六年级数学轴对称图形3
- 格式:pdf
- 大小:600.52 KB
- 文档页数:9
欣赏与设计(图形运动的知识欣赏和设计图案)学习目标1.能从平移、旋转和轴对称的角度欣赏生活中的图案,经历运用平移、旋转或轴对称进行图案设计的过程,并运用它们在方格纸上设计简单的图案。
2.结合图案设计的过程,进一步体会平移、旋转和轴对称在设计图案中的作用,体验图形的运动过程,发展空间观念。
3.结合欣赏和设计美丽的图案,感受图形世界的神奇。
编写说明生活中有各种美丽的图案,其中有很多图案是由简单的图形经过平移或旋转得到的。
本内容是在学生已经学习图形的旋转、平移和轴对称的相关知识的基础上进行教学的,着重让学生能从平移、旋转和轴对称的角度欣赏生活中的图案,经历运用平移、旋转或轴对称进行图案设计的过程,并运用它们在方格纸上设计简单的图案。
教科书主要设计了欣赏和设计两个部分的内容。
·上面的图案可以怎样得到?选择其中一幅与同伴说一说。
教科书中呈现了三幅图案,引导学生分析这些图案是如何由简单图形经过图形运动得到的,使学生进一步了解一个简单图形经过平移、旋转或轴对称制作复杂图形的过程,体会图案设计的基本过程。
教科书仅以花瓣图案为例进行说明,最后可以从中初步总结设计与欣赏图案的基本方法或思路:先找出图案中的基本图形,再描述它通过怎样的运动(平移、旋转、轴对称等)可以得到图案,可以以这样的思路指导学生解读其他两个图案。
图形运动的方式可以是多样的,如教科书中以花瓣图案为例呈现了两种思路:一种是利用基本图形A绕点O顺时针旋转得到;另一种是画出图形A关于虚线的轴对称图形,再作A,B两个图形的轴对称图形。
·将某一图形进行平移、旋转,或者画出它关于某条直线的轴对称图形,可以设计出美丽的图案。
在附页的方格纸上试一试,并与同伴交流你是怎样设计的。
在学生学习从平移、旋转和轴对称的角度欣赏生活中的图案的基础上,教科书设计了引导学生运用平移、旋转或轴对称在方格纸上进行图案设计的活动,进一步体会一个简单图形经过平移、旋转或轴对称制作复杂图形的过程,提高知识的综合运用能力。
北师大版数学六年级下册章节复习知识点、达标训练附解析第三单元《图形的运动》知识点一:图形的旋转1.旋转后,图形的方向和位置发生了变化,但是图形的形状与大小都不会发生变化。
2.描述旋转时,要说明旋转中心、旋转方向和旋转角度。
3.在方格纸上画简单图形旋转90°后的图形:一要注意确定关键线段;二要明确旋转中心、旋转方向和旋转角度;三要注意对应线段的长度与相对位置不变;四要注意按原图的形状连接对应点知识点二:图形的运动1.图形的运动常见的方式有三种,分别是旋转、平移和轴对称。
2.图形平移时,注意移动的方向和距离。
3.画轴对称图形时,要注意各对应点到对称轴的距离相等。
4.图形在方格纸上旋转运动时,应找准旋转的中心、方向和角度。
5.逆用图形的运动可以将图形还原知识点三:欣赏与设计1.欣赏美丽的图案,要注意分析图案的构造,注意找出其中的基本图形,明确基本图形经过怎样的运动才能形成这幅图案。
2.可以单独利用图形的某一种运动方式设计图案,也可以综合运用两种或多种运动方式设计图案。
3.利用图形的变换方式设计图案时,首先要选好基本图形,然后确定运动方式,最后画出变换后的图案一、精挑细选(共5题;每题1分,共5分)1. 如图,三角形ABC怎样旋转可以得到三角形A'BC'?下面说法正确的是()A. 绕B点逆时针旋转90°B. 绕B点顺时针旋转90°C. 绕C点顺时针旋转90°D. 绕C点逆时针旋转180°2. 以点C为中心旋转的图形是()。
A. B. C.3. 如图,点A的位置用数对表示是(1,5)。
线段OA绕点O按顺时针方向旋转90°,点A的对应点A’的位置用数对表示是()。
A. (5,5)B. (5,1)C. (4,1)D. (6,1)4. 将图形A(),可以得到图形B.A. 向右平移3格,再绕O点逆时针旋转90°B. 向右平移5格,再绕O点顺时针旋转90°C. 向右平移3格,再绕O点顺时针旋转90°5. 如图中,图形A变换到图形B,下列描述不正确的是()A. 图形A先向右平移4格,再向下平移2格,然后以直径所在的直线作轴对称图形得到图形BB. 图形A先向下平移2格,再向右平移4格,然后以直径所在的直线作轴对称图形得到图形BC. 图形A先以直径所在的直线作轴对称图形,再向下平移4格,再向右平移2格,得到图形BD. 图形A先以直径所在的直线作轴对称图形,再向右平移4格,再向下平移2格,得到图形B二、判断正误(共5题;每题1分,共5分)6. 如图,图1先顺时针旋转90°,再向右平移6个格,就可以得到图2。
北师大版六年级上册《第3章图形的变换》单元测试卷一.填空.1. 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是________,折痕所在的直线叫做________.2. 圆的对称轴有________条,半圆形的对称轴有________条。
3. ________三角形有三条对称轴,________三角形有一条对称轴。
4. 正方形有________条对称轴,长方形有________条对称轴,等腰梯形有________条对称轴。
5. 在钟面上(如图),分针绕点O旋转300表示时间经过________分;时间经过15分钟,分针绕O点旋转________度。
6. 观察物体,从________面看到的是;从________面看到的是;从________面看到的是.7. 学校有8个队参加跳绳比赛,每两队赛一场比赛采用淘汰制决出冠军、亚军共需比赛________场。
二.判断.通过一个圆的圆心的直线是这个圆的对称轴。
________.圆是轴对称图形,每一条直径都是它的对称轴。
________.等腰梯形是对称图形。
________(判断对错)正方形只有一条对称轴。
________.三、判断题.(判断下列句子的对错.对的打“√”,错的打“×”;电梯的升降运动属于平移现象。
________.(判断对错)四名运动员,如果每两人握一次手,共握了6次手。
________.(判断对错)午餐时,肉吃得越多,对身体越好。
________.(判断对错)运动员跑步时要经过弯道,所以起跑线的位置不一样。
________.(判断对错)正方形、长方形、半圆、等腰三角形都是轴对称图形。
________.(判断对错)四、选择题.运动员在100米直跑道上,进行100米跑决赛,他们的起跑线()A.位置一样B.位置不一样C.位置不确定下列图形中对称轴最多的是()A.长方形B.正方形C.平行四边形八点五折就是原价的()A.85%B.8.5%C.80.5%甲数的20%等于乙数的16.(甲乙不为0),()A.甲数大于乙数B.甲数小于乙数C.甲数等于乙数某厂去年产值16万元,今年比去年多4万元,今年比去年增加()A.2.5%B.25%C.250%五、计算:计算下面各题。
数学中的对称摘要:对称通常是指图形或物体对某个点,直线或平面而言,在大小、形状和排列上具有一一对应关系,在数学中,对称的概念略有拓广常把某些具有关连或对立的概念视为对称,这样对称美便成了数学中的一个重要组成部分,对称美是一个广阔的主题,在艺术和自然两方面都意义重大,数学则是它根本,美和对称紧密相连。
关键词:对称图形、数学、对称美对称,物体或图形在某种变换条件(例如绕直线的旋转、对于平面的反映,等等)下,其相同部分间有规律重复的现象,亦即在一定变换条件下的不变现象。
对称的现象,广泛地存在于各个学科之中,比如说,在建筑学中,很多建筑如故宫呈轴对称之势;在生物学中,很多动物也呈左右对称的体形;在艺术领域,各种风格的服装图画也表现出对称的形态。
那么,数学中的对称性是怎样的呢?让我们来简析一下数学的对称性吧。
在数学学习的过程中,很多时候,提到对称便让我们想到某些几何图形。
然而,数学对称的源头却是来自于代数,来自于多项式方程的解,这就使很多人感到疑惑了,所以,首先,让我们通过多项式方程的求解来发现代数中的对称。
根据轴对称图形的一半和对称轴可以精确的画出轴对称图形的另一半图形,这是在教学了轴对称图形后常见的习题。
在数学中,轴对称图形同时也为人们研究数学提供了某些启示,例如它在博弈问题中也常运用这一原理。
如:桌面上有21个棋子,排成一排,你一次可以拿一粒也可以拿两粒棋子,甚至可以拿三个棋子。
想拿哪里的棋子都行,不必按顺序拿,但拿两粒或三粒棋子时必须是相邻的即中间没有空隔或其他棋子,问:“两人轮流拿谁拿到最后一粒谁赢,你如果先拿能保证赢吗?”这题看上去挺复杂,按排列组合众多拿法要想一一分析清楚太费力,其实运用对称原理就非常简单,先拿的人只要先拿走中间一粒,即第十一粒棋,这样左、右两边各剩十粒,这样对方拿左边的棋子,你就拿右边的棋子,并且个数和位置和他对称,如果对方拿右边的棋子,你就按照他拿左边的棋子,总之只要保持左、右两边的棋子剩下的个数和位置一样,只要他有的拿,你也有的拿,因此最后一粒必然落入你手中,因此先拿必胜,如果棋子是20粒(偶数个),你就先拿中间的两粒,让左右两边各剩9粒棋子,这样你就必胜。
六年级上册第五单元《圆》知识点一、认识圆1、圆的定义:圆是平面上的一种曲线图形,也是封闭图形和轴对称图形。
2、圆心:用圆规画圆时,针尖所在的点叫做圆心。
圆心一般用字母“O ”表示。
圆心到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母“r ”表示。
用圆规画圆时,圆规两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母“d ”表示。
直径是一个圆内最长的线段。
5、圆心确定圆的中心位置,半径决定圆的大小。
半径相等的两个圆叫做等圆。
6、一个圆有无数条半径,无数条直径。
在同圆或等圆内,所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。
用字母表示为:d =2r 或r = 2d 8、如果一个图形沿着一条直线对折,直线两侧的部分能够完全重合,这个图形叫做轴对称图形。
折痕所在的这条直线叫做对称轴(注:直径不是圆的对称轴,直径所在的直线才是对称轴)。
9、圆是轴对称图形,直径所在的直线是圆的对称轴。
10、轴对称图形 名称对称轴 名称 对称轴 线段1条 等腰梯形 1条 长方形2条 圆 无数条正方形4条 半圆 1条 等腰三角形1条 扇形 1条 等边三角形3条 圆环 无数条 五角星 5条 扇环 1条 11、平行四边形不是轴对称图形1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母“C ”表示。
2、一个圆的周长总是它的直径的3倍多一些。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母“π” 表示。
(1)圆周率π是一个无限不循环小数。
在计算时,一般取π ≈ 3.14。
(2)在判断时,圆的周长总是它直径的π倍,圆的周长大约是它直径的 3.14倍。
圆的周长是它的半径的2π倍。
(3)世界上第一个把圆周率精确到七位小数的人是我国的数学家 祖冲之。
4、圆的周长公式: C= πd d = C ÷π或C=2πr r = C ÷π÷25、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
2.1《轴对称现象》教学设计一、教材分析本节内容是鲁教版九年义务教育课程标准实验教科书,六年级数学下册第二章的第一节,主要安排了两部分内容,一是:“轴对称图形”和“对称轴”的概念,二是“两个图形成轴对称”。
教材通过生活中一些鲜活的实例创设教学情景,激发学生的兴趣,在多组操作,观察等活动中,使学生不仅掌握了相关的知识与技能,而且经历了探索的过程,体验学习的乐趣,学会科学的学习方法,培养了学生的情感态度与价值观。
同时教材安排了丰富的生活生产中的实例,让学生体会数学知识的学习与生活生产实际密不可分,体验轴对称的数学内涵与文化价值,积累数学活动分经验,从而培养学生分析问题,解决生产和生活实际问题的能力。
二、学情分析认识基础:轴对称现象使学生新接触的一个教学内容。
学生须具备初步的几何识别能力,观察能力,和分析问题的能力。
教学中应充分利用这部分内容的特点,要求学生体会所学内容与现实生活的广泛联系,体会轴对称的数学内涵和文化价值,积累数学活动经验,发展自己的空间观念和创新意识。
活动经验基础:学生具备根据探索的需要将图案或纸片进行折叠,标注对应点的动手操作能力,已有了不少关于“轴对称”图形的自我认识和理解,这些都是本科教学的必不可少的活动基础。
三、教学目标1.在丰富的现实情境中经历观察生活中的轴对称现象,探索轴对称现象的共同特征等活动,进一步发展空间观念。
2.通过丰富的生活实例,认识轴对称和轴对称图形,能正确画出、说出对称轴。
3.能说出“轴对称”和“轴对称图形”的区别和联系。
4.在丰富的现实情景中,经历观察生活中的轴对称现象,探索轴对称现象的共同特征等活动,体验探索活动的乐趣。
进一步发展学生的空间观念,培养学生合作交流意识,创新意识和探索精神。
五、教学重点与难点教学重点:1,了解对称轴、轴对称图形、成轴对称的概念及其初步应用。
2,会识别生活中常见的轴对称图案,并画出对称轴,准确说出对称轴条数。
教学难点:1,轴对称图形与成轴对称的概念的区别。
六年级上册数学圆的知识点整理六年级上册数学圆的知识点整理在我们上学期间,是不是经常追着老师要知识点?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
为了帮助大家更高效的学习,以下是店铺收集整理的六年级上册数学圆的知识点整理,希望能够帮助到大家。
六年级上册数学圆的知识点整理篇1一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r =8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
期末知识大串讲人教版数学六年级上册期末章节考点复习讲义第五单元圆知识点01:圆的认识1. 圆是轴对称图形,直径所在的直线是圆的对称轴。
2. 一个圆有无数条半径,有无数条直径。
圆有无数条对称轴。
3. 在同圆或等圆中,所有的半径都相等,所有的直径都相等。
4. 在同圆或等圆中,r=d 或d=2r 。
知识点02:圆的周长及圆周率的意义1.测量圆的周长的方法:绕绳法和滚动法。
2.圆的周长除以直径的商是一个固定的数。
我们把它叫做圆周率,用字母π表示。
3.圆的周长的计算公式:C=πd ,C=2πr知识点03:圆的面积公式的推导及应用1.圆的面积计算公式是 :S =πr ²2.求圆的面积,要根据圆的面积计算公式来求。
3.圆环面积的计算方法:S =πR2-πr ²或S =π(R -r)²。
4.“外方内圆”图形中,圆的直径等于正方形的边长。
如果圆的半径为r ,那么正方形和圆之间部分的面积为0.86r ²。
5.“外圆内方”图形中,这个正方形的对角线等于圆的直径。
如果圆的半径为r ,那么圆和正方形之间部分的面积为1.14r ²。
知识点04:扇形的认识1.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形;2.顶点在圆心的角叫做圆心角;3.扇形的大小和半径的长短、圆心角的大小有关。
考点01:圆的认识1.(2018秋•朝阳区校级期中)圆的周长是直径的( )倍A .3.14B .3.1415926C .3D .π【思路引导】根据圆的周长公式,求出周长和直径的关系。
12【完整解答】解:C=πd=π所以圆的周长是直径的π倍。
故选:D。
2.(2015秋•龙泉驿区校级期中)在一个长10cm,宽5cm的长方形中画一个最大的圆,它的半径是()cm.A.10 B.5 C.2.5 D.1.5【思路引导】根据题意可知:在这个长方形中画一个最大的圆,这个圆的直径等于长方形的宽,根据同圆中直径是半径的2倍,半径是直径的,根据一个数乘分数的意义,用乘法解答.【完整解答】解:5×(厘米),答:它的半径是2.5厘米.故选:C。
六年级下册数学教案-6.2.5 图形的运动∣人教新课标教学目标1. 知识与技能- 理解图形的平移、旋转和轴对称的概念。
- 能够识别和应用平移、旋转和轴对称变换。
2. 过程与方法- 通过观察和操作,培养学生的空间想象能力和抽象思维能力。
- 引导学生通过实际操作,探索图形变换的性质和规律。
3. 情感态度价值观- 培养学生对图形变换的兴趣,激发学生的探索欲望。
- 培养学生的合作意识和团队精神。
教学内容1. 图形的平移- 定义:在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动叫做平移运动,简称平移。
- 性质:平移不改变图形的形状和大小。
- 应用:通过实际操作,让学生体会平移的效果。
2. 图形的旋转- 定义:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
- 性质:旋转不改变图形的形状和大小。
- 应用:通过实际操作,让学生体会旋转的效果。
3. 图形的轴对称- 定义:如果一个图形沿一条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
- 性质:轴对称图形的每个点关于对称轴都有一个对应点,且对称轴是图形的对称轴。
- 应用:通过实际操作,让学生体会轴对称的效果。
教学步骤1. 导入- 利用多媒体展示生活中的平移、旋转和轴对称现象,引起学生的兴趣。
2. 探究- 分组讨论,让学生通过实际操作,探索平移、旋转和轴对称的性质。
- 引导学生总结平移、旋转和轴对称的定义和性质。
3. 应用- 设计一些实际问题,让学生运用平移、旋转和轴对称的知识进行解决。
- 引导学生通过实际操作,体会平移、旋转和轴对称的效果。
4. 总结- 对本节课的内容进行总结,强调平移、旋转和轴对称的概念和性质。
- 对学生的表现进行评价,鼓励学生的积极性和创造性。
教学评价1. 过程评价- 观察学生在小组讨论中的参与程度和合作精神。
- 评价学生在实际操作中的表现和解决问题的能力。
小学六年级数学教案美丽的轴对称图形9篇美丽的轴对称图形 1一、说教材。
1、说课内容:九年义务教育人教版课标实验教材《数学》第三册第五单元第二小节p68页《美丽的轴对称图形》。
2、教材的编写意图:教材在编排上,按照知识引入——概念教学——知识应用的顺序逐步展开的,体现了知识的形成过程。
教材借助于生活中的实例和学生的操作活动如观察、剪一剪、画一画等,帮助学生发展空间观念,层次分明,循序渐进地指导学生认识自然界和日常生活中具有轴对称性质的事物,使学生进一步认识前面所学的平面图形的本质特征,了解对称在生活中的应用性,体验生活中的数学美,并学会欣赏数学美。
3、教学目的:根据课标的要求和教材的特点,结合二年级学生的实际水平,本节课可确定如下教学目标:1、使学生初步认识轴对称图形,知道轴对称图形的含义。
2、能够找出轴对称图形的对称轴。
3、能将轴对称图形的知识用到实践中去,培养学生运用知识的能力。
教学重点:使学生知道轴对称图形的含义,并了解轴对称图形的特征。
教学难点:1、了解轴对称图形的特征;2、找出轴对称图形的对称轴。
二、说教法。
整节课,我根据教材和学生认知特点,设计了五个大的活动。
让学生在活动中体验对称、感悟对称、理解对称、并且在欣赏的活动中体验对称美。
第一个活动是让学生在情境中初步感知对称。
让学生欣赏蜻蜓、蝴蝶、脸谱等常见的对称图形。
并动画演示对称,初步对称。
第二个活动,设计的是动手折一折,在折一折中体验对称图形的特点,对对称、对称图形有一个直观的了解,并知道对称图形的折痕就是它的对称轴。
第三个活动,在学生了解了对称及对称图形后,让学生跟着图片一起欣赏各种对称物体、图形。
把生活中的数学知识:对称及对称图形在课堂上进行抽象、概括后,又回到现实生活,让学生用数学的眼光去判断生活中的对称,培养学生用数学的眼光看生活中的数学,同时,进行了美的熏陶。
第四个活动, 设计的是让学生“找一找”、“画一画”,在各种图形事物中找一找那些是对称图形,那些不是对称图形?在找的同时,感悟到对称图形的特点,同时让学生感受到生活中到处都有对称,到处都有对称的事物。
北师大版第三单元图形的运动导学案【知识点】1.图形变换的基本方法:平移、旋转、轴对称。
2.平移:注意方向、数准格子。
3.旋转:选准旋转点、旋转角度。
4.轴对称:选好对称轴。
5。
用旋转的方法设计图案,关键是选准旋转点和旋转角度。
6. 利用轴对称的方法设计图案,要选好对称轴。
对称图案到对称轴的距离是相等的。
7. 用平移法进行图形变换时要注意数准格子数,还要注意平移方向。
8. 运用旋转、轴对称和平移的方法设计图案,可以将其综合运用。
【典型例题】例题1、填空:这些现象哪些是“平移”现象,哪些是“旋转"现象:(1)张叔叔在笔直的公路上开车,方向盘的运动是( )现象。
(2)升国旗时,国旗的升降运动是( )现象.(3)妈妈用拖布擦地,是()现象。
(4)自行车的车轮转了一圈又一圈是( )现象。
例题2、在下面图形各有几条对称轴,你还能画出其它对称轴吗?如果能,请画出来.例题3、你知道方格纸上图形的位置关系吗?(1)图形B与图形A的关系。
()(2)图形C可与图形B的关系。
()(3)图形B绕点O顺时针旋转180°到图形()所在位置。
(4)图形D与图形C的关系.()例题4、如图:(1)指针从“1”绕点O顺时针旋转60°后指向“( )"。
(2)指针从“1”绕点O逆时针旋转90°后指向“()".(3)指针从“1”绕点O逆时针旋转180°后指向“( )”。
例题5、画出图形的另一半,使它成为一个轴对称图形。
例题6、画一画(1)绕O点顺时针旋转90°(2)绕O点逆时针旋转90°例题7、移一移,说一说。
(1)向( )平移了( )格。
(2)向( )平移了( )格. (3)向( )平移了( )格。
例题8、1、①② ③图形①是以点( )为中心旋转的; 图形②是以点( )为中心旋转的; 图形③是以点( )为中心旋转的. 2、 (1)图形1绕A 点( )旋转90。
小学六年级数学知识点重点小学六年级数学知识点重点一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的.3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π≈3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
人教版数学轴对称说课稿8篇人教版数学轴对称说课稿精选篇1根据新课标的理念,对于本节课,我将从课件中的资源整合的设计理念、教学策略、如何使用等方面进行展示和陈述。
一、教材分析本节课的主要内容是作轴对称图形,要求学生能够作出简单图形经过一次或者两次轴对称得到的图形,能够利用轴对称进行简单的图案设计,所以在寻找资源的过程中,使用一些图片、动画等。
前面的一节内容中学生认识了轴对称图形和两个图形关于某条直线对称,它们都是讲一个图形成或两个图形之间的位置关系,是一个静止的状态,我们选用的图片比较多。
作轴对称图形是由一个图形得到与它轴对称的图形的过程,是一个运动的过程,所以在本节课的课件中,我将用动画去展示轴对称变换的过程。
二、学情分析从心理特征来说,八年级阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,选取适当的教学资源,利用课件中好的视觉效果,如图片、动画、视频等,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要使用“班班通”的教学设备让学生参与到教学过程中来,让学生发表见解,发挥学生学习的主动性。
三、教学目标分析本节课的教学目标为:知识技能:1、能按要求做出简单平面图形经过一次两次轴对称后的图形。
2、能利用轴对称进行图案设计。
过程与方法:利用轴对称作图和图案设计。
情感态度价值观:1、通过欣赏轴对称图案,形成学生了解数学、应用数学的态度。
2、通过作轴对称图形、设计图案,锻炼学生克服困难的意志,培养创新精神。
四、教学重难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:作轴对称图形。
难点确定为:利用轴对称设计图案。
五、教学方法分析本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。