不会产⽣倒逆散射?答:拉曼散射是长光学波声⼦与光⼦(红外光)的相互作⽤,长光学波声⼦的波⽮很⼩,响应的动量⼩,产⽣倒逆散射的条件要求波长⼩,波⽮⼤,散射⾓⼤,拉曼散射不满⾜条件所以不会产⽣倒逆散射。
《固体物理学》教学大纲(适用于本科物理学专业)课程编码:140613040学时:64学分:4开课学期:第七学期课程类型:专业必修课先修课程:理论力学,电动力学,热力学与统计物理,量子力学教学手段:多媒体一、教学目的与任务:本课程是物理学专业本科生的专业选修课。
通过本课程的学习,使学生了解固体物理学发展的基本情况,以及固体物理学对于近代物理和近代科技的发展起的作用,培养学生的科学素质和科学精神;了解固体物理所研究的基本内容和固体物理研究前沿领域的概况,培养学生的现代意识和科学远见;掌握固体物理学的基本概念和基本规律,培养掌握科学知识的方法;掌握应用固体物理学理论分析和处理问题的手段和方法,培养科学研究的方法。
二、课程的基本内容:1.晶体的结构2.固体的结合3.晶格振动与晶体的热学性质4.能带理论5.晶体中电子在电场和磁场中的运动6.金属电子论三、课程的教学要求:(1)掌握晶体的空间点阵,晶体基矢的表达,倒易点阵,晶面、晶向的概念以及正点阵和倒易点阵的关系。
(2)掌握晶体的结合类型和结合性质。
(3)掌握一维晶体振动模式的色散关系,晶格振动的量子化、声子的概念。
爱因斯坦模型和德拜模型解释固体的比热性质。
(4)掌握自由电子气的概念,自由电子气的费密能量,布洛赫波以及自由电子模型。
(5)掌握布里渊区的概念以及近自由电子近似和紧束缚近似方法计算能带的理论。
(6)了解晶体的对称操作类型,了解非谐效应,确定振动谱的实验方法以及晶格的自由能。
(7)了解金属中电子气的热容量,金属、半导体、绝缘体以及空穴的概念。
四、课程学时分配:第一章晶体结构(8学时)【教学目的】通过本章的教学,使学生了解晶格结构的一些实例;理解和掌握晶体结构的周期性特征及其描述方法;理解和掌握晶体结构的对称性特征及其描述方法;理解和掌握倒格子的定义及其与正格子的关系。
【重点难点】重点:晶体结构的周期性特征及其描述方法、晶体结构的对称性特征及其描述方法、倒格子及其与正格子的关系。