第四章抗干扰二元编码原理及方法1抗干扰编码的基本原理
- 格式:ppt
- 大小:127.50 KB
- 文档页数:13
纠错编码原理从这一章开始介绍有噪声信道编码的问题,有噪声信道编码的主要目的是提高传输可靠性,增加抗干扰能力,因此也称为纠错编码或抗干扰编码。
在这一章里将首先介绍信道编码定理和纠错编码的基本原理。
信源编码之后的码字序列抗干扰能力很脆弱,在信道噪声的影响下容易产生差错,为了提高通信系统的有效性和可靠性,要在信源编码器和信道之间加上一个信道编码器, 5-1 译码准则 5-1-1 译码准则的含义(1) 一个例子影响通信系统可靠性的一个重要问题是译码方式,可以通过一个例子看一下; 有一个BSC 信道,如图所示。
01-p=1/4 0 p=3/4 p=3/41 1-p=1/4 1对于这样一个信道,如果采用自然的译码准则,即收0判0,收1判1;这时可以明显看到,当信源先验概率的等概时p(0)=p(1)=1/2;这时收到Y 判X 的后验概率等于信道转移概率,系统正确的译码概率为1/4,错误译码概率为3/4。
但如果采用另一种译码准则,收0判1,收1判0;则系统正确的译码概率为3/4,错误译码概率为1/4,通信的可靠性提高了。
(2) 译码准则设一个有噪声离散信道,输入符号集X ,输出符号集Y ,信道转移概率为P(Y/X);xi yjX:{x 1,x 2,…..,x n } Y:{y 1,y 2,……y m }P(Y/X):{p(yj/xi); i=1,2,…n; j=1,2,…m这时定义一个收到yj 后判定为xi 的单值函数,即: F(yj)=xi (i=1,2,…n; j=1,2,…m);这个函数称为译码函数。
它构成一个译码函数组,这些函数的值组成了译码准则。
对于有n 个输入,m 个输出的信道来说,可以有n m 个不同的译码准则。
例如上面例子中有4中译码准则分别为:A:{F(0)=0;F(1)=0} B:{F(0)=0;F(1)=1} C:{F(0)=1;F(1)=0} D:{F(0)=1;F(1)=1} 5-1-2 译码错误概率当译码准则确定之后,当接收端收到一个yj 后,则按译码准则译成F(yj)=xi ,这时如果发送的为xi 则为正确译码,如果发送的不是xi 则为错误译码。
编码器类型与原理介绍编码器是一种将输入信号转换为相应编码形式的电子器件。
它将输入信号进行数字化处理,并通过编码方式将其转换为数字编码输出。
编码器广泛应用于通信系统、计算机、嵌入式系统等领域,是实现信息传输和数据处理的重要组成部分。
根据编码原理和应用场景不同,可以将编码器分为多种类型,常见的有磁性编码器、光电编码器、旋转编码器等。
磁性编码器是利用磁性原理进行编码的一种编码器。
它主要由磁性编码盘和读取头组成。
编码盘上有一定规律的磁性标记,读取头通过检测磁场的变化来获取编码信息。
当读取头与编码盘相对运动时,根据磁性标记的不同位置和磁场的变化情况,读取头可以获取相应的数字编码输出。
磁性编码器具有高分辨率、抗干扰能力强等特点,广泛应用于精密测量、机械控制等领域。
光电编码器是利用光学原理进行编码的一种编码器。
它主要由光电器件和编码盘组成。
编码盘上有一定规律的光学标记,光电器件通过检测光的变化来获取编码信息。
当光电器件与编码盘相对运动时,根据光学标记的不同位置和光的变化情况,光电器件可以获取相应的数字编码输出。
光电编码器具有高分辨率、抗干扰能力强等特点,广泛应用于自动化控制、数控机床等领域。
旋转编码器是一种常用的编码器,也称为编码开关。
它主要由转轴、码盘和编码器模块组成。
当旋转编码器的转轴旋转时,码盘上的触点会与编码器模块接触或脱离,从而改变输出的编码。
旋转编码器一般具有两个输出通道,分别用于正转和反转编码。
旋转编码器广泛应用于音频设备、机器人、游戏手柄等领域。
编码器的工作原理一般分为几个主要步骤:信号检测、数字化处理和输出编码。
首先,编码器通过传感器、探针等方式对输入信号进行检测,将其转化为电子信号。
然后,通过模数转换器将模拟信号转换为数字信号,对其进行滤波、放大、采样等处理,将其转化为数字编码。
最后,根据编码原理将数字编码转换为二进制编码、脉冲编码等形式的输出。
编码器的输出可以直接接入计算机、控制器等设备,进行后续处理和控制。
第4章抗干扰二元编码原理与方法信源编码目的:压缩冗余,提高有效性。
信道编码目的:提高传输可靠性,通过增加冗余来实现,方法是纠错编码。
信道编码●在理论上,Shannon第二编码定理已指出,只要当实际传信率R<C(信道容量)几乎无差错的信道编、译码是存在的。
●理论上的存在性并不等于实际上的可构造性,本章就是研究如何构造如何实现信道编码的理论与方法。
●从原理上看,构造信道码的基本思路是根据一定的规律在待发送的信息码元中人为的加入一定的多余码元,以保证在传输中发送码元的可靠性。
按照差错类型大致可分为三类:●独立差错信道:噪声独立随机的影响每个码元,白噪声信道属于这类信道。
差错独立随机出现;●突发差错信道:差错是成片,成串出现的,衰落信道、码间干扰、脉冲干扰信道属于这类;●混合差错信道:差错既有随机独立的,也有成片,成串出现的,实际的移动信道属于此类;采用冗余校验的基本思想:即在基本的有效数据外,再扩充部分位,增加部分(冗余部分)被称为校验位。
将校验位与数据位一起按某种规则编码,写入存储器或向外发送。
当从存储器读出或接收到外部传入的代码时,再按相应的规则进行判读。
若约定的规则被破坏,则表示出现错误。
根据错误的特征进行修正恢复。
几个名词概念:码字:由若干代码组成的一个字。
如8421码中6(0110),7(0111)码距:一种码制中任意两个码字间的最小距离。
距离:两个码字之间不同的代码个数。
8421码中,最小的码距为1,如0000和0001、0010和0011等;最大码距为4,如0111和1000。
8421码的码距为1。
码距为1,即不能查错也不能纠错。
码距越大,查错、纠错能力越强。
4.1 抗干扰编码4.1.1 编码与纠错信宿收到禁用码字时,才能断定出错。
例4.1.1最小码距与检纠错能力:码距:两个码字之间相异码元的数目。
码重:码组中非零码元的个数。
如001,码重为1;011,码重为2。
对于如图所示的3位二进制码,如果8个码组可用,(000,001,010,011,100,101,110,111),各点之间最小相差1个边长,最小码距为1。
无线通信中的信道编码技术原理无线通信中的信道编码技术是保证信息在无线传输过程中能够准确无误地被接收的关键技术之一。
在信道编码中,通过对待传输的信息进行编码,再将编码后的信息通过无线信道进行传输,最后在接收端进行解码,从而实现信号的可靠传输。
本文将介绍无线通信中常用的信道编码技术原理。
一、离散数据的信道编码离散数据的信道编码主要用于数字通信系统中。
其基本原理是将离散数据集合映射为离散码字的过程,以提高数据的传输可靠性。
常用的离散数据的信道编码技术包括奇偶校验码、循环冗余检测码、海明码等。
1. 奇偶校验码奇偶校验码是一种最简单的前向纠错码。
其原理是通过在传输的数据末尾添加一个比特位,使得整个数据包含的1的个数为偶数或奇数,以检测并纠正在传输过程中可能出现的单比特错误。
2. 循环冗余检测码循环冗余检测码是一种常用的检测和纠正比特错误的编码技术。
通过生成一个多项式码字,然后与待传输的数据进行异或操作,生成冗余校验码。
接收端在接收到数据后,通过与多项式进行除法运算,检测接收到的数据是否存在比特错误。
3. 海明码海明码是一种使用非常广泛的纠错码,通过在待传输的数据中添加冗余信息,以便在接收端检测并纠正多个比特错误。
海明码利用了二进制码字中的奇偶校验位,根据校验位的出错情况,可以定位到具体出错的比特,并进行纠正。
二、连续数据的信道编码连续数据的信道编码主要用于模拟通信系统中。
模拟信号可以看作是连续的时间和幅度变化,因此需要使用连续数据的信道编码技术。
常见的连续数据的信道编码技术包括带通编码、抗噪声码、迭代干扰消除码等。
1. 带通编码带通编码是将模拟信号分成若干个频带,对每个频带进行单独编码的技术。
通过将信号频谱限制在一定的频带内,可以减小信号传输过程中的干扰和噪声,提高传输质量。
2. 抗噪声码抗噪声码主要用于模拟通信系统中,通过在待传输的信号中添加冗余信息,以提高抗噪声能力。
常见的抗噪声码技术包括前向纠错码、差错控制码等。