第一章 计量经济学
- 格式:pdf
- 大小:189.02 KB
- 文档页数:31
计量经济学重点第一章经济计量学的特征及研究范围1、经济计量学的定义P11经济计量学是利用经济理论、数学、统计推断等工具对经济现象进行分析的一门社会科学;2经济计量学运用数理统计学分析经济数据,对构建于数理经济学基础之上的模型进行实证分析,并得出数值结果;2、学习计量经济学的目的计量经济学与其它学科的区别P1-P21计量经济学与经济理论经济理论:提出的命题和假说,多以定性描述为主计量经济学:依据观测或试验,对大多数经济理论给出经验解释,进行数值估计2计量经济学与数理经济学数理经济学:主要是用数学形式或方程或模型描述经济理论计量经济学:采用数理经济学家提出的数学模型,把这些数学模型转换成可以用于经验验证的形式3计量经济学与经济统计学经济统计学:涉及经济数据的收集、处理、绘图、制表计量经济学:运用数据验证结论3、进行经济计量的分析步骤P2-P31建立一个理论假说2收集数据3设定数学模型4设立统计或经济计量模型5估计经济计量模型参数6核查模型的适用性:模型设定检验7检验源自模型的假设8利用模型进行预测4、用于实证分析的三类数据P3-P41时间序列数据:按时间跨度收集到的定性数据、定量数据;2截面数据:一个或多个变量在某一时点上的数据集合;3合并数据:包括时间序列数据和截面数据;一类特殊的合并数据—面板数据纵向数据、微观面板数据:同一个横截面单位的跨期调查数据第二章线性回归的基本思想:双变量模型1、回归分析P18用于研究一个变量称为被解释变量或应变量与另一个或多个变量称为解释变量或自变量之间的关系2、回归分析的目的P18-P191根据自变量的取值,估计应变量的均值;2检验建立在经济理论基础上的假设;3根据样本外自变量的取值,预测应变量的均值;4可同时进行上述各项分析;3、总体回归函数PRFP19-P221概念:反映了被解释变量的均值同一个或多个解释变量之间的关系2表达式:①确定/非随机总体回归函数:EY|Xi =B1+B2XiB1:截距;B2:斜率从总体上表明了单个Y同解释变量和随机干扰项之间的关系②随机/统计总体回归函数:Yi =B1+B2Xi+μiμi:随机扰动项随机误差项、噪声B1+B2Xi:系统/确定性部分μi:非系统/随机部分4、随机误差项P221定义:代表了与被解释变量Y有关但未被纳入模型变量的影响;每一个随机误差项对于Y的影响是非常小的,且是随机的;随机误差项的均值为02性质①误差项代表了未纳入模型变量的影响;②反映人类行为的内在随机性;③代表了度量误差;④反映了模型的次要因素,使得模型描述尽可能简单;5、样本回归函数P22-P251概念:是总体回归函数的近似2表达式①确定/非随机样本回归函数:i =b1+b2Xib 1:截距;b2:斜率②随机/统计样本回归函数:Yi =b1+b2Xi+eiei :残差项残差,ei= Yi-iB1+B2Xi:系统/确定性部分μ:非系统/随机部分6、条件期望与非条件期望1EY|Xi条件期望:在解释变量X给定条件下Y的条件期望,可以通过X给定条件下的条件概率分布得到;2非条件期望:在不考虑其他随机变量取值情况时,某个随机变量的期望值;它可以通过该随机变量的非条件分布或边缘分布得到;6、线性回归模型回归参数为线性B的模型7、回归系数/回归参数线性回归模型中的B参数8、回归系数的估计量bs说明了如何通过样本数据来估计回归系数Bs,计算出的回归系数的值称为样本回归估计值9、随机总体回归函数与随机样本回归函数的关系1随机样本回归函数:从所抽取样本的角度说明了被解释变量Yi 同解释变量Xi及残差ei之间的关系;2随机总体回归函数:从总体的角度说明了被解释变量Yi 同解释变量Xi及随机误差项μ之间的关系;10、关于线性回归的两种解释P25-P261变量线性:应变量的条件均值是自变量的线性函数此解释下的非线性回归:EY= B1+B2Xi2;EY= B1+B2×1/Xi2参数线性:应变量的条件均值是参数B的线性函数此解释下的非线性回归:EY= B1+B22Xi线性回归在教材中指的是参数线性的回归11、多元线性回归的表达式P261确定/非随机总体回归函数:EX=B1+B2X2i+B3X3i+B4X4i2随机/统计总体回归函数:Yi = B1+B2X2i+B3X3i+B4X4i+μi12、最小二乘法OLS法P26-P281最小二乘以残差被解释变量的实际值同拟合值之间的差平方和最小的原则对回归模型中的系数进行估计的方法;1表达式2重要性质①用OLS法得出的样本回归线经过样本均值点:;②残差的均值总为0;③对残值与解释变量的积求和,其值为0,即这两个变量不相关:④对残差与i 估计的Yi的积求和,其值为0,即第三章双变量模型:假设检验1、古典线性回归模型的假设P41-P441回归模型是参数线性的,但不一定是变量线性的:Yi =B1+B2Xi+μi2解释变量X与扰动误差项μ不相关3给定Xi ,扰动项的期望或均值为0:Eμ| Xi=04μi 的方差为常数,或同方差:varμi=σ2每个Y值以相同的方差分布在其均值周围,非这种情况为异方差5无自相关假定:两个误差项之间不相关,covμi ,μj=06回归模型是正确假定的:实证分析的模型不存在设定偏差或设定误差2、OLS估计量运用最小二乘法计算出的总体回归参数的估计量3、普通最小二乘估计量的方差与标准误P44-P461的方差与标准误①方差:②标准误:2的方差与标准误①方差:②标准差:3的计算公式n-2为自由度:独立观察值的个数4:回归标准误,常用于度量估计回归线的拟合优度,值越小,Y的回归值越接近根据回归模型得到的估计值4、OLS估计量的性质P461b1和b2是线性估计量:它们是随机变量Y的线性函数2b1和b2是无偏估计量:Eb1=B1,Eb2=B23Eσ^2=σ^2:误差方差的OLS估计量是无偏的4b 1和b 2是有效估计量:varb 1小于B 1的任意一个线性无偏估计量的方差,varb 2小于B 2的任意一个线性无偏估计量的方差 5、OLS 估计量的抽样分布或概率分布P47-P481新加的假设:在总体回归函数Yi=B 1+B 2X i +μi 中,误差项μi 服从均值为0,方差为σ^2的正态分布:μi ~N0,σ^2 2OLS 估计量服从的分布情况:b 1~NB 1,σ2b1 b 2~NB 2,σ2b26、假设检验P48-P53 1使用公式近似2方法①置信区间法②显着性检验法:对统计假设的检验过程 3几个相关检验①t 检验法:基于t 分布的统计假设检验过程 ②双边检验:备择假设是双边假设的检验 ③单边检验:备择假设是单边假设的检验 7、判定系数r 2P53-P56 1重要公式:TSS=ESS+RSS①总平方和TSS=:真实Y 值围绕其均值的总变异;②解释平方和ESS=:估计的Y值围绕其均值=的变异,也称为回归平方和由解释变量解释的部分③残差平方和RSS=:Y变异未被解释的部分2r2判定系数的定义:度量回归线的拟合程度回归模型对Y变异的解释比例/百分比3r2的性质①非负性②0≤r2≤14r2的计算公式5r的计算公式8、同方差性方差相同9、异方差性方差不同10、BLUE最佳线性无偏估计量,即该估计量是无偏估计量,且在所有的无偏估计量中方差最小11、统计显着拒绝零假设的简称第四章多元回归:估计与假设检验1、三变量线性回归模型EYi =B1+B2Xt+ B3X3tY i =B1+B2X2t+ B3X3t+μi2、偏回归系数B2,B3:1B2:在X3保持不变的情况下,X2单位变动引起Y均值EY的变动量2B3:在X2保持不变的情况下,X3单位变动引起Y均值EY的变动量3、多元线性回归模型的若干假定P73-P74 1回归模型是参数线性的,并且是正确设定的2X2,X3与扰动误差项μ不相关①X2,X3非随机:自动满足②X2,X3随机:必须独立同分布于误差项μ3误差项的期望或均值为0:Eμi=04同方差假定:varμi=σ25误差项μi ,μi无自相关:两个误差项之间不相关,covμi,μji≠j6解释变量X2和X3之间不存在完全共线性,即两个解释变量之间无严格的线性关系X2不能表示为另一变量X3的线性函数7随机误差μ服从均值为0,同方差为σ^2的正态分布:μi~N0,σ2 4、多重共线性问题1完全共线性:解释变量之间存在的精确的线性关系2完全多重共线性:解释变量之间存在着多个精确的线性关系5、多元回归函数的估计P74-P756、OLS估计量的方差与标准误P75-P761b1的方差与标准误2b1的方差与标准误3b3的方差与标准误7、多元判定系数P76-P778、多元回归的假设检验P78 方法类似于第三章9、检验联合假设P80-P811联合假设:H0:B2=B3=0H:R2=0多元回归的总体显着性检验2三变量回归模型的方差分析表2F分布公式10、F与R2之间的重要关系P82-P83 1关系式2R2形式的方差分析表11、设定误差P84会导致模型中遗漏相关变量12、校正判定系数P84-P851作用衡量了解释变量能解释的离差占被解释变量总离差的比例2公式3性质①如果k>1,则≤R2,即随着模型中解释变量个数的增加,校正判定系数越来越小于非校正判定系数②虽然未校正判定系数R2总为正,但校正判定系数可能为负13、受限最小二乘法P86-P871受限模型:B2=B3=02非受限模型:包含了所有相关变量3受限最小二乘法:对受限模型用OLS估计参数4非受限最小二乘法:对非受限模型用OLS估计参数5判定对模型施加限制是否有效的F分布公式14、显着性检验1单个多元回归系数的显着性检验①提出零假设和备择假设;②选择适当的显着性水平;③在零假设为真的情况下,计算t统计量;④将t统计量的绝对值|t|同相应自由度和显着性水平下的临界值相比较;⑤如果t统计量大于临界值,则拒绝零假设;该步骤中务必要使用合适的单边或双边检验;2所有偏斜率系数的显着性检验①零假设:H0:B2=B3=...=Bk=0,即所有的偏回归系数均为0;②备择假设:至少一个偏回归系数不为0;③运用方差分析和F检验;④如果F统计量的值大于相应显着性水平下的临界值,拒绝零假设,否则接受;⑤3在1和2中可以不事先选择好显着性水平,只需得到相应统计量的p值,如果p 值足够小,我们就可以拒绝零假设;第五章回归模型的函数形式1、不同的函数形式P121模型形式斜率强性线性双对数对数—线性线性—对数倒数逆对数2、多元对数线性回归模型P104-P1073、线性趋势模型P1104、多项式回归模型P116-P1175、过原点的回归P1186、标准化变量的回归P120第六章虚拟变量回归模型1、虚拟变量P133-P134因变量受到一些定性变量的影响,这类定性变量称为虚拟变量,用D表示虚拟变量,虚拟变量的取值通常为0和12、虚拟变量陷阱P136引入的虚拟变量个数应该比研究的类别少一个,否则就会造成完全多重共线,即通常说的虚拟变量陷阱3、虚拟变量回归模型的类型包含一个定量变量、一个定性变量的回归模型1只影响截距加法模型2只影响斜率乘法模型3同时影响截距与斜率混合模型4、交互效应P142:交互作用虚拟变量5、分类变量和定性变量这类变量的取值不是一般的数据数值变量或定量变量,它们通常代表所研究的对象是否具有的某种特征;6、方差分析模型ANOVA解释变量仅包含定型变量或虚拟变量的回归模型;7、协方差分析模型ANOCVA回归模型中的解释变量有些是线性的,有些是定量的;8、差别截距虚拟变量包含此变量的模型能够分辨被解释变量的均值在不同类别之间是否相同; 9、差别斜率虚拟变量包含此变量的模型能够分辨不同类别之间被解释变量均值变化率的变化范围第七章模型选择:标准与检验1、好的模型具有的性质P164-P1651简约性:模型应尽可能简单;2可识别性:每个参数只有一个估计值;3拟合优度:用模型中所包含的解释变量尽可能地解释应变量的变化;4理论一致性:构建模型时,必须有一定的理论基础;5预测能力:选择理论预测与实践吻合的模型;2、产生设定误差的原因1研究者对所研究问题的相关理论了解不深2研究者没有关注本领域前期的研究成果3研究者在研究中缺乏相关数据4数据测量时的误差3、设定误差的类型P1651遗漏相关变量:“过低拟合”模型P165-P168实际模型:估计模型:后果:①如果遗漏变量X3与模型中的变量X2相关,则a1和a2是有偏的;也就是说,其均值或期望值与真实值不一致;②a1和a2也是不一致的,即无论样本容量有多大,偏差也不会消失;③如果X2和X3不相关,则b32为零,即a2是无偏的,同时也是一致的;④根据两变量模型得到的误差方差是真实误差方差σ2的有偏估计量;⑤此外,通常估计的a2的方差是真实估计量方差的有偏估计量;即使等于零,这一方差仍然是有偏的;⑥通常的置信区间和假设检验过程不再可靠;置信区间将会变宽,因此可能会“更频繁地”接受零假设:系数的真实值为零;2包括不相关变量:“过度拟合”模型P168-169正确模型:错误模型:后果:①过度拟合模型的估计量是无偏的也是一致的;②从过度拟合方程得到的σ2的估计量是正确的;③建立在t检验和F检验基础上的标准的置信区间和假设检验仍然是有效的;④从过度拟合模型中估计的a是无效的——其方差比真实模型中估计的b的方差大;因此,建立在a的标准误上的置信区间比建立在b的标准误上的置信区间宽,尽管前者的假设检验是有效的;总之,从过度拟合模型中得到的OLS估计量是线性无偏估计量,但不是最优先性无偏估计量;3不正确的函数形式P170-171如果选了错误的函数形式,则估计的系数可能是真实系数的有偏估计量;4度量误差①应变量中度量误差对回归结果的影响i. OLS估计量是无偏的;ii. OLS估计量的方差也是无偏的;iii. 估计量的估计方差比没有度量误差时的大,因为应变量中的误差加入到了误差项中;②解释变量的度量误差对回归结果的影响i. OLS估计量是有偏的;ii. OLS估计量也是不一致的;③解决方法:如果解释变量中存在度量误差,建议使用工具变量或替代变量;4、设定误差的诊断1诊断非相关变量P172-P1742对遗漏变量和不正确函数形式的检验P174-P175①判定系数R2和校正后的R2;②估计的t值;③与先验预期相比,估计系数的符号;3在线性和对数线性模型之间选择:MWD检验P175-P176:线性模型:Y是X的线性函数①设定如下假设;HH:对数线性模型:lnY是X或lnX的线性函数1②估计线性模型,得到Y的估计值③估计线性对数模型,得到lnY的估计值④求⑤做Y对X和的回归,如果根据t检验的系数是统计显着的,则拒绝H0⑥求⑦做lnY对X或lnX和的回归,如果的系数是统计显着的,则拒绝H14回归误差设定检验:RESETP177-P178①根据模型估计出Y值;②把的高次幂,,等纳入模型以获取残差和之间的系统关系;由于上图表明残差和估计的Y值之间可能存在曲线关系,因而考虑如下模型③令从以上模型中得到的为,从前一个方程得到的为,然后利用如下F检验判别从以上方程中增加的是否是统计显着的;④如果在所选的显着水平下计算的F值是统计显着的,则认为原始模型是错误设定的;第八章多重共线性:解释变量相关会有什么后果1、完全多重共线性P183-P185回归模型的某个解释变量可以写成其他解释变量的线性组合;设X2可以写成其他某些解释变量的线性组合,即:X 2=a3X3+a4X4…+akXk至少有一个ai≠0,i= 2,3,…k称存在完全多重共线性2、高度多重共线性P185-P187X2与其他解释变量高度共线性,即可以近似写成其他解释变量的线性组合X 2=a3X3+a4X4…+akXk+i至少有一个ai ≠0,i= 2, 3,…k, vi是随机误差项;3、产生多重共线的原因1时间序列解释变量受同一因素影响经济发展、政治事件、偶然事件、时间趋势经济变量的共同趋势2模型设立:解释变量中含有当期和滞后变量4、多重共线性的理论后果P187-P188OLS估计量仍然是最优无偏估计量1在近似共线性的情形下,OLS估计量仍然是无偏的;2近似共线性并未破坏OLS估计量的最小方差性;3即使在总体回归方程中变量X之间不是线性相关的,但在某个样本中,X变量之间可能线性相关;5、多重共线性的实际后果P188-P1891OLS估计量的方差和标准误较大;2置信区间变宽;3t值不显着;4R2值较高;5OLS估计量及其标准误对数据的微小变化非常敏感6回归系数符号有误;7难以评估各个解释变量对回归平方和ESS或者R2的贡献6、多重共线性的诊断P189-P1921观察回归结果R2较高,F很大,但t值显着的不多;多重共线性的经典特征R2较高,F检验拒绝零假设,但各变量的t检验表明,没有或少有变量系数是统计显着的;2简单相关系数法解释变量两两高度相关;变量相关系数比如超过,则可能存在较为严重的共线性;这一标准并不总是可靠,相关系数较低时,也有可能存在共线性3检查偏相关系数不一定可行4判定系数法辅助回归某个解释变量对其余的解释变量进行回归如果判定系数很大,F检验显着,即X与其他解释变量存在多重共线i5方差膨胀因子7、多重共线性的补救P195-P1981从模型中删除引起共线性的变量①找出引起多重共线性的解释变量,将它排除出去最为简单的克服多重共线性问题的方法;②逐步回归法i. 逐步引入如果拟合优度变化显着—新引入的变量是一个独立解释变量;选择解释变量的原则:a. 调整的R2增加,每个∣t∣增加,则保留引入变量;b. 调整的R2下降,每个∣t∣变化不大,则删除引入变量;ii. 逐步剔除①排除变量时应该注意:i. 由实际经济分析确定变量的相对重要性,删除不太重要的变量;ii. 如果删除变量不当,会导致模型设定误差;2获取额外的数据或新的样本3重新考虑模型4先验信息5变量变换将原模型变换为差分模型可有效消除存在于原模型中的多重共线性一般,增量之间的线性关系远比总量之间的线性关系弱得多; 第九章异方差:如果误差方差不是常数会有什么后果1、异方差的定义随机误差项ui 的方差随着解释变量Xi的变化而变化,即:2、异方差的性质P205-P208OLS估计仍是线性无偏,但不具最小方差1线性性2无偏性3方差式1不具有最小方差,式2具有最小方差3、异方差性的后果P209-P210经典模型假定下,OLS估计量是最优线性无偏估计量BLUE;去掉同方差假定:1OLS估计量仍是线性的;2OLS估计量仍是无偏的;3OLS估计量不再具有最小方差性,即不再是最优有效估计量;4OLS估计量的方差通常是有偏的;5偏差的产生是由于,即不再是真实σ2的无偏估计量;6建立在t分布和F分布之上的置信区间和假设检验是不可靠的,如果沿用传统的检验方法,可能得出错误的结论;4、异方差的检验1图形检验P211-P212e2对一个或多个解释变量或Y的拟合值作图; 2帕克检验Park TestP212-P214假定误差方差与解释变量相关形式:步骤:①做OLS估计求平方,取对数②对ei③做辅助回归④检验零假设:B=023格莱泽检验Glejser TestP214假定误差方差与解释变量相关形式:步骤:①做OLS估计②对e求绝对值i③做辅助回归方程=0④检验零假设:B24怀特检验White TestP215-P216和交叉乘积呈线性关系假定误差方差与X、X2步骤:①OLS估计得残差②做辅助回归③检验统计量5、异方差的修正1加权最小二乘法WLSWeighted Least SquaresP217-P222①方差已知原模型:加权后的模型:误差项的方差为:1加权的权数:②方差未知成比例:i. 误差方差与Xi模型变换:ii. 误差方差与Xi2成比例:模型变换:2怀特异方差校正的标准误P222-P223①如果存在异方差,则对于通过OLS得到的估计量不能进行t检验和F检验;②怀特估计方法③大样本情形下回归标准差和回归系数的一致估计量,可以进行t检验和F检验;第十章自相关:如果误差项相关会有什么结果1、自相关的定义P233按时间或空间顺序排列的观察值之间存在的相关关系;2、自相关的性质P233-P2341若古典线性回归模型中误差项ui不存在自相关Covui,uj=Eui,uj=0,i≠j2若误差项之间存在着依赖关系—ui存在自相关Covui,uj=Eui,uj≠0,i≠j3、产生自相关的原因P235-P2361惯性2设定偏误①模型中遗漏了重要变量;②模型选择了错误的函数形式;i. 从不正确的模型中得到的残差会呈现自相关;ii. 检验是否由于模型设定错误而导致残差自相关的方法:3蛛网现象4数据的加工①在用到季度数据的时间序列回归中,这些数据通常来自于每月数据;这种数据加工方式减弱了每月数据的波动而引进数据的匀滑性;②用季度数据描绘的图形要比用月度数据看来匀滑得多;这种匀滑性本身可能使扰动项中出现自相关;③内插法或外推法:用这些方法加工得到的数据都会给数据带来原始数据没有的系统性,这种系统性可能会造成误差自相关;4、自相关的后果P236-P2371OLS估计得到的仍为线性、无偏估计;2OLS估计不再具有有效性;3OLS估计量的方差有偏:低估了估计量的标准差;4通常所用的t检验和F检验是不可靠的;5计算得到的误差方差是真实σ2的无偏估计量,并且很有可能低估了真实的σ2;6通常计算的R2不能测度真实的R27通常计算的预测方差和标准误也是无效的5、自相关的诊断1图形法—时序图P237-P239①误差u并不频繁地改变符号,而是几个正之后跟着几个负,几个负之后跟着t几个正,则呈正自相关;②扰动项的估计值呈循环型,而是相继若干个正的以后跟着几个负的,表明存在正自相关;③扰动项的估计值呈锯齿型一个正接一个负,随时间逐次改变符号,表明存在负自相关;2检验P239-P242①定义值d值近似1 =-1完全负相关d=42 =0无自相关d=23 =1完全正相关d=0②DW检验的判断准则6、自相关的修正ρ的估计主要方法1ρ=1:一阶差分方法P244假定误差项之间完全正相关 Y t = α+βX t +u tu t = u t-1+tY t - Y t-1= βX t -X t-1+t2从DW 统计量中估计ρP244-P245 3从OLS 残差e t 中估计Cochrane-OrcuttP245-P246①e t = e t-1+t②利用OLS 残差,得的估计量 ③迭代,得的收敛值。
经济计量学必修课,周4学时任课教师:李绍荣老师, 131********;任课教师李绍荣老师131********助教熊磊李雅菁助教:熊磊、李雅菁班级:国法院双学位教材与参考书•伍德里奇《经济计量学导论(现代观点)》人民大学出版社,2003年版。
(第二版)•格林著《经济计量分析》中国社会科学出版1998年版。
•李长风著《经济计量学》上海财经大学出版设1996年版。
•贾奇等《经济计量学理论与实践引论》中国统计出版社1993年版。
•Intriligator、Bodkin and Cheng 《Econometric Models、Techniques、and Applications》1998教材与参考书(续)•平狄克,R·S和鲁宾费尔德,D·L著《经济计量模平狄克和鲁宾费尔德著经济计量模型和经济预测》机械工业出版社1999年版。
•《经济计量学精要》机械工业出版社1999年版。
《Eviews User s Guide》QMS Irvine,California。
•User’s•詹姆斯·汉密尔顿著《时间序列分析》中国社会科学出版社。
学出版社•毕吉跃著《中国宏观经济计量模型》北京大学出版社1993年版。
年版第一章第章经济计量学的性质与经济数据•什么是经济计量学?•经济计量学的作用•经验分析(实证分析)的步骤•数据的类型•经济学中的因果关系•经济计量学与相关学科间的关系•经济计量学软件包简介什么是经济计量学•英文“Econometrics”一词最早是由挪威经济学家R.Frich于1926年仿照“Biometrics”(“生物计量学”)提出来的。
中文译名有)提出来的中文译名有两种:经济计量学与计量经济学。
前者试图从名称上强调它是一门经济学科;后者试图通过名称上强调它是一门经济学科后者试图通过名称强调它是一门经济计量活动方法论的学科。
•经济计量学是对现实经济中的经济关系进行经验估计和分析的学问。
它是以经济理论和经济事实为体,统计理论或经济计量技术为用的体系。
经济计量学的种类广义上讲,经济计量学有两个主要的研究领域:1、是计量技术方法研究,即如何运用、改进1是计量技术方法研究即如何运用改进和发展数理统计方法,使之成为适合测定随机性特征的经济关系的特殊方法经济计量学方——法,这一领域的研究称为理论经济计量学,或称为计量经济方法。
称为计量经济方法2、是在一定的经济理论指导下,以反映事实的统计数据为依据,利用经济计量方法研究现实经济中的经济关系,实证地探索现实经济的规律,这一领域的研究称为应用经济计量学。
简称经济计量学。
简称济学为什么要学习经济计量学?•经济理论、统计和数学的结合济论数的结合•实验数据在经济学以及很多其他的没有实验室的领域中,是罕见的•要得到实证的推论,我们需要使用非实验要得到实证的推论我们需要使用非实验数据,或可称为观察性数据•能够把经济学理论应用到真实世界中是相当重要的技能为什么要学习经济计量学?•(data)来检验理论,或者实证分析使用数据(d)来检验理论或者来估计一个关系个规范的经济模型应该具有可检验性•一个规范的经济模型应该具有可检验性在评估些政策变化的影响时理论可能•在评估一些政策变化的影响时,理论可能会给出模棱两可的结论,这时就需要经济计量学给予定量的分析经济计量学的作用•估计经济关系济系•检验经济理论•评价经济政策•预测经济变量经济计量模型主要用于分析经济结构•经济计量模型主要用于分析经济结构,评价经济政策,仿真经济系统以及预测经济发展等几个方面。
•模型的应用过程也就是检验模型和理论的过程。
如果预测误差小,表明模型精度高,质量好,对现实结实能力强,理度高质量好对现实结实能力强理论符合实际;反之,则要对模型以及对建摸所依据的经济理论进行修正。
建摸所依据的经济论进行修经济计量工作过程,是个不断修改、•经济计量工作过程,是一个不断修改、信息反馈的过程。
参见后面的流程图。
经验分析(实证分析)的步骤•理论和假设的陈述•理论和假设的数学模型•可检验和估计的经济计量模型•获得数据•估计参数•假设检验预预•预测或预报•利用模型控制或制定政策经济计量过程与结构理论事实原料模型数据统计理论精练数据加工经济计量技术经济计量模型利用经济计量学技术和精练数据估计模型结构分析预测政策评价成品10、流程图理论研究或经验总结收集统计资料理论模型与数据收集阶段设计理论模型模型的参数估计,建立具体模型模型检验参数估计与模拟阶段是否合符标准修改模型征求决策者意见政策析与模是否可用于决策修改整理模型政策分析与模型应用阶段应用预测未来评价政策结构分析数据的类型•试验数据与非试验数据验数验数•宏观数据与微观数据•截面数据、时间序列数据与面板数据截面数据(Cross-sectional Data)•截面数据是一个随机样本•每一个观察是一个新的个人、企业或者其他的个体,这些个体在某个同一时点上的信息被录下来的信息被记录下来如果样本不是随机的那么就出现了样本•如果样本不是随机的,那么就出现了样本选择性问题(sample-selection problem)面板数据(Panel Data)•可以把许多随机截面混合在一起,类似处可以把许多随机截面混合在起类似处理一个正常的界面数据一样处理它,这时我们只须考虑到时间上的变异。
我们只须考虑到时间上的变异•也可以追踪一个随机的个体,记录它在许多时点上的信息,——这就构成所谓的面多时点上的信息板数据,或称经向数据(longitudinal data)数据类型——时间序列(Time Series)•时间序列数据在每一个时期有且仅有一个时间序列数据在每个时期有且仅有个观察——如,股票价格•因为这不是个随机样本,处理时间序列因为这不是一个随机样本处理时间序列数据时,需要考虑与处理截面和面板数据不同的问题•在这些问题中,趋势和季节性波动是重要在这些问题中趋势和季节性波动是重要的两个因果性问题•简单地确定两个变量之间的变动关系往往简单确个变之的变关系往往是不够的•我们希望在相关性中找到因果性•如果能够真正控制住足够多的其他变量,如果能够真正控制住足够多的其他变量那么这种“给定其他情况”的影响通常可以被认为是因果•但是确立因果关系可能是困难的以教育回报为例:个人力资本投资的模型会告诉我们受教育•一个人力资本投资的模型会告诉我们,受教育越多就会挣得越多•最简单的情况下,这个关系可用一下等式描述:01uββ=++收入教育程度继续该例β1的估计值被称为教育的回报,但是这个关系真果性系真的是因果性的么?•显然误差项u,包含其他影响挣得的因素,因此我们想控制尽可能多的这些因素•但是有些因素是观察不到的,这就有问题了经济计量学与相关学科间的关系•经济计量与经济理论的关系•经济计量与数学的关系•经济计量与统计的关系•在讲述这些关系时,先作几点解释:在讲述这些关系时先作几点解释:几点解释•经济现象错综复杂,变化不定,为便于研究往往经济现象错综复杂变化不定为便于研究往往舍去一些次要因素,专门研究具有代表性和决定性的因素之间的因果关系,形成系统的经济理论。
性的因素之间的因果关系形成系统的经济理论•经济理论是实践的高度概括,经济模型则是经济理论的简明描述。
理论的简明描述•文字模型比较细腻,几何模型比较简明,数学模型比较严谨型比较严谨。
•数学模型运用数学定理进行推理。
数学模型的优点•(1)比较简练•(2)表述概念精确•(3)可以引用(普遍适用的)数学定理•(4)一般可以同时处理多个经济变量数学模型之不足•1)数学代替知识(•(2)以计算代替理解•(3)把研究的问题局限在数学上能够解决的问题•(4)为数学上的方便,随意假设,抛弃经济原则•(5)数学语言不是经济学家的行话,难于交流•显然,以上这些并非数学模型之错。
经济学、数理经济学、经济统计学与经济计量学•经济学:研究如何有效地利用可供各种选择的有限资源以求人类现在和将来无限欲望的最有限资源,以求人类现在和将来无限欲望的最大满足。
•数理经济学:运用抽象的方法,借助数学函数数理经济学运用抽象的方法借助数学函数和几何图形得出经济学概念与理论。
•统计经济学:以统计资料作为记述现实经济变统计经济学以统计资料作为记述现实经济变动过程的手段。
•经济计量学:以统计资料作为验证经济理论、经济计量学以统计资料作为验证经济理论预测未来、进行政策评价的手段。
经济学科之发育与成长•经济学与数学结合==>数理经济学济数结数济经济学与统计学结合>统计经济学•==>•数学与统计学结合==>数理统计学•数学、经济学、统计学三者的结合==>经济计量学经济学数理经经济统济学经济计计学量学数理统计学统计学数学。
怎样看待经济计量模型?广义地说,一切包括经济、数学、统计三者广义地说切包括经济数学统计者的模型;狭义地说,仅只用参数估计和假设检验的数理统计方法研究验数据的模型理统计方法研究经验数据的模型。
事实上,理论研究需要经验数据的检验,而经验研究也需要理论分析的指导,我们不经验研究也需要理论分析的指导我们不能只搞没有计量的理论,更不能搞“没有理论的计量—统计炼金术理论的计量”统计“炼金术”经济计量学软件包简介•必须指出,模型的建立和实际使用,离开了电脑必须指出模型的建立和实际使用离开了电脑几乎是不可能的。
•目前,已有很多经济计量学软件包,可以完成经目前已有很多经济计量学软件包可以完成经济计量学模型的参数估计、模型检验、预测等基本运算。
本运算•本课程采用国家计委推荐的EViews进行案例教学。
要求同学们掌握i比较熟练地使用它并•要求同学们掌握EViews,比较熟练地使用它,并掌握EViews与其它Windows软件共享信息。