超声引导下神经阻滞科技申请
- 格式:doc
- 大小:82.50 KB
- 文档页数:8
超声引导下髂筋膜神经阻滞新业务申请书1. 业务背景超声引导下髂筋膜神经阻滞是一种常见的神经阻滞技术,用于麻醉和疼痛管理。
该技术通过使用超声波来引导注射器准确地定位和注射药物到髂筋膜神经,从而实现麻醉和疼痛缓解的效果。
这种技术在手术前和术后的疼痛管理中被广泛应用,并且已经被证明在提供疼痛缓解的同时,还能减少并发症和副作用的发生。
2. 业务需求目前,我们的医疗机构并未引入超声引导下髂筋膜神经阻滞业务。
然而,随着麻醉和疼痛管理领域的不断发展,这项技术已经成为国际上常用的神经阻滞技术之一。
因此,引入超声引导下髂筋膜神经阻滞业务是非常有必要的。
我们的业务需求主要包括以下几个方面:2.1 人员培训引入超声引导下髂筋膜神经阻滞业务需要进行相关人员的培训。
我们计划邀请国内外专家来进行培训,包括理论知识的介绍、实际操作的演示以及实践技巧的指导。
通过培训,我们的医护人员将能够掌握超声引导下髂筋膜神经阻滞技术,提供高质量的医疗服务。
2.2 设备采购为了进行超声引导下髂筋膜神经阻滞,我们需要购买相应的设备。
这些设备包括超声引导设备、注射器等。
我们将根据市场调研和专家建议,选择性能优良、操作简便、价格合理的设备进行采购。
2.3 服务推广引入超声引导下髂筋膜神经阻滞业务后,我们需要通过各种渠道进行服务推广。
这包括在医疗咨询平台上发布相关信息、举办学术交流会议、与其他医疗机构建立合作关系等。
我们将充分利用现有资源,积极宣传和推广这项业务,吸引更多患者选择我们的医疗服务。
3. 项目计划为了确保超声引导下髂筋膜神经阻滞业务的顺利引入,我们制定了以下项目计划:3.1 人员培训计划时间内容第一周邀请国内专家进行理论知识培训时间内容第二周进行实际操作演示和技巧指导第三周开展实践操作培训第四周进行培训总结和评估3.2 设备采购计划根据市场调研和专家建议,我们计划在第五周完成设备采购,并在第六周进行设备安装和调试。
3.3 服务推广计划时间内容第七周在医疗咨询平台上发布相关信息第八周举办学术交流会议第九周与其他医疗机构建立合作关系第十周定期进行宣传推广活动4. 预期效果通过引入超声引导下髂筋膜神经阻滞业务,我们预期将实现以下效果:4.1 提高医疗服务水平通过培训和设备采购,我们将能够提供超声引导下髂筋膜神经阻滞技术,提高医疗服务的水平。
超声引导下髂筋膜神经阻滞新业务申请书摘要:1.超声引导下髂筋膜神经阻滞的概述2.超声引导下髂筋膜神经阻滞的适应症和操作要点3.超声引导下髂筋膜神经阻滞的临床应用效果4.超声引导下髂筋膜神经阻滞的护理干预和麻醉配合状况5.超声引导下髂筋膜神经阻滞的未来发展趋势正文:一、超声引导下髂筋膜神经阻滞的概述超声引导下髂筋膜神经阻滞是一种新型的局部麻醉技术,其主要作用是通过在超声引导下注射局麻药,阻滞髂筋膜内的神经,从而达到疼痛缓解的目的。
这种技术操作简单、效果显著,可以作为股神经或腰丛阻滞的补充。
二、超声引导下髂筋膜神经阻滞的适应症和操作要点超声引导下髂筋膜神经阻滞的适应症主要包括大腿前部和膝关节手术,髋关节、膝关节手术术后镇痛等。
操作要点主要包括以下几点:1.阻滞要点适应症:大腿前部和膝关节手术,髋关节、膝关节手术术后镇痛。
2.探头位置:横向放置于腹股沟、股动脉的外侧。
3.注药部位:局麻药在髂筋膜下由内向外扩散。
4.局麻药:稀释的局麻药30-40 毫升。
三、超声引导下髂筋膜神经阻滞的临床应用效果超声引导下髂筋膜神经阻滞在临床应用中效果显著,能够有效缓解患者的疼痛感。
有研究表明,超声引导下髂筋膜神经阻滞对老年患者PFNA 内固定术后镇痛的效果良好。
同时,超声引导下髂筋膜神经阻滞也可以联合其他麻醉技术,如骶丛阻滞,以达到更好的镇痛效果。
四、超声引导下髂筋膜神经阻滞的护理干预和麻醉配合状况在超声引导下髂筋膜神经阻滞的操作过程中,护理干预和麻醉配合至关重要。
护理人员需要密切观察患者的生命体征,确保患者的安全。
同时,麻醉医师需要根据患者的病情和手术需求,合理选择麻醉药物和剂量,以保证镇痛效果和患者的安全。
五、超声引导下髂筋膜神经阻滞的未来发展趋势随着医疗技术的不断发展,超声引导下髂筋膜神经阻滞在未来将会得到更广泛的应用。
超声引导下髂筋膜神经阻滞新业务申请书尊敬的领导:我是××医院麻醉科的××,向您提交一个新的业务申请书,旨在推行超声引导下髂筋膜神经阻滞。
本申请书将介绍该项新业务的背景、意义、实施计划以及预期效果等内容。
1.背景和意义髂筋膜神经阻滞是一种麻醉技术,通过注射麻醉药物于髂筋膜神经周围,达到局部麻醉和止痛的效果。
传统的髂筋膜神经阻滞常采用经验和可感知的解剖标志作为导向,但存在操作难度大、效果不稳定等问题。
而超声引导下的髂筋膜神经阻滞,是一种利用超声仪器引导下进行的精确导引技术,可提高手术操作的准确性和成功率。
此项新业务推广的意义在于:一方面,超声引导下的髂筋膜神经阻滞较传统方法更加可靠、准确,可以避免误伤、降低并发症的发生;另一方面,该技术的推广可提高我院麻醉科的技术水平,加强与患者的沟通和信任,提高患者的手术体验,增加患者满意度。
2.实施计划(1)准备工作:组织相关医务人员进行超声引导下髂筋膜神经阻滞的培训和学习,提高其对超声仪器操作的熟练度,了解阻滞的关键解剖结构。
(2)团队协作:建立专门的技术团队,由麻醉科医师、超声医学专家和手术人员组成,共同参与手术过程中的超声引导下髂筋膜神经阻滞。
(3)设备投入:购置高质量的超声仪器,并进行合理的配置和维护,以保障手术过程的顺利进行。
(4)试点推广:在麻醉科临床中选取适当的手术病例进行试点操作,积累经验,并逐步向其他科室推广,跟进手术疗效并记录并发症情况。
3.预期效果通过引入超声引导下髂筋膜神经阻滞,我们期望在以下几个方面取得显著的效果:(1)手术操作的准确性和成功率提高:超声引导下的精确导引技术可以确保药物准确注射到髂筋膜神经周围,提高手术麻醉的成功率。
(2)术后镇痛效果改善:髂筋膜神经阻滞在麻醉后可以提供持续的镇痛效果,有效减轻术后疼痛,提高患者的术后生活质量。
(3)患者满意度的提升:精确导引技术的运用可以减少麻醉并发症的发生,提高手术过程的顺利进行,增加患者对医院整体服务的满意度。
超声引导下髂筋膜神经阻滞引言超声引导下髂筋膜神经阻滞是一种常见的麻醉技术,用于手术和镇痛治疗。
本文将全面、详细、完整地探讨这一技术的原理、适应症、操作步骤、优势和注意事项。
原理超声引导下髂筋膜神经阻滞是利用超声成像技术,将麻醉药物准确注射到髂筋膜神经周围的区域,从而实现麻醉效果。
超声成像技术可以清晰显示髂筋膜神经和周围组织结构,使麻醉医生能够准确定位和定位麻醉药物的注射点。
适应症超声引导下髂筋膜神经阻滞适用于以下情况: 1. 髋关节手术:如髋关节置换术、髋关节镜手术等。
2. 髂腰肌疼痛:如髂腰肌炎、髂腰肌劳损等。
3. 髋部创伤:如髋部骨折、髋部软组织损伤等。
4. 髂筋膜疾病:如髂筋膜炎、髂筋膜痛等。
操作步骤超声引导下髂筋膜神经阻滞的操作步骤如下: 1. 患者准备:患者取仰卧位,暴露髂前上棘和髂嵴。
2. 超声探头放置:将超声探头放置在髂前上棘与髂嵴之间的区域,调整超声仪器以获取清晰的成像。
3. 麻醉药物准备:准备适量的局部麻醉药物,如布比卡因。
4. 麻醉药物注射:用超声引导下的针头精确定位,将麻醉药物缓慢注射到髂筋膜神经周围的区域。
5. 麻醉效果评估:观察患者的感觉和运动功能,评估麻醉效果是否达到预期。
优势超声引导下髂筋膜神经阻滞具有以下优势: 1. 安全性高:超声成像技术可以准确显示神经和血管结构,避免误伤。
2. 麻醉效果好:超声引导下的精确定位可以确保麻醉药物准确注射到目标区域,提供良好的麻醉效果。
3. 操作简便:超声引导下的操作步骤清晰明了,容易学习和掌握。
4. 减少并发症:由于准确定位和定位,超声引导下的髂筋膜神经阻滞可以减少并发症的发生。
注意事项在进行超声引导下髂筋膜神经阻滞时,需要注意以下事项: 1. 熟练掌握超声成像技术:麻醉医生需要具备良好的超声成像技术,以确保准确的定位和注射。
2. 注意麻醉药物剂量:麻醉药物的剂量需要根据患者的情况进行调整,避免过量使用。
3. 预防感染:在操作过程中,需要采取严格的无菌操作,减少感染的风险。
超声引导下髂筋膜神经阻滞新业务申请书摘要:一、背景和目的- 介绍髂筋膜神经阻滞的背景和重要性- 阐述本次新业务申请的目的和意义二、超声引导下髂筋膜神经阻滞的技术原理- 解释髂筋膜神经阻滞的概念- 介绍超声引导下髂筋膜神经阻滞的技术原理- 说明该技术在临床上的应用范围和优势三、操作方法和流程- 详细描述超声引导下髂筋膜神经阻滞的操作方法和流程- 说明可能出现的并发症及预防措施四、新业务申请的必要性和可行性- 分析当前临床对髂筋膜神经阻滞的需求- 评估该技术在临床应用的可行性和效益五、实施计划和预期效果- 详细描述新业务实施的计划和步骤- 预测新业务实施后的预期效果和收益正文:一、背景和目的髂筋膜神经阻滞是一种在超声引导下进行的神经阻滞技术,通过在髂筋膜和髂腰肌之间的间隙注射局麻药,可以达到股神经和股外侧皮神经的阻滞效果。
这种技术在临床上的应用范围广泛,可以用于治疗疼痛、肌肉痉挛等症状。
为了提高临床治疗效果,我们提出开展超声引导下髂筋膜神经阻滞新业务。
二、超声引导下髂筋膜神经阻滞的技术原理髂筋膜神经阻滞是一种通过注射局麻药在髂筋膜和髂腰肌之间的间隙,以达到股神经和股外侧皮神经阻滞的技术。
超声引导下髂筋膜神经阻滞技术是在超声成像技术的引导下进行注射,可以精确地定位注射位置,提高阻滞效果和减少并发症的发生。
三、操作方法和流程1.患者取侧卧位,暴露患侧髂前上棘和耻骨结节。
2.使用超声探头涂抹耦合剂,对髂筋膜和髂腰肌进行扫描,找到注射位置。
3.在髂筋膜和髂腰肌之间的间隙注射局麻药,缓慢扩散至髂筋膜下方。
4.观察患者症状变化,评估阻滞效果。
四、新业务申请的必要性和可行性随着疼痛治疗的需求不断增加,髂筋膜神经阻滞技术在临床上的应用也越来越广泛。
超声引导下髂筋膜神经阻滞技术具有操作简便、效果明显、并发症少等优点,对于提高临床治疗效果具有重要价值。
我们医院具备开展该新业务的条件和能力,包括超声设备和专业的麻醉团队,可以保证新业务的顺利进行。
超声引导下髂筋膜神经阻滞新业务申请书(原创版)目录1.超声引导下髂筋膜神经阻滞的概述2.超声引导下髂筋膜神经阻滞的优点3.超声引导下髂筋膜神经阻滞的适用范围4.超声引导下髂筋膜神经阻滞的操作步骤5.超声引导下髂筋膜神经阻滞的注意事项6.超声引导下髂筋膜神经阻滞的推广应用正文一、超声引导下髂筋膜神经阻滞的概述超声引导下髂筋膜神经阻滞是一种新型的麻醉技术,通过超声波的引导,将局麻药准确地注射到髂筋膜下,以达到麻醉的效果。
这种技术具有操作简单、效果明显、副作用小等优点,已经成为临床上的一种重要麻醉方式。
二、超声引导下髂筋膜神经阻滞的优点超声引导下髂筋膜神经阻滞具有以下优点:1.可视化操作:通过超声波的引导,可以清晰地看到注射部位,提高操作的准确性。
2.效果明显:局麻药在髂筋膜下由内向外扩散,可以达到较好的麻醉效果。
3.副作用小:超声引导下髂筋膜神经阻滞的副作用较小,不会对患者造成太大的不适。
三、超声引导下髂筋膜神经阻滞的适用范围超声引导下髂筋膜神经阻滞适用于以下情况:1.大腿前部和膝关节手术2.髋关节、膝关节手术术后镇痛四、超声引导下髂筋膜神经阻滞的操作步骤超声引导下髂筋膜神经阻滞的操作步骤如下:1.患者取仰卧位,暴露患侧腹股沟区。
2.涂抹耦合剂,将超声探头置于患侧腹股沟区。
3.确定注射部位,向患者解释操作过程。
4.将局麻药注射到髂筋膜下。
5.观察患者的反应,如有异常立即处理。
五、超声引导下髂筋膜神经阻滞的注意事项在进行超声引导下髂筋膜神经阻滞时,需要注意以下几点:1.操作前应进行充分的镇静、镇痛。
2.注射局麻药时,应缓慢注射,避免过快注射导致局麻药扩散过广。
3.注射部位应准确,避免损伤周围组织。
4.操作过程中应密切观察患者的反应,如有异常应及时处理。
六、超声引导下髂筋膜神经阻滞的推广应用超声引导下髂筋膜神经阻滞作为一种新型的麻醉技术,具有操作简单、效果明显、副作用小等优点,值得在临床上推广应用。
péridural, sont la rigidité tissulaire et le manque de flexibilité au niveau de la colonne.Conclusion : La pratique sur des cadavres pourrait constituer une option de formation viable pour exercer l’échographie et l’échoguidage de l’aiguille pour les blocs nerveux pratiqués au niveau du tronc et dans l’espace péridural. La formation peut se faire dans un environnement pré-clinique sans stress, sans con-trainte de temps ni inconfort possible pour le patient. C ADAVERIC ultrasound imaging has beenconsidered previously in the Journal.1,2Ultrasound (US) imaging in cadavers canhelp the novice to acquire an in-depth knowledge of the relevant regional anatomy (includ-ing the specific sonoanatomy) in order to facilitate successful identification of nerve structures, and to acquire expertise and confidence in performing these blocks.3 The main benefit from using cadavers is that the training can be performed in a stress-free pre-clini-cal environment without the time constraints and the potential for patient discomfort. Dissections can be performed to confirm the identity of a nerve or ves-sel, which is particularly relevant for small peripheral nerves or tips of the transverse processes during para-vertebral or lumbar plexus blocks. Finally, the greater time afforded in the laboratory setting is perhaps most beneficial for training in block procedures of the trunk and epidural space, since imaging at these locations can be challenging, and more practice may be neces-sary than for nerve blocks in the extremities.The superficial location of many upper, and indeed lower extremity structures ultimately enables real-time US visualization of the nerve structures, the needle trajectory, the structures to be avoided (e.g., pleura, vessels) and the spread of local anesthetic solution. In contrast, visibility in the trunk and spine is more challenging since lower frequency probes are required for deeper US beam penetration, leading to reduced resolution. One exception is the higher resolution which is appropriate at the more superficial location of the intercostal nerves, especially in thin subjects. In addition, the bony composition of the spinal col-umn generally leads to poor beam penetration when identifying the neuraxial structures. Consequently, US guidance (or “support”) for blocks involving the trunk (with the exception of many intercostal nerves) and epidural space is often limited to pre-procedural identification of important landmarks. Learning how to identify the relevant anatomical structures in the trunk and spinal region in cadavers will, therefore, probably be more beneficial than learning the intrica-cies of needle-probe alignment, probe manipulation and needle tracking.The objective of this report is to demonstrate that US imaging in cadavers, for the purpose of facilitat-ing peripheral blocks of the trunk [paravertebral, intercostal, and lumbar plexus (psoas compartment)], is similar to that in live humans. A secondary objec-tive was to consider the variations between subjects (particularly for epidural blocks) when practicing US-guided blocks, or supported selective trunk and neuraxial techniques.Technical featuresUltrasound images using a portable machine (MicroMaxx, SonoSite Inc., Bothel, WA, USA; C60 5-2 MHz curved array probe or HFL38 13-6 MHz linear array probe) were obtained from scanning the trunk of a male adult cadaver (embalmed previously according to standard procedures1at the authors’ institution) and were compared with the US and magnetic resonance imaging (MRI) of a volunteer adult male. The cadaver was in the legal custody of the Division of Anatomy of the authors’ institu-tion. Permission to undertake these procedures was obtained from the Division of Anatomy, in compliance with the institutional ethical standards for the use of human material in medical education. Ethics approval was obtained from the Institutional Research Ethics Board for US and MRI scanning on the volunteer (one of the authors).Several technical issues are important to consider when viewing the images. The portable US system does not allow selection of a specific frequency. Instead, it automatically adjusts the frequency depending on the depth of scanning. Considering the depth of the anatomical structures, the US images of the trunk in this report have lower resolution as compared to many other images in descriptions of superficially-located nerve blocks shown in the current US-guided anes-thesia literature. We used a portable US system from our clinical practice, which we find suitable for most nerve block procedures. For each US image, the depth of beam penetration is shown by a number appearing in the lower right corner. Accompanying pictures of a model skeleton are enhanced with a schematic overlay representing the plane of the probe beams. Images from MRI of the same living subject are also includedfor reference when studying the images.FIGURE 1 Ultrasound imaging at the lumbar spine. Scanning at the midline in the (a) transverse/coronal plane provided an overview, while scanning in a medial-to-lateral direction using the longitudinal/sagittal plane sequentially localized the (b) spinous, (c) articular and (d) transverse processes. The ultrasound scanning window is depicted by the rectangular sche-matic overlay in the picture of the skeleton model.ObservationsLumbar plexus (psoas compartment) blocks (generally L3–5)An US-guided lumbar plexus block is an advanced level deep block and thus best practiced by anesthe-siologists experienced with this technique. The most consistently recognized structures of these “US-sup-ported” blocks are the deep bony landmarks; identify-ing these landmarks will help guide the probe to the appropriate block location and facilitate identification of an optimal needle insertion site. The spinal level can be approximated recognizing that the L4 spinous process is around 1 cm cephalad to the upper border of the iliac crests4 (the iliac crests appear lateral to the spine as highly echoic lines with dorsal shadowing). Alternatively, the transverse process echoes can be counted from the sacrum upward.5 Fascicular-appear-ing muscular landmarks will be useful particularly if the psoas major muscle is adequately viewed with the help of higher resolution systems; the plexus consistently lies at the junction of the posterior third and anterior two-thirds of this muscle (this location is often used as a surrogate marker for the unidentified plexus).6,7 In addition to reducing the risks of complications, ultra-sonographic visualization of the kidneys and related vessels may allow a more cephalad needle insertion (e.g., L3–4) than that at the more traditional level of L4–5,7 which may provide more consistent blockade of the iliohypogastric and ilioinguinal nerves.An overview of the relevant anatomy can be cap-tured by placing the probe at the midline in a trans-verse plane (Figure 1a). Imaging quality in the cadaver for this block will partly depend on the age and body composition, but especially on the embalming process and the length of time the specimen has been supine. The vertebral body elements (spinous, articular and transverse processes, and often the lamina) can be appreciated with their hyperechoic borders and dorsal shadowing. Ultimately, the location of the kidneys (inferior edge at L2/3, the right kidney generally being 1 cm lower than the left) and their related ves-sels should be marked. It should be noted that the kid-neys are often best appreciated in real-time scanning on live subjects due to their caudad movement upon inspiration (not shown here). To verify the location of the transverse processes, the main landmarks for this block, the probe can be rotated at the midline to the longitudinal axis and a survey can be performed in the medial-to-lateral direction to identify consecutively the spinous, articular and transverse processes (Figure 1b–d). To differentiate between articular (Figure 1c) and transverse processes (Figure 1d), the operator needs to use a progressive scan and identify the most lateral nodular-appearing structure. The transverse processes are typically located 3 cm lateral to the tips of the spinous processes;5the initial transverse scan will help identify the relative location of the bony structures. The point at which the transverse processes end is immediately beyond the ideal block location. The depth and lateral displacement of the transverse process tips should then be marked. More relevant in the living subject due to tissue compressibility, con-sistency in measurements between the pre-procedural scan and actual block will depend on pressure from the probe which can reduce the measured skin-transverse process distance.If attempting to practice a real-time needle inser-tion technique during lumbar plexus or paravertebral blocks, in-plane (longitudinal) needle alignment to a longitudinally/sagittally placed probe, or out-of-plane (perpendicular) needle alignment to a transversely/ coronally placed probe (but not alternatives such as out-of-plane alignment to a longitudinally placed probe) will likely provide the safest needle insertion. The sagittally-directed needle trajectory will not have as much potential risk for injury as would a medial (spinal column) or lateral (retroperitoneal) angle of insertion.Paravertebral and intercostal blocksUltrasound guidance for these blocks uses an approach similar to that for the lumbar plexus block, but there is some variation in the appearance of structures at the thoracic as compared to lumbar spine (e.g., the erec-tor spinae musculature is much more prominent and visible on longitudinal scanning) (Figure 2). Of note, intercostal nerve blockade is usually amenable to real-time visualization of the needle path and bony struc-tures, especially in the mid-thoracic region where the structures are quite superficial. A drawback of cadaver imaging is the absence of dynamic “lung sliding” with respiration. One feature of imaging at the mid- to high-thoracic region is the ability to obtain higher image resolution from higher-frequency linear array US probes in slim individuals (or likewise in the cadaver, where supine placement often pushes the bulk of the erector spinae musculature laterally). Using this probe selection would be beneficial especially for paraverte-bral blocks, since the spinous processes are essentially touching each other, and limited delineation occurs. The skin-to-paravertebral space depth is greater at the mid-thoracic as compared to the high and low-thoracic regions.8 Moving the probe from the initial transverse, midline placement to the sagittal plane, and surveying in a medial-to-lateral direction will sequentially iden-tify the spinous process, laminae and tips of the trans-FIGURE 2 Ultrasound imaging at the thoracic spine. Placing the probe (a) transversely at the midline captured the verte-bral and costal structures, and scanning longitudinally in a medial-to-lateral direction sequentially captured the (b) spinous processes, (c) the laminae, (d) the transverse processes with the deeper paravertebral space, and (e) the ribs. The erector spi-nae musculature was well-demarcated in the longitudinal images taken lateral to the spinous processes. The ultrasound scan-FIGURE 3 Ultrasound imaging in the paramedian longitudinal plane at the (a) thoracic and (b) lumbar spine in order to capture the optimal ultrasound window of the epidural space.2a). The majority of the beam is reflected by the lami-nae and facet joints (Figures 1a and 2a), and similar to the epidural space depth, these landmarks can be used for estimating the best needle puncture point and insertion angle. The transverse views were similar in both models, although the degree of similarity will likely be age-dependent.ConclusionsCadavers may provide a viable training option for practicing US imaging for peripheral blocks at the trunk, and for estimating the epidural space depth. Limitations associated with cadaver studies include muscle rigidity, and limited flexibility of the spine. However, the ability to gain an advanced knowledge of the relevant regional anatomy and sonoanatomy, in addition to learning US-guidance techniques where appropriate, can be very useful in the clinical setting. The clinical applicability of this indirect (i.e., ‘offline’ or ‘supported’) US survey of the trunk should not be underestimated. Accurate determination of optimal needle insertion placement and needle angle may improve needle localization in order to provide more accurate and successful local anesthetic applica-tion. Aberrations in spinal and costal anatomy (e.g., scoliosis, vertebral fusion) may be identified10and the practitioner can plan for modified techniques. Additionally, since there is a positive correlation between weight, or body mass index, and skin-to-lum-bar plexus distance,4,5 US guidance has the potential to improve the block success rate in individuals with excess subcutaneous tissue. As technology advances, visibility to the depth of the paravertebral and inter-vertebral structures may improve to the point where needle alignment can be more consistently directed, dynamically, towards the target nerve structures. References1 Tsui BC, Dillane D, and Walji A. Cadaveric ultrasoundimaging for training in ultrasound-guided peripheralnerve blocks: upper extremity. Can J Anesth 2007; 54: 392–6.2 Tsui BC, Dillane D, Pillay J, Ramji AK, Walji AH.Cadaveric ultrasound imaging for training in ultra-sound-guided peripheral nerve blocks: lower extremity.Can J Anesth 2007; 54: 475–80.3 Broking K, Waurick R. How to teach regional anesthe-sia. Curr Opin Anaesthesiol 2006; 19: 526–30.4 Capdevila X, Macaire P, Dadure C, et al. Continuouspsoas compartment block for postoperative analgesiaafter total hip arthroplasty: new landmarks, technicalguidelines, and clinical evaluation. Anesth Analg 2002;94: 1606–13.5 Kirchmair L, Entner T, Wissel J, Moriggl B, Kapral S,Mitterschiffthaler G. A study of the paravertebral ana-tomy for ultrasound-guided posterior lumbar plexusblock. Anesth Analg 2001; 93: 477–81.6 Farny J, Drolet P, Girard M. Anatomy of the posteriorapproach to the lumbar plexus block. Can J Anaesth1994; 41: 480–5.7 Kirchmair L, Entner T, Kapral S, Mitterschiffthaler G.Ultrasound guidance for the psoas compartment block: an imaging study. Anesth Analg 2002; 94: 706–10.8 Naja MZ, Gustafsson AC, Ziade MF, et al. Distancebetween the skin and the thoracic paravertebral space.Anaesthesia 2005; 60: 680–4.9 Grau T, Leipold R W, Horter J, Conradi R, MartinEO, Motsch J. Paramedian access to the epidural space: the optimum window for ultrasound imaging. J ClinAnesth 2001; 13: 213–7.10 McLeod A, Roche A, Fennelly M. Case series:Ultrasonography may assist epidural insertion in scolio-sis patients. Can J Anesth 2005; 52: 717–20.。
计划类别:
受理编号:
上杭县科技计划项目
申请书
项目名称:
申请单位:
项目负责人:联系电话:
联系人:联系电话:
传真:邮政编码:
通信地址:
E-mail:
申请日期:年月日
上杭县科学技术局
二OO五
简表
一、项目背景和实施条件
二、项目的研发内容
三、项目预期达到的主要经济技术指标
四、项目实施进度安排
五、项目的结题方式和时间
本项目将于年月,由县科技局或其委托单位组织有关专家(鉴定、评审或验收)。
形成的成果或专利权属按国家有关规定办理。
六、经费预算单位:万元
备注:1、“经费支出预算”按《龙岩市科技三项费用管理办法》有关规定填报
2、“人员费”需说明累计全时工作时间
3、其它费是指会议费、差旅费、资料费(含出版、查询、打印及印刷)
4、项目间接费是指项目单位的管理费用及设备仪器的折旧费用等
七、项目组成员
八、项目申请单位意见(对实施本项目所需的人、财、物等条件做出承诺)
九、合作单位意见(对实施本项目所需的人、财、物等条件做出承诺)
十、各级主管部门意见。