初中数学竞赛教程及练习之二元一次方程的整数解附答案
- 格式:doc
- 大小:113.50 KB
- 文档页数:3
【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数对青少年的脑⼒锻炼有着⼀定的作⽤,可以通过奥数对思维和逻辑进⾏锻炼,对学⽣起到的并不仅仅是数学⽅⾯的作⽤,通常⽐普通数学要深奥⼀些。
下⾯是为⼤家带来的⼋年级奥数⼆元⼀次⽅程选择题及答案,欢迎⼤家阅读。
1.下列⽅程组中是⼆元⼀次⽅程组的是( ) A. B. C. D. 【答案】C 2.关于的⼆元⼀次⽅程的正整数解的个数有()个A. 1B. 2C. 3D. 4 【答案】B 【解析】2x+3y=18, 解得:x= , 当y=2时,x=6;当y=4时,x=3, 则⽅程的正整数解有2对, 故选B. 3.下列各组数中①;②;③;④是⽅程的解的有( )A. 1个B. 2个C. 3个D. 4个 【答案】B 4.已知⽅程组的解满⾜x+y=2,则的算术平⽅根为( ).A. 4B. ﹣2C. ﹣4D. 2 【答案】D 【解析】试题分析:把两个⽅程相加可得3x+3y=2+,两边同除以3可得x+y= =2,解得=4,因此的算术平⽅根为2. 故选:D. 5.已知是⼆元⼀次⽅程组的解,则2m- n的算术平⽅根为 ( )A. 4B. 2C.D. ±2 【答案】B 6.关于x,y的⽅程组的解为,则 =( )A. ﹣3B. 3C. 81D. ﹣81 【答案】B 【解析】把代⼊⽅程组得:,解得:, 则 = =3, 故选B. 7.关于x,y的⽅程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是( )A. ﹣B.C. ﹣D. 【答案】A 【解析】分析:将x=1代⼊⽅程x+y=3求得y的值,将x、y的值代⼊x+py=0,可得关于p的⽅程,可求得p. 本题解析: 根据题意,将x=1代⼊x+y=3,可得y=2, 将x=1,y=2代⼊x+py=0,得:1+2p=0, 解得:p= , 故选:A. 8.2016-2017学年七年级下学期期中考试)关于x,y的⽅程组的解是⽅程3x+2y=10的解,那么a的值为( )A. ﹣2B. 2C. ﹣1D. 1 【答案】B 【解析】解⽅程组可得,代⼊⽅程3x+2y=10可得6a-a=10,解得a=2,故选B. 9.已知是⼆元⼀次⽅程组的解,则的值是() A. 1 B .2 C.3 D.4 【答案】D 【解析】把x=1,y=2分别代⼊⽅程组的两个⽅程可得m=7,n=3,所以m-n=7-3=4,故选D. 10.已知密⽂和明⽂的对应规则为:明⽂a、b对应的密⽂为ma-nb、na+mb.例如,明⽂1、2对应的密⽂是-3,4.若密⽂是1,7时,则对应的明⽂是( )A. -1,1B. 1,3C. 3,1D. 1,l 【答案】C 11.若是⽅程组的解,则(a+b)?(a-b)的值为()A. -B.C. -16D. 16 【答案】C 12.⽅程组消去y后所得的⽅程是()A. 3x-4x+10=8B. 3x-4x+5=8C. 3x-4x-5=8D. 3x-4x-10=8 【答案】A 【解析】, 把①代⼊②得:3x2(2x5)=8, 去括号得:3x4x+10=8, 故选A. 13.⽤代⼊法解⽅程组正确的解法是()A. 先将①变形为,再代⼊②B. 先将①变形为,再代⼊②C. 先将②变形为,再代⼊①D. 先将②变形为,再代⼊① 【答案】B 【解析】根据解⼆元⼀次⽅程的代⼊法, 将①变形为x=2-y后可知,变形后A是错误的,B是正确的; 将②变形为x= 或y=2x-7可知,变形后C和D都是错误的. 故选B. 14.已知⽅程5m-2n=1,当m与n相等时,m与n的值分别是( ) A. B. C. D. 【答案】D 15.已知⽅程组的解是⽅程x﹣y=1的⼀个解,则m的值是( )A. 1B. 2C. 3D. 4 【答案】C 【解析】试题分析:⾸先将⽅程组进⾏重组可得:,解得:,将其代⼊mx-y=5可得:2m-1=5,解得:m=3,故选C. 16.如果⼆元⼀次⽅程组的解是⼆元⼀次⽅程2x-3y+12=0的⼀个解,那么a的值是( ) A. B. - C. D. - 【答案】B 【解析】解⽅程组可得,⼜因⽅程组的解是⼆元⼀次⽅程2x-3y+12=0的⼀个解,可得2×6a-3(-3a)+12=0,解得a= .故选B. 17.若|a+b-1|+(a-b+3)2=0,则ab的值( )A. 1B. 2C. 3D. -1 【答案】A 【解析】试题分析:根据⾮负数的性质可得:,解得:,则,故选A. 18.若⽅程组有⽆穷多组解,则2+b2的值为( )A. 4B. 5C. 8D. 10 【答案】B 19.⼆元⼀次⽅程组的解的和为10,则的值等于( )A. 4B. 10C. 24D. 【答案】C 【解析】 , ①+②,得5(x+y)=2+2, x+y= , 则 =10, 解得=24, 故选:C 20.我们⽤[a]表⽰不⼤于a的整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;.已知x、y满⾜⽅程 ,则可能的值有()A. 1个B. 2个C. 3个D. 4个 【答案】B。
二元一次方程整数解、配套类专练一.选择题(共5小题)1.二元一次方程3x+2y=17的正整数解的个数是()A.2个B.3个C.4个D.5个2.方程x+2y=4的正整数解有()组.A.1B.2C.3D.43.二元一次方程2x+3y=21的正整数解有几个()A.2个B.3个C.4个D.5个4.关于x,y的二元一次方程2x+11y=50的正整数解的个数()A.1B.2C.3D.45.方程2x+3y=10的正整数解的个数是()A.1个B.2个C.3个D.无数个二.解答题(共25小题)6.一张桌子由桌面和四条桌腿组成,1立方米木材可制作桌面50张或制作桌腿条300.现有5立方米的要木材,问应如何分配木材,可以使桌面与桌腿配套,共能配成多少张桌子.7.某车间每天能生产甲种零件120个,或乙种零件100个,每天只能生产其中一种零件,甲、乙、两种零件分别取3个、2个、才能配成一套,要在45天内生产最多成套的产品,问甲、乙两种零件应各生产几天?8.某校办工厂有36名工人,每人每天可制作桌子5张或凳子8条,应怎样分配制作桌子和凳子的人数,才能使桌子和凳子配套?(一张桌子配两条凳子)9.小敏和小强参加社会实践,要用白板纸做长方体包装盒,准备把所有白板纸分成两部分,一部分做盒身,另一部分做盒底,已知每张白板纸可以做盒身2个,或者做盒底3个,且一个盒身和两个盒底恰好做成一个包装盒.(1)现有12张白板纸,问能否使做成的盒身与盒底正好配套,为什么?(2)在(1)条件下,小敏和小强经过尝试发现,将一张白板纸经过适当套裁就可以裁出一个盒身和一个盒底,请把这种套裁方式综合考虑,探究能否使裁出的盒身与盒底正好配套,若能,请求出最多可做包装盒的个数;否则说明理由.10.某厂生产一批西装.每3米布可以裁上衣2件或裁裤子3条.现在共有布600米.为了使上衣和裤子配套.上衣和裤子应该各用多少米布?11.红星机械厂加工车间有70名工人,平均每人每天生产大齿轮10个或小齿轮20个,2个大齿轮与3个小齿轮刚好配成一套,则应安排多少人生产大齿轮,多少人生产小齿轮,才能使每天生产的大小齿轮刚好配套?12.某车间有工人56名,生成一种螺栓和螺母,每人每天平均能生产螺栓24个或螺母36个,应分配多少人生产螺栓,多少人生产螺母,才能使一个螺栓配2个螺母刚好配套?13.某工厂一车间有51名工人,某月接到加工两种轿车零件的生产任务,每个工人每天能加工甲种零件16个或加工乙种零件21个,而一辆轿车只需要甲零件5个和乙零件3个,为了每天能配套生产应如何安排工人?14.某车间有工人30人,生产甲、乙、丙三种零件,每人每小时能生产甲零件30个或乙零件25个或丙零件20个.现用甲零件3个、乙零件5个和丙零件4个装配成某种机件,如何安排劳动力,才能使每小时生产的零件恰好能配成套?15.某车间共有132名工人,生产某种产品,该产品由甲乙两种零件组成,3个甲种零件与2个乙种零件可配成一套,每人每天可加工甲种零件5个、乙种零件4个或组装10套成品.(1)如果该车间的132名工人只生产甲、乙两种零件,为使每天生产甲、乙两种零件刚好配套,应安排生产甲、乙两种零件的工人各多少名?(2)如果这132名工人中,一部分人加工甲种零件,一部分人加工乙种零件,其余的组装,为使每天生产甲、乙两种零件刚好能组装成产品,应安排生产甲、乙两种零件和组装的工人各多少名?16.某工厂要生产某种型号方桌一批,已知每3立方米的材料可做桌面2个或桌腿5个,一个桌面和四个桌腿组成一个方桌.计划用130立方米的这种材料生产桌椅,应分别用多少材料生产桌面才能和桌腿恰好配套?共能生产多少套?17.某车间有工人660名,生产甲、乙两种零件,已知每人每天平均生产甲种零件14个或乙种零件20个,1个甲种零件与2个乙种零件为一套,如何调配人员可使每天生产的两种零件刚好配套?(1)找出本题中的等量关系.(2)适当设未知数,列出方程组.(3)解这个方程组,并回答上面提出的问题.18.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖,1个衣身,1个衣领组成.如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个.请你为该厂设计一下,应该如何安排工人,才能使每天缝制出的衣袖,衣身,衣领正好配套.19.某车间每天能生产甲种零件120个,或者乙种零件100个,或者丙种零件200个,甲、乙、丙三种零件分别取3个、2个、1个才能配成一套,车间计划30天内生产的一种零件正好成套,问甲、乙、丙三种零件各应生产几天才能完成计划?20.某车间共有80个工人,生产甲、乙、丙三种工件,已知一个工人每天可以生产甲种工件15件,或乙种工件20件,或丙种工件50件,但要安装一台机器时,同时需要甲种工件3件,乙种工件2件,丙种工件1件,问如何安排工人生产才能保证安装时恰好配套?21.某市举办中学生“梦想杯”足球联赛,联赛记分办法是:胜场得3分,平1场得I分,负1场得0分.复兴中学足球队参加了18场比赛,积24分.(1)在这次足球联赛中,如果复兴中学足球队踢平场数与所负场数相同,那么它胜了几场?(2)在这次足球联赛中,如果复兴中学足球队踢平场数多于所负场数,那么它的胜、平、负情况共有多少种?22.列二元一次方程组解应用题篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.QH队为了争取较好名次,想在全部22场比赛中得到41分,那么QH队胜负场数应分别是多少?23.某项球类比赛,每场比赛必须分出胜负,其中胜1场得2分,负1场得1分.某队在全部16场比赛中得到25分,求这个队胜、负场数分别是多少?24.某足球联赛记分规则为胜一场积3分,平一场积1分,负一场积0分,当比赛进行到第14轮结束时,甲队积分28分,判断甲队胜、平、负各几场,并说明理由.25.2010年中国足球甲级联赛,积分规则如下表:胜一场平一场负一场积分310赛季之初,已经降级的成都谢菲联队俱乐部提出本赛季第一阶段比赛目标是:联赛赛进行到第12轮时,球队积分为19分.请通过计算,判断成都谢菲联队胜、平、负各几场才能实现球队的目标?26.某校篮球队参加全市中学生篮球比赛,一共比赛16场,得28分.按赛制规定每胜一场得2分,负一场得1分,该校篮球队胜、负各多少场?27.某校积极推进“阳光体育”工程,本学期在九年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得3分,负一场得1分.(1)如果某班在所有的比赛中只得24分,那么该班胜负场数分别是多少?(2)假设比赛结束后,甲班得分是乙班的1.5倍,且甲班获胜的场数比乙班获胜的场数3倍还多,请你求出甲班、乙班各胜了几场.28.在一次篮球选拔赛中,有12支球队参加选拔,每一队都要与另外的球队比赛一场,记分规则为:胜一场3分,平一场记1分,负一场记0分,比赛结束时,某球队所胜场数是所负场数的2倍,共得20分,则这支球队胜,负各几场?29.德国足球甲级联赛一个赛季共进行26轮比赛(即每队均需赛26场),其中胜一场得3分,平一场得1分,负一场得0分.某队在这个赛季中平局的场数比负的场数少,结果共得34分,这个队在这一赛季中,胜、平、负各多少场?30.某足球协会举办了一次足球联赛,其记分规则如下表:胜一场平一场负一场积分310当比赛进行到第二轮结束(每队均需比赛12场)时,A队共积19分,问A队胜,平,负各几场?二元一次方程整数解、配套类专练参考答案与试题解析一.选择题(共5小题)1.解:∵3x+2y=17,∴y=由于x、y都是正整数,所以17﹣3x>0∴x可取1、2、3、4、5.当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,当x=2、4时,y不是正整数舍去.满足条件的正整数解有三对.故选:B.2.解:方程x+2y=4,解得:x=﹣2y+4,当y=1时,x=2,则方程的正整数解有1组,故选:A.3.解:方程2x+3y=21,解得:y=,当x=3时,y=5;x=6,y=3,x=9,y=1,故选:B.4.解:2x+11y=50,解得:x=,当y=2时,x=14;当y=4时,x=3,则方程的正整数解有2对.故选:B.5.解:方程2x+3y=10,解得:y=,当x=2时,y=2,则方程的正整数解个数是1个,故选:A.二.解答题(共25小题)6.解:设做桌面的有x立方米,做桌腿的有y立方米.则,由①得:x=5﹣y③,把③代入②得:200(5﹣y)=300y,解得:y=2,把y=2代入③得:x=5﹣2=3,∴,∴50×3=150(张).答:3立方米做桌面,2立方米做桌腿,共能配成150张桌子.7.解:设甲、乙两种零件应该分别生产x天,y天.则,解得.答:甲零件生产25天,乙零件生产20天.8.解:设安排x人生产桌子,(36﹣x)人生产凳子,根据题意,得:2×5x=8(36﹣x),解得:x=16,36﹣16=20(人).答:安排16人生产桌子,20人生产凳子.9.解:(1)设使用x张白纸板做盒身,则使用(12﹣x)张白纸板做盒底,依题意,得:2×2x=3(12﹣x),解得:x=.∵不为整数,∴不能使做成的盒身与盒底正好配套.(2)设使用m张白纸板套裁,使用n张白纸板做盒身,则使用(12﹣m﹣n)张白纸板做盒底,依题意,得:2(m+2n)=m+3(12﹣m﹣n),∴m=9﹣n.∵m,n均为非负整数,∴,.当m=9时,可以制作包装盒的个数为m+2n=9(个),当m=2时,可以制作包装盒的个数为m+2n=10(个),∵9<10,∴最多可做10个包装盒.答:能使裁出的盒身与盒底正好配套,最多可做10个包装盒.10.解:设上衣用x米布,裤子用y米布,根据题意得:,解得:,答:上衣用360米,裤子用240米.11.解:设安排x人生产大齿轮,y人生产小齿轮,根据题意,得:,解得:,答:应安排40人生产大齿轮,30人生产小齿轮,才能使每天生产的大小齿轮刚好配套.12.解:设应分配x人生产螺栓,y人生产螺母,才能使一个螺栓配2个螺母刚好配套,根据题意,得,解得:,答:应分配24人生产螺栓,32人生产螺母.13.解:设应分配x人生产甲种零件,y人生产乙种零件,由题意得,解得:.答:应安排35人生产甲种零件,16人生产乙种零件.14.解:设需要x人生产甲种零件,y人生产乙种零件,z人生产丙种零件,依题意有,解得,答:需要6人生产甲种零件,12人生产乙种零件,12人生产丙种零件,才能使每小时生产的零件数恰好配成整套.15.解:(1)设生产甲种零件的工人有x人,5x×2=4(132﹣x)×3解得,x=72132﹣x=60即安排生产甲、乙两种零件的工人分别为72人、60人;(2)设加工甲种零件的x人,加工乙种零件的y人,组装的工人有z人,解得,,即加工甲种零件的66人,加工乙种零件的55人,组装的工人有11人.16.解:设用x立方米木料做桌面,y立方米做桌腿,恰好能配成方桌,根据题意得,解得.所以=答:用50立方米木料做桌面,80立方米做桌腿,恰好能配成方桌.共能生产套.17.解:设x人生产甲零件,y人生产乙零件,根据题意可得:,解得:.答:275人生产甲零件,385人生产乙零件.18.解设x个人缝制衣袖,y个人缝制衣身,z个人缝制衣领.则有,解得:答:衣袖、衣身、衣领:120人,40人,50人.19.解:设甲生产了x天,乙生产了y天,丙生产了z天,由题意得:,∴x=5z,y=4z,代入第一个方程得:5z+4z+z=30,解得z=3,∴x=5z=15,y=4z=12,∴.答:甲、乙、丙三种零件各应生产15天、12天、3天.20.解:设安排生产甲种工件x人,生产乙种工件y人,则生产丙种工件(80﹣x﹣y)人,由题意得,化简得,解得:,80﹣x﹣y=5.答:安排生产甲种工件50人,生产乙种工件25人,则生产丙种工件5人.21.解:(1)设复兴中学足球队胜x场,平y场,则负y场,依题意,得:,解得:.答:复兴中学足球队胜了6场.(2)设复兴中学足球队胜m场,平n场,负t场,依题意,得:,∴n=24﹣3m,t=2m﹣6.∵n>t,t≥0,∴,∴3≤m<6.∵m为整数,∴m=3,4,5.∴胜、平、负情况共有3种.22.解:设QH队胜x场,负y场,由题意,得,解得:.答:QH队胜19场,负3场.23.解:设该队胜x场,负y场,则解得.答:这个队胜9场,负7场.24.解:设胜x场,平y场,则负(14﹣x﹣y)场,由题意得,3x+y=28,∵x、y为正整数,14﹣x﹣y≥0,∴或或,故①甲队胜7场,平7场,负0场;②甲队胜8场,平4场,负2场;③甲队胜9场,平1场,负4场;25.解:设A队胜x场、平y场、负z场,则有,把x当成已知数,(2分)可解得.(1分)由题意得,x≥0、y≥0、z≥0,且x、y、z均为整数,所以,(3分)解得,(1分)于是x可取4、5、6,由此可得三组解,,;答:胜4场,平7场,负1场;胜5场,平4场,负3场;胜6场,平1场,负5场.26.解:设该队胜了x场,负了y场.根据题意,得,解得,答:设该队胜了12场,负了4场.27.解:(1)设该班胜了x场,负了y场,根据题意得:,解得:.答:该班胜了7场,负了3场.(2)设甲班胜了m场,乙班胜了n场,则甲班负了(10﹣m)场,乙班负了(10﹣n)场,∵甲班得分是乙班的1.5倍,∴3m+(10﹣m)=1.5×[3n+(10﹣n)],整理得:2m﹣3n=5.∵m、n均为不大于10的非负整数,∴或或.∵甲班获胜的场数比乙班获胜的场数3倍还多,∴m>3n,∴m=4,n=1.答:甲班胜了4场,乙班胜了1场.28.解:设这支球队负场数为x场,胜场数为2x场,平局为y场,根据题意可得:,解得:,故2x=6,答:这支球队负场数为3场,胜场数为6场.29.解:设这个队胜x场,平y场,则负26﹣x﹣y场,由题意得3x+y=34①;∵y<26﹣x﹣y,移项得:x+2y<26②;由①得y=34﹣3x,代入②得x+68﹣6x<26,解得:x>,因x为整数,x最小取9,又∵x==﹣≈11.33﹣,∴x最大可取11,所以x=9时,y=7,26﹣x﹣y=10;x=10时,y=4,26﹣x﹣y=12;x=11时,y=1,26﹣x﹣y=14.答:这个队在这一赛季中,胜、平、负各9、7、10场或10、4、12场或11、1、14场.30.解:设A队胜x场,平y场,负z场,则,用x表示y,z解得,∵x≥0,y≥0,z≥0且x,y,z均为整数,∴,解之得3≤x≤6,∴x=4,5,6即A队胜,平,负有3种情况,分别是①A队胜4场平7场负1场;②A队胜5场平4场负3场;③A队胜6场平1场负5场.。
第八章 二次方程与方程组第一节 一元二次方程【赛题精选】§1、一元一次方程的解法主要有:直接开平方法、因式分解法、配方法、公式法。
例1、利用直接开平方法解下列关于x 的方程。
(1)0)1(9)2(22=+--x x (2))0(0)22()(22>=+-+a a x a x(3))21(2142222nx n x n x x ++=++例2、利用因式分解法解下列关于x 的方程。
(1)(5x+2)(x-1)=(2x+11)(x-1) (2)0452=+-x x(3)02_23()12(2=++-+x x (4)0)()(22222=-++-q p pq x q p x(5)x m x m x x m )1()1()1(2222-=--+-例3、用配方法解下列关于x 的方程。
(1))0(02≠=++a c bx ax (2)03)12()1(2=-+-+-m x m x m(3)01333223=-+++x x x§2、根的判别式、根与系数的关系韦达定理:若)0(02≠=++a c bx ax 的两个根为1x 、2x ,那么1x 、2x 与a 、b 、c的关系为:两根之和a b x x -=+21;两根之积ac x x =21。
例4、若首项系数不相等的两个二次方程02)2()1(222=+++--a a x a x a (1)、02)2()1(222=+++--b b b x b (2)(其中a 、b 均为正整数)有一个公共根。
求ab ab b a b a --++的值。
例5、已知方程02=++c bx x 与02=++b cx x 各有两个根1x 、2x 及'1x 、'2x ,且1x 2x >0,'1x '2x >0。
求证:(1)1x <0,2x <0,'1x <0,'2x <0;(2)b-1≤c ≤b+1;(3)求b 、c 所有可能的值。
二元一次方程习题(含参考答案)1.二元一次方程4x-3y=12,当x=0,1,2,3时,y=______.2.在x+3y=3中,若用x表示y,则y=______,用y表示x,则x=______.4.把方程3(x+5)=5(y-1)+3化成二元一次方程的一般形式为______.(1)方程y=2x-3的解有______;(2)方程3x+2y=1的解有______;(3)方程y=2x-3与3x+2y=1的公共解是______.9.方程x+y=3有______组解,有______组正整数解,它们是______.11.已知方程(k2-1)x2+(k+1)x+(k-7)y=k+2.当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程.12.对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=______;当y=0时,则x=______.13.方程2x+y=5的正整数解是______.14.若(4x-3)2+|2y+1|=0,则x+2=______.的解.当k为______时,方程组没有解.______.(二)选择24.在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则[ ]A.y=5x-3;B.y=-x-3;D.y=-5x-3.[ ]26.与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是[ ] A.10x+2y=4;B.4x-y=7;C.20x-4y=3;D.15x-3y=6.[ ]A.m=9;B.m=6;C.m=-6;D.m=-9.28.若5x2ym与4xn+m-1y是同类项,则m2-n的值为 [ ]A.1;B.-1;C.-3;D.以上答案都不对.29.方程2x+y=9在正整数范围内的解有[ ]A.1个;B.2个;C.3个;D.4个.[ ]A.4;B.2;C.-4;D.以上答案都不对.二元一次方程组•综合创新练习题一、综合题【Z,3,二】【Z,3,二】3.已知4ax+yb2与-a3by是同类项求2x-y的值.【Z,3,二】4.若|x-2|+(2x-3y+5)2=0,求x和y的值.【N,3,三】5.若方程2x2m+3+3y5n-4=7是x,y的二元一次方程组,求m2+n的值.【Z,3,二】二、创新题1.已知x和y互为相反数,且(x+y+4)(x-y)=4,求x和y的值.【N,4,三】2.求方程x+2y=7在自然数范围内的解.【N,4,三】三、中考题(山东,95,3分)下列结论正确的是[ ]参考答案及点拨一、1.所考知识点:方程组的解及求代数式的值.∴ 2m+3n=2×2+3(-3)=4-9=-5.2.所考知识点:方程的解及解一元一次方程.解:把 x=-3,y=-2代入方程,得 2(-3)-4(-2)+2a=3解关点拨:以上两题考察的知识点类似,已知方程的解时,只要把这组数代入方程或方程组就可求出方程中其他字母的值.3.所考知识点:同类项及解方程点拨:根据同类项的定义知,相同字母的指数相同,故可列出方程,从而求解.4.所考知识点:非负数的性质及解简单的二元一次方程组.点拨:因|x-2|≥0,(2x-3y+5)2≥0,所以,当它们的和为零,这两个数都须是零,即x -2=0,2x-3y+5=0.5.所考知识点:二元一次方程的定义.解:由题意知点拨:从二元一次方程的定义知,未知项的指数为 1,由此得到 2m+3=1, 5n-4=1.二、1.所考知识点:相反数的意义及解简单的二元一次方程组.解:由题意,得x+y=0,又∵(x+y+4)(x-y)=4∴ 4(x-y)=4即x-y=12.所考知识点:二元一次方程的自然数解.解:把方程x+2y=7变形,得x=7-2y令y=1,2,3,4……,则x=5,3,1,-1……点拨:二元一次方程的自然数解,就是未知数的值,都是自然数,首先将方程变形,用含一个字母的代数式表示另一个字母,再根据题目的特点求解.三、所考知识点:二元一次方程组解的定义.解:D点拨:由二元一次方程组的定义知道,二元一次方程组的解,是方程组中每个二元一次方程组的解,故选D.。
二元一次方程组的整数解问题、无解问题一、二元一次方程组的整数解问题1、若关于x,y的方程组26x ymx y-=⎧⎨+=⎩有非负整数解,则正整数m为().A. 0,1B. 1,3,7C. 0,1,3D. 1,3答案:D解答:26x ymx y-=⎧⎨+=⎩①②,①+②得,(m+1)x=8,∴x=81 m+,8的因数1、2、4、8,∵m为正整数,∴m+1≥2,情况1,m+1=2,x=4,y=2,情况2,m+1=4,x=2,y=0,情况3,m+1=8,x=1,y=-1(舍),∴m=1或3.选D.2、已知m为正整数,且关于x,y的二元一次方程组210320mx yx y+=⎧⎨-=⎩有整数解,则m2的值为().A. 4B. 4,49C. 1,4,49D. 无法确定答案:A解答:()()2101 3202 mx yx y⎧+=⎪⎨-=⎪⎩,(1)+(2)得,(3+m)x=10,所以x=103m +,将x=103m+代入(2)得y=153m+,当方程组有整数解时,3+m是10和15的公约数,所以3+m=±1或3+m=±5,即m=-2或m=-4或m=2或m=-8,又∵m是正整数,∴m=2,则m2=4.选A.3、当正整数a=______时,关于x、y的方程组()112x a yx y⎧+-=⎨-+=⎩的解是整数.答案:1或3解答:y=3a,a=1或3.4、422ax yx y+=⎧⎨-=⎩(a为正整数),方程组的正整数解为x=______,y=______.答案:2;2解答:整理方程组得:(a+2)x=6,x=62a+,此时a+2=3或6才为正整数,a=1或4.当a=1时,x=2,代入解得y=2,方程组的正整数解为22 xy=⎧⎨=⎩;当a=4时,x=1,代入解得y=0,舍弃.5、当整数m=______时,方程组21148x myx y+=⎧⎨+=⎩的解是正整数.答案:3解答:消去x可得y=58 m--,∴m=7或3,又∵m=7时x=-12与题设矛盾,故舍去,综上,m=3.6、正整数a取______时,方程组52x yax y+=⎧⎨-=⎩的解是正整数.答案:6解答:()()5122x yax y⎧+=⎪⎨-=⎪⎩,(1)+(2),得:(a+1)x=7,解得:x=71a+,由于解为正整数,故(a+1)必为7的正约数,故a+1=1或7,解得a=0或6,由于a为正整数,故a=6,此时14 xy=⎧⎨=⎩.7、请回答下列问题:(1)当方程组2520x ayx y+=⎧⎨-=⎩的解是正整数时,整数a的值为______.(2)m为正整数,已知二元一次方程组210320mx yx y+=⎧⎨-=⎩有整数解,则m2=______.答案:(1)-3或1(2)4解答:(1)解方程得:10454xaya⎧=⎪⎪+⎨⎪=⎪+⎩,∴a+4=1,2,5,10;a+4=1,5,∴a=-3或1.(2)解方程得:103153xmym⎧=⎪⎪+⎨⎪=⎪+⎩,∴m+3=5,10;m+3=5,15.得m=2,m2=4.8、关于x,y的方程组25342x y ax y a+=-⎧⎨-=⎩的解都是正整数,求非负整数a的值.答案:a=1.解答:解关于x,y的方程组25342x y ax y a+=-⎧⎨-=⎩①②,由①×3-②得:10y=15-5a,∴y =32a-, 把y =32a -代入到①得:x =2,∵x ,y 是正整数,且a 是非负整数, ∴只有a =1时,y =1符合题意. ∴a =1.9、当关于x 、y 的方程组21230x my x y +=⎧⎨-=⎩的解为正整数时,求整数m 的值.答案:m =-5或-4或-3或-2或0或6.解答:由21230x my x y +=⎧⎨-=⎩解得:366126x m y m ⎧=⎪⎪+⎨⎪=⎪+⎩,∵解为正整数,∴ m ≥-5,又∵x 、y 均为正整数,36、12的公约数为:1、2、3、4、6、12, ∴m =-5或-4或-3或-2或0或6. 10、已知方程组2420x my x y +=⎧⎨-=⎩,当方程组的解是正整数时,求整数m 的值,并求出方程的所有正整数解. 答案:m =-3,-2,0,84x y =⎧⎨=⎩,42x y =⎧⎨=⎩,21x y =⎧⎨=⎩解答:2x +my =4①,x -2y =0②, ①-②*2得my +4y =4, ∴y =()44m +,x =()84m +∵x ,y 为正整数,m 为整数, 所以m =-3,-2,0,84x y =⎧⎨=⎩,42x y =⎧⎨=⎩,21x y =⎧⎨=⎩11、若m 为正整数,且已知关于x 、y 的二元一次方程组220520mx y x y +=⎧⎨-=⎩的解为一组整数,求m 2的值. 答案:25.解答:(m +5)x =20, ∵m 为正整数, ∴m +5>5, ∴0<x <4, ①x =1,m =15,y =52(舍); ②x =2,m =5,y =5; ∴m =5,m 2=25. ③当x =3时,m =53,不为正整数,故舍去. 12、m 取什么整数值时,方程组2420x my x y +=⎧⎨-=⎩的解是正整数?并求它的所有正整数解.答案:m =0或-2或-3;84x y =⎧⎨=⎩或42x y =⎧⎨=⎩或21x y =⎧⎨=⎩.解答:目测x 系数不含参数,故消掉x 瞬间得到: (m +4)y =4当m ≠-4时,即y =44m + 故m +4所有可能取值为1,2,4, ∴m =0或-2或-3 因为y =44m +,所以y =4或2或1 ∴x =8,y =4或x =4,y =2或x =2,y =1; ∴84x y =⎧⎨=⎩或42x y =⎧⎨=⎩或21x y =⎧⎨=⎩.二、二元一次方程组的无解问题关于x 、y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩,a 1、a 2、b 1、b 2、c 1、c 2均为实数,则解的情况有以下三种:①当12a a ≠12b b 时,方程组有唯一的解; ②当12a a =12b b =12c c 时,方程组有无数多解; ③当12a a =12b b ≠12cc 时,方程组无解. 即:①当x 与y 的系数不成比例,常数取任意值时,有唯一解; ②当、x 、y 与常数的系数都成比例时,有无数个解; ③当x 与y 的系数成比例,常数不成比例时,无解.13、方程组423634x y x y ⎧+=⎪⎨⎪+=⎩的解的情况是( ).A. 有唯一解B. 无解C. 有两解D. 有无数解答案:D解答:第一个方程两边同时乘以3得:6x +3y =4,与第二个方程相同,故方程组有无数解. 选D.14、与二元一次方程5x -y =2组成的方程组有无数多个解的方程是( ). A. 10x +2y =4 B. 4x -y =7C. 20x -4y =3D. 15x -3y =6答案:D解答:15x -3y =6化简得:5x -y =2,则15x -3y =6与二元一次方程5x -y =2组成的方程组有无数多个解. 选D. 15、若方程组2354x y x my n+=⎧⎨+=⎩有无数解,则下列说法正确的是( ).A. m =6,n ≠10B. m ≠6,n ≠10C. m =6,n =10D. 无法确定答案:C解答:根据题意,消去x 得,(m -6)y =n -10,∴当m =6,n =10时,原方程组无数解. 16、若方程组()1332k x y k x y ⎧--=⎨-=⎩有无数个解,则k 的值为( ).A. 1B. 2C. 3D. 不存在这样的值答案:B 解答:11k -=33--=2k∴k =2.17、若关于x 、y 的方程组3921ax y x y +=⎧⎨-=⎩无解,则a 的值为( ).A. -6B. 6C. 9D. 30答案:A解答:∵3921ax y x y +=⎧⎨-=⎩.无解∴2a =31-≠91∴a =-618、方程组373921x y x y +=⎧⎨+=⎩的解的情况是______答案:方程组有无穷多解 解答:373921x y x y +=⎧⎨+=⎩∵13=39=721, ∴方程组有无穷多解. 19、若二元一次方程组2354x y x my n+=⎧⎨+=⎩有无数组解,则m =______;n =______.答案:6;10 解答:2354x y x my n +=⎧⎨+=⎩①②,②-①×2得:(m -6)y =n -10.故答案为6,10.20、关于x ,y 的二元一次方程组232145ax y k x y +=-⎧⎨+=⎩有无数组解,求a +k =______.答案:14解答:()()23211452ax y k x y ⎧+=-⎪⎨+=⎪⎩由(1)-3×(2)可得(2a -12)x =2k -16,故2a -12=0,2k -16=0可得a =6,k =8, 进而a +k =14.21、关于x 、y 的方程组4410841x ky y x ++=⎧⎨-=⎩有无穷多组解,则k 的值为______.答案:-2 解答:整理得441481x ky x y +=-⎧⎨-+=⎩,所以44-=48k =11-,∴k =-2.22、当m 、n 为何值时,关于x 、y 的方程组()214mx y nm x y -=-⎧⎨--=-⎩.(1)无解. (2)唯一解. (3)有无数多解. 答案:(1)m =1,n ≠4. (2)m ≠1,n 取任意值. (3)m =1,n =4. 解答:(1)()214mx y n m x y -=-⎧⎪⎨--=-⎪⎩①②由②-①,得:(m -1)x =n -4,当m -1=0,n -4≠0,即m =1,n ≠4时,无解. (2)当m -1≠0,即m ≠1,n 取任意值,有唯一解. (3)当m -1=0,n -4=0时,即m =1,n =4时,有无数多解.23、关于x ,y 的二元一次方程组8328ax y k x y k +=-⎧⎨--=-⎩有无数组解,求参数a ,k 满足的条件;若方程组有唯一解,则参数a ,k 又需要满足什么条件?答案:当a =4,k =7时,有无数组解;当a ≠4时,方程组有唯一解.解答:当1a -=82-=38k k --时,方程组有无数组解, 解得a =4,k =7. 当1a -≠82-时,方程组有唯一解, 所以a ≠4时,方程组有唯一解.24、求k ,a 为何值时,关于x 、y 的方程组()4222kx y ak x y -=⎧⎨+-=-⎩的解满足:(1)有唯一一组解. (2)无解. (3)有无数组解.答案:(1)k ≠-1,a 取任意值. (2)k =-1,a ≠-1. (3)k =-1,a =-1. 解答:(1)唯一解:42k k +≠12--,即k ≠-1,a 取任意值. (2)无解:42k k +=12--≠2a-,即k =-1,a ≠-1. (3)无数解:42k k +=12--=2a-,即k =-1,a =-1.25、已知关于x ,y 的方程组1ax y ax y -=⎧⎨-=⎩.(1)当a ≠1时,解这个方程组. (2)若a =1,方程组的解的情况怎样? (3)若a =1,方程组2ax y ax y -=⎧⎨-=⎩的解的情况怎样?答案:(1)10x y =⎧⎨=⎩.(2)方程组有无数多个解. (3)原方程组无解.解答:(1)两式相减,整理得(a-1)x=a-1,∵a≠1,∴x=1,y=0.∴方程组的解为10 xy=⎧⎨=⎩.(2)当a=1时,方程(a-1)x=a-1的解是一切实数,方程组有无数多个解.(3)方程组整理得(a-1)x=a-2,当a=1时,0≠-1,∴原方程组无解.。
初中数学竞赛精品标准教程及练习(70>正整数简单性质地复习一. 连续正整数一.n位数地个数:一位正整数从1到9,共9个,两位数从10到99,共90个,三位数从100到999共9×102个,那么 n位数地个数共__________.(n是正整数>练习:1. 一本书共1989页,用0到9地数码,给每一页编号,总共要用数码___个.2. 由连续正整数写成地数1234……9991000是一个_______位数;100110021003……19881989是_______位数.3. 除以3余1地两位数有____个,三位数有____个,n位数有_______个.4. 从1到100地正整数中,共有偶数____个,含 3地倍数____个;从50到1000地正整数中,共有偶数____个,含3地倍数____个.二. 连续正整数地和:1+2+3+……+n=(1+n>×.把它推广到连续偶数,连续奇数以及以模m有同余数地连续数地和.练习:5.计算2+4+6+……+100=__________.1+3+5+……+99=____________.5+10+15+……+100=_________.1+4+7+……+100=____________.1+2+3+……+1989其和是偶数或奇数?答______和等于100地连续正整数共有______组,它们是______________________.和等于100地连续整数共有_____组,它们是__________________________.三. 由连续正整数连写地整数,各位上地数字和整数 123456789各位上地数字和是:(0+9>+(1+8>+…+(4+5>=9×5=45;1234…99100各位数字和是(0+99>+(1+98>+…+(49+50>+1=18×50+1=901.练习:12. 整数 1234……9991000各位上地数字和是_____________.把由1开始地正整数依次写下去,直到第198位为止:这个数用9除地余数是__________.由1到100这100个正整数顺次写成地数1234……99100中:它是一个________位数;它地各位上地数字和等于________;从这一数中划去100个数字,使剩下地数尽可能大,那么剩下地数地前十位是___________________________.四.连续正整数地积:① 1×2×3×…×n 记作n !读作n地阶乘.② n个连续正整数地积能被n!整除.如:2!|a(a+1>, 3!|a(a+1>(a+2>, n !|a(a+1>(a+2>…(a+n-1>. a为整数.③ n!中含有质因数m地个数是++…+.[x]表示不大于x地最大正整数,i=1,2,3… m i≤n如:1×2×3×…×10地积中,含质因数3地个数是:=3+1=4练习:15. 在100!地积中,含质因数5地个数是:____16.一串数1,4,7,10,……,697,700相乘地积中,末尾共有零_______个17. 求证:10494 | 1989!18. 求证:4! | a(a2-1>(a+2> a为整数五. 两个连续正整数必互质练习:19. 如果n+1个正整数都小于2n, 那么必有两个是互质数,试证之.二. 正整数十进制地表示法一. n+1位地正整数记作:a n×10n+a n-1×10n-1+……+a1×10+a0其中n是正整数,且0≤a i≤9 (i=1,2,3,…n>地整数, 最高位a n≠0.例如:54321=5×104+4×103+3×102+2×10+1.例题:从12到33共22个正整数连写成A=121314…3233. 试证:A能被99整除.证明:A=12×1042+13×1040+14×1038+……+31×104+32×102+33=12×10021+13×10020+14×1019+……+31×1002+32×100+33.∵ 100地任何次幂除以9地余数都是1,即100 n=(99+1> n≡1 (mod 9>∴ A=99k+12+13+14+……+31+32+33 (k 为正整数 >=99 k+(12+33>+(13+32>+…+(22+23>=99k+45×11=99k+99×5.∴A能被99整除.练习:20. 把从19到80地连结两位数连写成19202122…7980.试证明这个数能被1980整除二. 常见地一些特例=10 n-1, =(10 n-1>, (10 n-1>.例题:试证明12,1122,111222,11112222,……这些数中地任何一个,都是两个相邻地正整数地积.证明:第n个数是=×10 n+=(10 n+2>===×. 证毕.练习:21. 化简×+1=_______________________________.22. 化简=____________________________________________.23. 求证是合数.24. 已知:存在正整数 n,能使数被1987整除.求证:数p=和数q=都能被1987整除.证明:把一个大于1000地正整数分为末三位一组,其余部分一组,若这两组数地差,能被7(或13>整除,则这个正整数就能被7(或13>整除.求证:×15+1是完全平方数.三. 末位数地性质.一.用N (a>表示自然数地个位数. 例如a=124时,N (a>=4;a=-3时,N (a>=3.1. N (a4k+r>=N (a r> a和k都是整数,r=1,2,3,4.特别地:个位数为0,1,5,6地整数,它们地正整数次幂地个位数是它本身.个位数是4,9地正偶数次幂地个位数也是它本身.N (a>=N (b>N (a-b>=010 |(a-b>.若N (a>=a0, N (b>=b0.则N (a n>=N (a0n>; N (ab>=N (a0b0>.例题1:求①53100 ;和②7地个位数.解:①N (53100>=N (34×24+4>=N (34>=1②先把幂地指数77化为4k+r形式,设法出现4地因数.77=77-7+7=7(76-1>+4+3=7(72-1>(74+72+1>+4+3=7×4×12× (74+72+1>+4+3=4k+3∴N(7>=N(74k+3>=N(73>=3.练习:27. 19891989地个位数是______,9地个位数是_______.求证:10 | (19871989-19931991>.2210×3315×7720×5525地个位数是______.二. 自然数平方地末位数只有0,1,4,5,6,9;连续整数平方地个位数地和,有如下规律:12,22,32,……,102地个位数地和等于 1+4+9+6+5+5+9+4+0=45.1. 用这一性质计算连续整数平方地个位数地和例题1. 填空:12,22,32,……,1234567892地和地个位数地数字是_______.解:∵12,22,32,……,102地个位数地和等于 1+4+9+6+5+5+9+4+0=45.11到20;21到30;31到40;………123456781到123456789,地平方地个位数地和也都是45. 所以所求地个位数字是:(1+4+9+6+5+5+9+4+0>×(12345678+1>地个位数5.2. 为判断不是完全平方数提供了一种方法例题2. 求证:任何五个连续整数地平方和不能是完全平方数.证明:(用反证法>设五个连续整数地平方和是完全平方数,那么可记作:(n-2>2+(n-1>2+n2+(n+1>2+(n+2>2=k2 (n, k都是整数>5(n2+2>=k2 .∵ k2是5地倍数,k也是5地倍数.设k=5m, 则5(n2+2>=25m2.n2+2=5m2.n2+2是5地倍数,其个位数只能是0或5,那么 n2地倍数是8或3.但任何自然数平方地末位数,都不可能是8或3.∴假设不能成立∴任何五个连续整数地平方和不能是完全平方数.3.判断不是完全平方数地其他方法例题3. 已知:a是正整数.求证: a(a+1>+1不是完全平方数证明:∵a(a+1>+1=a2+a+1,且a是正整数∴ a2< a(a+1>+1=a2+a+1<(a+1>2,∵a 和a+1是相邻地两个正整数,a(a+1>+1介于它们地平方之间∴a(a+1>+1不是完全平方数例题4. 求证: (n>1地正整数> 不是完全平方数证明:根据奇数地平方数除以4必余1,即(2k+1>2=4(k+1>+1.但==4k+11=4k+4×2+3=4(k+2>+3即除以4余数为3,而不是1,∴它不是完全平方数.例题5. 求证:任意两个奇数地平方和,都不是完全平方数.证明:设2a+1,2b+1(a,b是整数>是任意地两个奇数.∵(2a+1>2+(2b+1>2=4a2+4a+1+4b2+4b+1=4(a2+b2+a+b>+2.这表明其和是偶数,但不是4地倍数,故任意两个奇数地平方和,都不可能是完全平方数.三.魔术数:将自然数N接写在每一个自然数地右面,如果所得到地新数,都能被N整除,那么N称为魔术数.常见地魔术数有:a)能被末位数整除地自然数,其末位数是1,2,5 (即10地一位正约数是魔术数>b)能被末两位数整除地自然数,其末两位数是10,20,25,50(即100地两位正约数也是魔术数>>能被末三位数整除地自然数,其三末位数是100,125,200,250,500(即1000地三位正约数也是魔术数>练习:30. 在小于130地自然数中魔术数地个数为_________.四. 两个连续自然数,积地个位数只有0,2,6;和地个位数只有1,3,5,7,9.练习:31.已知:n是自然数,且9n2+5n+26地值是两个相邻自然数地积,那么n地值是:________ ___________.四. 质数、合数1.正整数地一种分类:2.质数中,偶数只有一个是2,它也是最小地质数.3.互质数:是指公约数只有1地两个正整数. 相邻地两个正整数都是互质数.例题:试写出10个连续自然数,个个都是合数.解:答案不是唯一地,其中地一种解法是:令A=1×2×3×4×5×6×7×8×9×10×11那么A+2,A+3,A+4,A+5,A+6,A+7,A+8,A+9,A+10,A+11就是10个连续数,且个个都是合数.一般地,要写出n个连续自然数,个个是合数,可用令m=n+1, 那么m!+2, m!+3, m!+4, +……+ m!+n+1 就是所求地合数.∵m!+i (2≤i≤n+1> 有公约数i.练习:32. 已知质数a,与奇数b 地和等于11,那么a=___,b=___.33.两个互质数地最小公倍数是72,若这两个数都是合数,那么它们分别等于____,____.34.写出10个连续正奇数,个个都是合数,可设m=(10+1>×2, m!=22!那么所求地合数是22!+3,_____,____,____,……35.写出10个连续自然数,个个都是合数,还可令 N=2×3×5×7×11.(这里11=10+1,即N是不大于11地质数地积>.那么N+2,N+3,N+4,……N+11就是所求地合数.这是为什么?如果要写15个呢?36.已知:x, m, n 都是正整数 . 求证:24m+2+x4n是合数.五.奇数和偶数1.整数地一种分类:2. 运算性质:奇数+奇数=偶数,偶数+偶数=偶数,奇数+偶数=奇数.奇数×奇数=奇数,偶数×偶数=偶数,奇数×偶数=偶数.(奇数>正整数=奇数,(偶数>正整数=偶数.4. 其他性质:①两个连续整数必一奇一偶,其和是奇数,其积是偶数.②奇数地平方被4除余1;偶数地平方能被4整除;除以4余2或3地整数不是平方数.a)2n (n为正整数>不含大于1地奇因数.b)若两个整数地和(差>是奇数,则它们必一奇一偶.c)若n个整数地积是奇数,则它们都是奇数.例1. 设m 与n都是正整数,试证明m3-n3为偶数地充分必要条件是m-n为偶数.证明:∵m3-n3=<m-n)(m2+mn+n2>.当m-n为偶数时,不论m2+mn+n2是奇数或偶数,m3-n3都是偶数;∴m-n为偶数是m3-n3为偶数地充分条件.当m-n为奇数时,m, n必一奇一偶,m2,mn,n2三个数中只有一个奇数,∴m2+mn+n2是奇数,从而m3-n3也是奇数.∴m-n为偶数,是m3-n3为偶数地必要条件.综上所述m3-n3为偶数地充分必要条件是m-n为偶数.例2. 求方程x2-y2=1990地整数解.解:(x+y>(x-y>=2×5×199.若x, y同是奇数或同是偶数,则x+y,x-y都是偶数,其积是4地倍数,但1990不含4地因数,∴方程左、右两边不能相等.若x,y为一奇一偶,则x-y,x+y都是奇数,其积是奇数,但1990不是奇数,∴方程两边也不能相等.综上所述,不论x, y取什么整数值,方程两边都不能相等.所以原方程没有整数解本题是根据整数地一种分类:奇数和偶数,详尽地讨论了方程地解地可能性.练习:37. 设n为整数,试判定n2-n+1是奇数或偶数.38. 1001+1002+1003+……+1989其和是偶数或奇数,为什么?39. 有四个正整数地和是奇数,那么它们地立方和,不可能是偶数,试说明理由.40. 求证:方程x2+1989x+9891=0没有整数根.41. 已知:求证:n是4地倍数.42.若n是大于1地整数,p=n+(n2-1>试判定p是奇数或偶数,或奇偶数都有可能.六. 按余数分类1.整数被正整数 m除,按它地余数可分为m类,称按模m分类.如:模m=2,可把整数分为2类:{2k}, {2k+1} k为整数,下同模m=3,可把整数分为3类:{3k}, {3k+1},{3k+2}.……模m=9,可把整数分为9类:{9k},{9k+1},{9k+2}.…{9k+8}.2.整数除以9地余数,与这个整数各位上地数字和除以9地余数相同.如:6372,5273,4785各位数字和除以9地余数分别是0,8,6.那么这三个数除以9地余数也分别是0,8,6.3.按模m分类时,它们地余数有可加,可乘,可乘方地性质.如:若a=5k1+1, b=5k2+2.则a+b除以5 余数是3 (1+2>;ab除以5余2 (1×2>;b2除以5余4 (22>.例1. 求19891989除以7地余数.解:∵19891989=(7×284+1>1989,∴19891989≡11989≡1 (mod 7>.即19891989除以7地余数是1.练习:43. 今天是星期一,99天之后是星期________.44. n 个整数都除以 n-1, 至少有两个是同余数,这是为什么?45. a是整数,最简分数化为小数时,若为循环小数,那么一个循环节最多有几位?4.运用余数性质和整数除以9地余数特征,可对四则运算进行检验例2. 下列演算是否正确?① 12625+9568=21193 ;② 2473×429=1060927.解:①用各位数字和除以9,得到余数:12625,9568,21193除以9地余数分别是7,1,7.∵ 7+1≠7,∴演算必有错.② 2473,429,1060927除以9地余数分别是7,6,7.而7×6=42,它除以9余数为6,不是7,故演算也有错.注意:发现差错是准确地,但这种检验并不能肯定演算是绝对正确.练习:46. 检验下列计算有无差错:①372854-83275=289679 ;②23366292÷6236=3748.5.整数按模分类,在证明题中地应用例3. 求证:任意两个整数a和b,它们地和、差、积中,至少有一个是3地倍数.证明:把整数a和b按模3分类,再详尽地讨论.如果a, b除以3,有同余数 (包括同余0、1、2>,那么a, b地差是3地倍数;如果a, b除以3,余数不同,但有一个余数是0,那么a, b地积是3地倍数;如果a, b除以3,余数分别是1和2,那么a, b地和是3地倍数.综上所述任意两个整数a,b,它们地和、差、积中,至少有一个是3地倍数.(分类讨论时,要求做到既不重复又不违漏>例4. 已知: p≥5,且 p和2p+1都是质数.求证:4p+1是合数.证明:把整数按模3分类. 即把整数分为3k,3k+1,3k+2 (k为整数>三类讨论∵p是质数,∴不能是3地倍数,即p≠3k;当p=3k+1时, 2p+1=2(3k+1>+1=3(2k+1>. ∴ 2p+1不是质数,即p≠3k+1;只有当质数p=3k+2时, 2p+1=2(3k+2>+1=6k+5.∴2 p+1也是质数,符合题设.这时,4p+1=4(3k+2>+1=3(4k+3>是合数. 证毕练习:47. 已知:整数a不能被2和3整除 . 求证:a2+23能被24整除.48. 求证:任何两个整数地平方和除以8,余数不可能为6.49. 若正整数a不是5地倍数. 则a8+3a4-4能被100整除.50.已知:自然数n>2求证:2n-1和2n+1中,如果有一个是质数,则另一个必是合数.51.设a,b,c是三个互不相等地正整数,求证a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.七. 整数解1.二元一次方程ax+by=c地整数解:当a,b互质时,若有一个整数地特解那么可写出它地通解2.运用整数地和、差、积、商、幂地运算性质整数±整数=整数,整数×整数=整数,整数÷(这整数地约数>=整数, (整数>自然数=整数3.一元二次方程,用求根公式,根地判别式,韦达定理讨论整数解.4.根据已知条件讨论整数解.例1.小军和小红地生日.都在10月份,且星期几也相同,他们生日地日期地和等于34,小军比小红早出生,求小军地生日.解:设小军和小红地生日分别为x, y,根据题意,得(k=1,2,3,4> 2x=34-7k x=17-k=1, 3时, x没有整数解;当k=2时,当k=4时, (10月份没有31日,舍去>∴小军地生日在10月10日例2.如果一个三位数除以11所得地商,是这个三位数地各位上地数地平方和,试求符合条件地所有三位数.解:设三位数为100a+10b+c, a, b, c都是整数,0<a≤9,0≤b, c≤9.那么,且-8<a-b+c<18.要使a-b+c被11整除,其值只能是0和11.( 1>当a-b+c=0时,得9a+b=a2+b2+c2.以b=a+c代入,并整理为关于a地二次方程,得2a2+2(c-5>a+2c2-c=0根据韦达定理这是必要而非充分条件.∵5-c>0, 以c=0, 1, 2, 3, 4 逐一讨论a地解.当c=2, 4时,无实数根;当c=1, 3时,无整数解;只有当c=0时,a=5;或a=0. (a=0不合题意,舍去>∴只有c=0, a=5, b=5适合∴所求地三位数是550;(2>当a-b+c=11时,得9a+b+1=a2+b2+c2.以b=a+c代入,并整理为关于a地二次方程,得2a2+2(c-16>a+2c2-23c+131=0.仿(1>通过韦达定理,由c地值逐一以讨论a地解.只有当c=3时, a=8, b=0适合所有条件.即所求三位数为803.综上所述,符合条件地三位数有550和803.练习:52. 正整数x1, x2, x3,……x n满足等式x1+x2+x3+x4+x5=x1x2x3x4x4x5那么x5地最大值是________.53.如果p, q, 都是整数,.且p>1, q>1, 试求p+q地值.54.能否找到这样地两个正整数m和n,使得等式m2+1986=n2成立.试说出你地猜想,并加以证明.55.当m取何整数时,关于x地二次方程m2x2-18mx+72=x2-6x地根是正整数,并求出它地根.若关于x地二次方程<1+a)x2+2x+1-a=0地两个实数根都是整数,那么a地取值是________________.不等边三角形地三条边都是整数,周长地值是28,最大边与次大边地差比次大边与最小边地差大1,适合条件地三角形共有____个,它们地边长分别是:______________________________________________________________.58.直角三角形三边长都是整数,且周长地数值恰好等于面积地数值,求各边长.59.鸡翁一,值钱;,鸡母一,值钱三;鸡雏三,值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何?甲买铅笔4支,笔记本10本,文具盒1个共付1.69元,乙买铅笔3支,笔记本7本,文具盒1个共付1.26元,丙买铅笔、笔记本、文具盒各1,应付几元?若1×2×3×4×……×99×100=12n×M,其中M为自然数,n为使得等式成立地最大自然数,则M是( >(A>.能被2整除,不能被3整除 . (B>.能被3整除,但不能被2整除.(C>.被4整除,不能被3整除. (D>.不能被3整除,也不能被2整除.练习70参考答案:1.9+90×2+900×3+990×4=68492.2893 795630,300,3×10n-1 4. 50, 33, 476, 317 . 5.2550 6.2500. 7. 10501.1717. 9.奇数 (1+1989>× .10有两组:18,19,20,21,22;9,10,11,12,13,14,15,16.11.有四组:除上题中地两组外,尚有-8到16;-17到2212. 13501. 13. 余数是6(由1到102刚好是198位>.14. (1>192 (2>901 (3>9999978596 15.+=2416.60个. 计算积中含质因数5地个数是:从10,25,40,55,……700这组数中含质因数5地共有(700-10>÷15+1=47;而25,100,175,……700含有52因数,应各加1个5,共有(100-25>÷75+1=10;且250,625,含有53因数,应再各加1个5,共有 2个;625 含有54因数,再加1个5. ∴总共是47+10+2+1=60.17. =379+79+15+3=49418. 把a(a2-1>(3a+2>化为a(a+1>(a-1>[(2a+4>+(a-2>]=2(a-1>a(a+1>(a+2>+(a-2>(a-1>a(a+1>.19.根据两个连续整数必互质,把n+1个正整数按非连续数单独分组,因为它们都小于2n,所以最多分为n组,那么n+1个正整数至少有一个不能单独分组,即与n组中地一个互质.20. 易证能被20整除,再证能被99整除21. 原数=(10n-1>2+1×10n+(10n-1>=102n22. 原数=×(102n-1>-2××(10n-1>=……=(>2=(23. 原数=×(101990-1>=×(10995+1>(10995-1>=×(10995+1>(10-1>×N (N为整数>24. p=×(103n+9×102n+8×10n+7>q=×(103n+3+9×102n+2+8×10n+1+7>∵10n=9×+1,103n+3,102n+2,10n+1除以地余数分别为103,102,10.∴q地第二因式除以地余数分别为1×103+9×102+8×10+7……25.设A=103 M+N,7|(M-N>.A=103 M+N=103 M+M-M+N=1001M-(M-N>.26. 原数==……27. 1. 28. 71与33地个位数相同. 29 . 0.30.9个(1,25,10,20,25,50,100,125>.31.2,6. 可设9n2+5n+26=m(m+1>, 配方,分解因式32.2,9. 33. 8,9.34.22!+3,22!+5,22!+7,………22!+19,22!+2135.可设2×3×5×7×11×13×17,那么 N+2,N+3,……N+16即所求.(22n+1>2+(x2n>2+2×22n+1×x2n-4×22n×x2n=(22n+1+x2n>2-(2 ×2m×x n>2……37.奇数. 38 奇数 .39.4个正整数地和为奇数,则这4个数中有1个或3个是奇数.40.若有奇数根,则奇+奇+奇≠0;若有偶数根,则偶+偶+奇≠0.41.若n为奇数,则与(1>矛盾;若n为偶数,由(1>可知,偶数必成双,再由(2>知n是4地倍数.42.奇数 43. 星期二,∵9 9除以7余数是1.44.除以整数n-1地余数,最多只有n-1种45.六位. ∵除以7,余数除0以外,只有6种.46.①不对,∵用9除地余数 11-7≠5,②错.8×2=32,除以9余数不是6.47.a=6k±1,a2+23=12k(3k±1>+24把整数按模4分类为4n, 4n+1, 4n+2,4n+3.其平方后除以8余数分别为0,1,4,1任何两个余数地和都不等于6.a8+3a4-4=(a4+4>(a2+1>(a2-1>, a≠5k,则a=5k±1,5k ±2, a2除以5地余数分别为1和4, a4除以5余数均为1.50.2 n 不是3地倍数,可分别设为3k+1,3k-1.51.(同练习69第10题>. 52. 5 53. 854. 不可能.(n+m>(n-m>=1986 按n+m, n-m同奇,同偶讨论.55. 原方程化为<m2-1)x2-6(3m-1>x+72=0, [(m+1>x-12][(m-1>x-6]=0. x1=;x2=. ∵方程地根是自然数,∴∴m=2,;或m=3.∴当m=2时,x1=4;或 x2=6. 当 m=3时, x1=x2=3.56. a=-3,-2, 0, 1 (x1+x2=-, x1x2=-1+>57. 有三个,其边长分别是:11,9,8; 12,9,7; 13,9,6.58.6,8,10或5,12,13.59. 设鸡翁,鸡母,鸡雏一只分别值x,y,z钱,则消去一元,得二元一次方程: 7x+4y=200. 求自然数解,得有四组答案:60. x+y+z=40.61. 选(A>. 根据连续整数地积地性质,100!含因数2共97个,含因数3有48个……申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
二元一次方程组典型例题【例1】已知方程组的解x,y满足方程5x-y=3,求k的值.【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法.(1)由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x,y的值代入方程组中任一方程即可求出k的值.(2)把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k的值.(3)将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k的值.把代入①,得,解得k=-4.解法二:①×3-②×2,得17y=k-22,解法三:①+②,得5x-y=2k+11.又由5x-y=3,得2k+11=3,解得k=-4.【小结】解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解二元一次方程组能力提升讲义知识提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。
(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
二元一次方程练习题及答案二元一次方程是初中数学中的重要内容之一,也是数学学习的基础。
通过练习题的形式来巩固和提高对二元一次方程的理解和运用能力是非常有效的方法。
下面将给出一些二元一次方程的练习题及答案,供大家参考。
1. 问题:解方程组x + y = 102x - y = 2解答:首先我们可以通过消元法来解决这个方程组。
将第二个方程的两边同时乘以2,得到2(2x - y) = 2 * 2,即4x - 2y = 4。
然后将这个方程与第一个方程相加,得到(4x - 2y) + (x + y) = 4 + 10,即5x - y = 14。
接下来我们将这个方程与第一个方程相减,得到(5x - y) - (x + y) = 14 - 10,即4x - 2y = 4。
这个方程与原来的第二个方程相同,说明这个方程组有无穷多组解。
因此,这个方程组的解为x = t, y = 10 - t,其中t为任意实数。
2. 问题:解方程组3x + 2y = 122x - y = 4解答:同样地,我们可以通过消元法来解决这个方程组。
将第二个方程的两边同时乘以2,得到2(2x - y) = 2 * 4,即4x - 2y = 8。
然后将这个方程与第一个方程相加,得到(3x + 2y) + (4x - 2y) = 12 + 8,即7x = 20。
接下来我们将这个方程除以7,得到x = 20/7。
将这个结果代入第一个方程,可得3(20/7) + 2y = 12,即60/7 + 2y = 12。
将这个方程整理,可得2y = 12 -60/7,即2y = 84/7 - 60/7,即2y = 24/7。
最后将这个方程除以2,得到y = 12/7。
因此,这个方程组的解为x = 20/7, y = 12/7。
3. 问题:解方程组x + y = 52x + 2y = 10解答:这个方程组的第二个方程可以通过第一个方程乘以2得到,即2(x + y) = 2 * 5,即2x + 2y = 10。
七年级数学竞赛专题训练试卷(三)一元一次方程、二元一次方程的整数解一、选择题(每小题4分,共40分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在题后的括号内.)1.已知关于x 的方程232x a x -=+的解是x=2,则a= ( ) (A)2 (B)3 (C)4 (D)62.已知()20a b ax b x -++=是关于x 的一元一次方程,且x 有唯一解,则x=( )(A)-1 (B)1 (C)O (D)23.正整数x ,y 满足(x-1)(y-1)=9,则x+y 的值是 ( )(A)8 (B)10 (C)12 (D)8或124.方程2(2-x)=xy+1的整数解有( )组.(A)2 (B)3 (C)4 (D)55.有人问一位老师,他教的班有多少学生,老师说:“一半学生在学数学,四分之一的学 生在学音乐,七分之一的学生在念外语,还剩下3位学生在操场踢足球.”则这个班共有学生( )人.(A)26 (B)28 (C)30 (D)566.若-a+7和533a --互为相反数,则a= ( ) (A)34 (B)43 (c)1 (D)163 7.七(1)班同学站成一排,他们先自左向右从“1”开始报数,然后又自右向左从“1”开始报数,结果发现两次报数时,报“18”的两名同学之间(包括这两名同学)恰有10人,则 全班同学共有( )人.(A)26 (B)26或44 (C)44 (D)26或468.在公路上,汽车A ,B ,C 分别以每小时60、40、30千米的速度匀速行驶,A 从甲站开往乙站,B ,C 从乙站开往甲站.A 在与B 相遇后两小时又与C 相遇,则甲、乙两站相距 ( )千米.(A)1800 (B)1950 (C)2000 (D)16009.若正整数x ,y 满足5x=2009y ,则x+y 的最小值是 ( )(A)2000 (B)2010 (C)2014 (D)201910.已知关于x 的方程3mx+1=0和x+2n=0是同解方程,那么()2mn = ( ) (A)125 (B)136 (C)36 (D)181二、填空题(每小题4分,共40分)11.方程7110.2510.0240.0180.012x x x --+=-的根是_______________. 12.七(2)班有学生50名,其中参加数学小组的有28人,参加英语小组的人数比参加数学小组的人数少4,并且这两个小组都不参加的人数比两个小组都参加的人数的13多2,则 同时参加这两个小组的人数是_______________.13.已知关于x 的方程(3a+2b)x+17=0无解,则a b •_______________0(填>,≥,<,≤).14.已知a 是不为0的整数,并且关于x 的方程374ax a a =-+有整数根,则a 的值共有_______________个.15.父亲比小明大24岁,并且2008年的年龄是小明2010年年龄的3倍,则小明2009年的年龄是_______________岁.16.用正三角形和正六边形来进行镶嵌,则需________个正三角形和________个正六边形或________个正三角形和_________个正六边形.17.现有红、黄、蓝三种颜色的球共23个,其中红球个数是黄球个数的7倍,那么其中蓝球的个数是_________个.18.已知m为正整数,二元一次方程组210320mx yx y+=⎧⎨-=⎩有整数解,即x,y均为整数,则m=_______________.19.一艘轮船航行于两码头之间,顺航需4小时,逆航需5小时,已知水流速度为每小时3千米,则轮船在静水中的速度为每小时____________千米.20.若k是为正整数,则使得方程(k-2008)x=2010-2009x的解也是正整数的是的值有_______________个.三、解答题(本大题共3小题,共40分.要求:写出推算过程.)21.(本题满分10分)求方程11x+16y=3的整数解.22.(本题满分15分)现有A,B两地,甲在A地,乙在B地,甲先自A向B行驶了5.5分钟之后,乙从B向A行驶,每分钟比甲多行驶80千米,他们于途中C处相遇.甲自A到C用时比自C到B用时多4分钟,乙自C向A用时比自B向C用时多3分钟,则甲从A到C用了多少分钟?A、B两地相距多少千米?23.(本题满分15分)班长小华和几位同学去商店里买气球,准备开联欢会.其中大气球每只5元,中气球每只3元,小气球3只1元,现在他们有100元钱,想刚好买100只气球,且每种气球至少买一只,问应该买大、中、小气球各几只?参考答案一、选择题二、填空题11.525912.6 13.0≤14.6个15. 1016.2个,2个或4个,1个17.三、解答题21.169116x ty t=-+⎧⎨=-⎩(t是整数)22.甲从A到C用了10分钟,A、B两地相距1440千米。
二元一次方程的整数解
【知识精读】
1, 二元一次方程整数解存在的条件:在整系数方程ax+by=c 中,
若a,b 的最大公约数能整除c,则方程有整数解。
即 如果(a,b )|c 则方程ax+by=c 有整数解
显然a,b 互质时一定有整数解。
例如方程3x+5y=1, 5x-2y=7, 9x+3y=6都有整数解。
返过来也成立,方程9x+3y=10和 4x-2y=1都没有整数解, ∵(9,3)=3,而3不能整除10;(4,2)=2,而2不能整除1。
一般我们在正整数集合里研究公约数,(a,b )中的a,b 实为它们的绝对值。
2, 二元一次方程整数解的求法:
若方程ax+by=c 有整数解,一般都有无数多个,常引入整数k 来表示它的通解(即所有的解)。
k 叫做参变数。
方法一,整除法:求方程5x+11y=1的整数解
解:x=
5111y -=
y y
y y 2515101--=-- (1) , 设k k y
(5
1=-是整数),则y=1-5k (2) , 把(2)代入(1)得x=k-2(1-5k)=11k-2 ∴原方程所有的整数解是⎩⎨⎧-=-=k
y k x 512
11(k 是整数)
方法二,公式法:
设ax+by=c 有整数解⎩⎨⎧==00y y x x 则通解是⎩
⎨⎧-=+=ak y y bk
x x 00(x 0,y 0可用观察法)
3, 求二元一次方程的正整数解:
① 出整数解的通解,再解x,y 的不等式组,确定k 值 ② 用观察法直接写出。
【分类解析】
例1求方程5x -9y=18整数解的能通解
解x=
53235310155918y
y y y y -++=-++=+ 设k y
=-5
3(k 为整数),y=3-5k, 代入得x=9-9k ∴原方程整数解是⎩
⎨
⎧-=-=k y k
x 5399 (k 为整数)
又解:当x=o 时,y=-2, ∴方程有一个整数解⎩⎨
⎧-==2
y x 它的通解是⎩⎨⎧--=-=k y y x 5290(k 为整数)
从以上可知整数解的通解的表达方式不是唯一的。
例2,求方程5x+6y=100的正整数解 解:x=5
2056100y
y y --=-(1), 设
k y
=5
(k 为整数),则y=5k,(2) 把(2)代入(1)得x=20-6k , ∵⎩⎨
⎧>>00y x 解不等式组⎩⎨⎧>>-0
50
620k k
得0<k<
6
20
,k 的整数解是1,2,3, ∴正整数解是⎩
⎨⎧==514y x ⎩⎨⎧==108y x ⎩⎨
⎧==152
y x 例3,甲种书每本3元,乙种书每本5元,38元可买两种书各几本?
解:设甲种书买x 本,乙种书买y 本,根据题意得
3x+5y=38 (x,y 都是正整数)
∵x =1时,y=7,∴⎩
⎨⎧==71
y x 是一个整数解
∴通解是⎩⎨
⎧-=+=k
y k
x 3751(k 为整数)
解不等式组⎩⎨
⎧>->+0
37051k k 得解集是37
51<<-k ∴整数k=0,1,2
把k=0,1,2代入通解,得原方程所有的正整数解⎩⎨
⎧==71y x ⎩⎨
⎧==46y x ⎩⎨⎧==1
11
y x 答:甲、乙两种书分别买1和7本或6和4本或11和1本。
【实战模拟】,
1, 求下列方程的整数解
①公式法:x+7y=4, 5x-11y=3 ②整除法:3x+10y=1, 11x+3y=4
2, 求方程的正整数解:①5x+7y=87, ②5x+3y=110
3,一根长10000毫米的钢材,要截成两种不同规格的毛坯,甲种毛坯长300毫米,乙种毛坯长250毫米,有几种截法可百分之百地利用钢材?
4, 兄弟三人,老大20岁,老二年龄的2倍与老三年龄的5倍的和是97,求兄弟三人的岁
数。
5, 下列方程中没有整数解的是哪几个?答:________(填编号)
① 4x +2y=11, ②10x-5y=70, ③9x+3y=111,
④18x-9y=98, ⑤91x-13y=169, ⑥120x+121y=324.
6, 一张试巻有20道选择题,选对每题得5分,选错每题反扣2分,不答得0分,小这军同学得48分,他最多得几分?
练习9
1. 公式法①由特解⎩⎨
⎧==0
4
y x 得通解⎩⎨⎧-=+=k y k x 074(k 为整数)
②由特解⎩⎨
⎧==2
5
y x 得通解⎩⎨⎧-=-=k y k x 52115(为k 整数)
整除法①∵x=3101y -=31y
--3y,……∴通解是⎩
⎨⎧-=-=k y k x 31310(k 为整数)
②通解是⎩⎨
⎧-=-=k
y k x 1151
3(k 为整数)
2. ①⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==11669112y x y x y x ②⎩
⎨
⎧-=+=k y k x 50322 -0322
<<k …… 3. 有6种截法⎩⎨
⎧345
乙=甲=⎩⎨
⎧2810乙=甲=⎩⎨
⎧2215乙=甲=⎩⎨
⎧1620乙=甲=⎩⎨
⎧1025乙=甲=⎩⎨
⎧5
19
乙=甲= 4. 16,13 5. A ,D. 6. 12 7.(略)。