13电磁感应习题解答14电磁场习题解答解读
- 格式:doc
- 大小:31.50 KB
- 文档页数:11
第十三章 电磁感应一 选择题3.如图所示,一匀强磁场B 垂直纸面向内,长为L 的导线ab 可以无摩擦地在导轨上滑动,除电阻R 外,其它部分电阻不计,当ab 以匀速v 向右运动时,则外力的大小是: R L B R L B R L B R BL L B 222222222 E. D. 2 C. B. A.v v v vv 解:导线ab 的感应电动势v BL =ε,当ab 以匀速v 向右运动时,导线ab 受到的外力与安培力是一对平衡力,所以RL B L R B F F v 22===ε安外。
所以选(D ) 4.一根长度L 的铜棒在均匀磁场B 中以匀角速度ω旋转着,B 的方向垂直铜棒转动的平面,如图,设t = 0时,铜棒与Ob 成θ角,则在任一时刻t 这根铜棒两端之间的感应电动势是:( ) A. )cos(2θωω+t B L B. t B L ωωcos 212 C. )cos(22θωω+t B L D. B L 2ωE. B L 221ω 解:⎰⎰⎰===⋅⨯=L L BL l l B l B )00221d d d ωωεv l B v ( 所以选(E )6.半径为R 的圆线圈处于均匀磁场B 中,B 垂直于线圈平面向上。
如果磁感应强度为B =3 t 2+2 t +1,则线圈中的感应电场为:( )A . 2π(3 t + 1)R 2 ,顺时针方向; B. 2π(3 t + 1)R 2 ,逆时针方向;C . (3 t + 1)R ,顺时针方向;D . (3 t + 1)R ,逆时针方向; 解:由⎰⎰⎰⋅∂∂-=⋅S B l E d d i t ,则感应电场的大小满足 选择题4图 选择题3图v2i π)26(π2R t R E +=⋅解出 E i = (3 t + 1)R 所以选(C )。
7.在圆柱形空间内有感应强度B 的均匀磁场,如图所示,B 的大小以速率d B/d t 变化,在磁场中有C ,D 两点,其间可放置直导线和弯曲导线,则( )A .电动势只在直导线中产生B .电动势只在弯曲导线中产生C .电动势在直导线和弯曲导线中产生,且两者大小相等D .直导线中的电动势小于弯曲导线中的电动势 解:在圆柱形空间内的感生电场是涡选场,电场线是与圆柱同轴的同心圆,因为⎰⋅=l E d i ε,所以弯曲导线中的电动势比直导线中的电动势大。
一、选择题1.沈括在《梦溪笔谈》中记载了“以磁石磨针锋”制造指南针的方法,磁针“常微偏东,不全南也”。
他是世界上第一个指出地磁场存在磁偏角的人,比西方早了400年。
关于地磁场,下列说法中正确的是( )A .地磁场只分布在地球的外部B .地理南极点的地磁场方向竖直向上C .地磁场穿过地球表面的磁通量为零D .地球表面各处地磁场的磁感应强度相等2.下列说法中正确的是( )A .电源的电动势反映电源把其他形式的能转化为电能本领的大小B .电动势等于闭合电路中接在电源两极间的电压表测得的电压C .电流元IL 在磁场中受力为F ,则磁感应强度B 可能小于或等于F ILD .磁感应强度越大的地方,线圈面积越大,则穿过线圈的磁通量越大3.如图所示,通有恒定电流的导线MN 与闭合金属框共面,第一次将金属框由Ⅰ平移到Ⅱ,第二次将金属框绕cd 边翻转到Ⅱ,设先后两次通过金属框的磁通量的变化量的绝对值分别为1∆Φ和2∆Φ,则( )A .12∆Φ>∆ΦB .12∆Φ=∆ΦC .12∆Φ<∆ΦD .不能判断1∆Φ与2∆Φ的关系 4.关于磁感应强度,下列说法正确的是( )A .一小段通电导线放在磁感应强度不为零的位置,那么它受到的磁场力可能为零B .通电导线所受的磁场力为零,该处的磁感应强度也一定为零C .放置在磁场中1m 长的通电导线,通过1A 的电流,受到的磁场力为1N ,则该处的磁感应强度就是1TD .磁场中某处的磁感应强度的方向跟电流在该处受到的磁场力F 的方向相同 5.如图所示,在直角三角形acd 中,∠a =60︒,三根通电长直导线垂直纸面分别放置在a 、b 、c 三点,其中b 为ac 的中点。
三根导线中的电流大小分别为I 、2I 、3I ,方向均垂直纸面向里。
通电长直导线在其周围空间某点产生的磁感应强度B =kI r,其中I 表示电流强度,r 表示该点到导线的距离,k 为常数。
已知a 点处导线在d 点产生的磁感应强度大小为B 0,则d 点的磁感应强度大小为( )A.B0B.2B0C.3B0D.4B06.如图为三根通电平行直导线的断面图,若它们的电流大小都相同,且==,则A点的磁感应强度的方向是()AB AC ADA.垂直纸面指向纸外B.垂直纸面指向纸里C.沿纸面由A指向B D.沿纸面由A指向D7.如图所示,线圈两端接在电流表上组成闭合电路.在下列情况中,电流表指针不发生偏转的是()A.线圈不动,磁铁插入线圈B.线圈不动,磁铁从线圈中拔出C.磁铁不动,线圈上、下移动D.磁铁插在线圈内不动8.如图所示,两直导线中通以相同的电流I,矩形线圈位于两导线之间的实线位置Ⅰ,穿过线圈的磁通量为Φ,已知虚线位置Ⅱ与实线位置Ⅰ关于右边的直导线对称,虚线位置Ⅲ与两直导线的距离相等,虚线位置Ⅳ和虚线位置Ⅴ关于左边直导线对称,且与左边直导线的距离和实线位置Ⅰ与右边直导线的距离相等,现将线圈由实线位置移到图示各个虚线位置,则()A.将线圈由实线位置Ⅰ移到图示虚线位置Ⅱ时,磁通量大小不变B.将线圈由实线位置Ⅰ移到图示虚线位置Ⅲ时,磁通量变化大小为ΦC.将线圈由实线位置Ⅰ移到图示虚线位置Ⅳ时,磁通量变化为零D.将线圈由实线位置Ⅰ移到图示虚线位置Ⅴ时,磁通量大小不变9.在闭合铁芯上绕有一组线圈,线圈与滑动变阻器、电源构成闭合电路,假定线圈产生的磁感线全部集中在铁芯内,a、b、c三个闭合金属圆环的位置如图所示.当滑动变阻器的滑片滑动时,能产生感应电流的圆环是()A.a、bB.b、cC.a、cD.a、b、c10.三根通电长直导线平行放置,其截面构成等边三角形,O点为三角形的中心,通过三根直导线的电流大小分别用小I1,I2、I3表示,电流方向如图所示.当I1=I2=I3=I时,O点的磁感应强度大小为B,通电长直导线在某点产生的磁感应强度大小跟电流成正比,则下列说法正确的是()A.当I1=3I,I2=I3=I时,O点的磁感应强度大小为2BB.当I1=3I,I2=I3=I时,O点的磁感应强度大小为3BC.当I2=3I,I1=I3=I时,O点的磁感应强度大小为3 2BD.当I3=3I,I1=I2=I时,O点的磁感应强度大小为23B11.如图所示,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流. a、0、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a 、c两点处的磁感应强度的方向相同C.c、d两点处的磁感应强度大小相等,方向相反D.a、b两点处的磁感应强度大小相等,方向相反12.三根完全相同的长直导线互相平行,它们的截面处于一个正方形abcd的三个顶点a、b、c处,导线中通有大小相同的电流,导线a、c中电流同向且与b中电流方向相反,如图所示。
电磁场课后习题答案电磁场课后习题答案电磁场是物理学中一个重要的概念,涉及到电荷、电流和磁场的相互作用。
在学习电磁场的过程中,我们经常会遇到一些习题,这些习题旨在帮助我们更好地理解电磁场的基本原理和应用。
本文将给出一些电磁场课后习题的答案,希望能够对大家的学习有所帮助。
1. 一个带电粒子在匀强磁场中作圆周运动,其运动半径与速度之间的关系是什么?答:带电粒子在匀强磁场中作圆周运动时,受到的洛伦兹力与向心力相等。
洛伦兹力的大小为F = qvB,向心力的大小为F = mv²/R,其中q为电荷量,v为速度,B为磁感应强度,m为质量,R为运动半径。
将这两个力相等,可以得到qvB = mv²/R,整理得到v = qBR/m。
因此,速度与运动半径之间的关系是v 与R成正比。
2. 一个长直导线中有一电流I,求其所产生的磁场强度B与距离导线距离r之间的关系。
答:根据安培定律,长直导线所产生的磁场强度与电流和距离的关系为B =μ₀I/2πr,其中B为磁场强度,I为电流,r为距离,μ₀为真空中的磁导率。
可以看出,磁场强度与距离的关系是B与1/r成反比。
3. 一个平面电磁波的电场强度和磁场强度的振幅分别为E₀和B₀,求其能量密度u与E₀和B₀之间的关系。
答:平面电磁波的能量密度与电场强度和磁场强度的关系为u = ε₀E₀²/2 +B₀²/2μ₀,其中u为能量密度,ε₀为真空中的介电常数,μ₀为真空中的磁导率。
可以看出,能量密度与电场强度的振幅的平方和磁场强度的振幅的平方之间存在关系。
4. 一个平行板电容器的电容为C,两板间的距离为d,若电容器中充满了介电常数为ε的介质,请问在电容器中存储的电能与电容、电压和介电常数之间的关系是什么?答:平行板电容器存储的电能与电容、电压和介电常数之间的关系为W =1/2CV²,其中W为存储的电能,C为电容,V为电压。
当电容器中充满了介质后,介质的存在会使电容增加为C' = εC,因此存储的电能也会增加为W' =1/2C'V² = 1/2εCV²。
9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场()()22003322222IR IR B x R x R xμμ=≈>>+32202xr IR BS πμφ==v xr IR dt dx x r IR dt d 422042202332πμπμφε=--=-=9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ϖ的方向垂直于金属架COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ϖ向右滑动,v ϖ与MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ϖ不随时间改变,框架内的感应电动势i ε.解:12m B S B xy Φ=⋅=⋅,θtg x y ⋅=,vt x =22212/()/i d dt d Bv t tg dt Bv t tg εϕθθ=-=-=⋅,电动势方向:由M 指向N9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。
已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。
若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。
解:当线圈ABC 向右平移时,AB 和AC 边中会产生动生电动势。
当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02()IB a d μπ=+AC 中产生的动生电动势大小为:xr IRx vC DOxMθBϖv ϖ02()AC AC IbvBl v a d μεπ==+,方向沿CA 方向如图所示,在AB 边上取微分元dl ,微分元dl 中的动生电动势为,()AB d v B dl ε=⨯⋅v v v其方向沿BA 方向。
高中物理必修三第十三章电磁感应与电磁波初步重点知识点大全单选题1、隐形飞机的原理是在飞机研制过程中设法降低其可探测性,使之不易被敌方发现、跟踪和攻击。
根据你所学的物理知识,判断下列说法正确的是()A.运用隐蔽色涂层,无论距你多近的距离,你也不能看到它B.使用吸收雷达电磁波的材料,在雷达屏幕上显示的反射信息很小、很弱,很难被发现C.使用吸收雷达电磁波涂层后,传播到复合金属机翼上的电磁波在机翼上不会产生感应电流D.主要是对发动机、喷气尾管等因为高温容易产生紫外线辐射的部位采取隔热、降温等措施,使其不易被对方发现和攻击答案:B分析:根据题中物理情景可知,本题考查雷达,根据雷达工作原理的规律,运用障碍物反射电磁波的特性等,进行分析推断。
A.雷达向外发射电磁波,当电磁波遇到飞机时就要发生反射,雷达通过接收反射回来的电磁波,就可以测定飞机的位置,飞机运用隐蔽色涂层后还要反射电磁波,故A错误;B.使用吸收雷达电磁波的材料,可以减少电磁波的反射,故B正确;C.使用吸收雷达电磁波涂层后,机翼为导体,根据电磁感应知识可知,传播到复合金属机翼上的电磁波在机翼上仍会产生感应电流,故C错误;D.发动机、喷气尾管等采取隔热、降温等措施后仍会反射电磁波,故D错误。
故选B。
2、在“探究感应电流的规律”实验中,电路连接如图所示,合上开关,让铁芯从副线圈上端静止释放,并穿出线圈,已知铁芯长度与副线圈长度相同,则电流传感器采集到的电流图像是下图中的()A.B.C.D.答案:B让铁芯从副线圈上端静止释放,并穿出线圈,铁芯向下速度越来越大,则穿过副线圈的磁通量变化越来越快,线圈中的磁通量先增加后减少因此感应电流会变化方向,感应电流变大,ACD错误,B正确。
故选B。
3、下列关于电场线和磁感线的说法中正确的是()A.任意两条磁感线不相交,两条电场线也不相交B.电场线和磁感线都是闭合曲线C.电场线和磁感线都是电场或磁场中实际存在的线D.电场线越密的地方,同一试探电荷所受的电场力越小答案:AA.任意两条磁感线一定不相交,电场线也不相交,否则交点处有两个方向,违反唯一性的特点,故A正确;B.电场线是不闭合曲线,而磁感线是闭合的曲线,故B错误;C.电场线和磁感线都是假想的曲线,并不存在,故C错误;D.电场线越密的地方,电场强度越大,由公式F=qE知同一试探电荷所受的电场力越大,故D错误。
一 选择题 (共36分)1. (本题 3分)(2734) 两根平行的金属线载有沿同一方向流动的电流.这两根导线将: (A) 互相吸引. (B) 互相排斥.(C) 先排斥后吸引. (D) 先吸引后排斥. [ ]2. (本题 3分)(2595) 有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B v中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为 (A) 2/32IB Na . (B) 4/32IB Na .(C) °60sin 32IB Na . (D) 0. [ ]3. (本题 3分)(2657) 若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明: (A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行. (B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行. (C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直.[ ]4. (本题 3分)(2404) 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移. [ ]5. (本题 3分)(5137) 尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,当不计环的自感时,环中(A) 感应电动势不同. (B) 感应电动势相同,感应电流相同. (C) 感应电动势不同,感应电流相同.(D) 感应电动势相同,感应电流不同. [ ]6. (本题 3分)(1932) 如图所示,一矩形金属线框,以速度vv从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ ] BvIO(D)IO (C)O (B)I7. (本题 3分)(2417) 对于单匝线圈取自感系数的定义式为L =Φ /I .当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L(A) 变大,与电流成反比关系. (B) 变小. (C) 不变.(D) 变大,但与电流不成反比关系. [ ]8. (本题 3分)(2752) 在真空中一个通有电流的线圈a 所产生的磁场内有另一个线圈b ,a 和b 相对位置固定.若线圈b 中电流为零(断路),则线圈b 与a 间的互感系数: (A) 一定为零. (B)一定不为零.(C) 可为零也可不为零, 与线圈b 中电流无关. (D) 是不可能确定的.[ ]9. (本题 3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21.(C) 都大于L 21. (D) 都小于L 21. [ ]对于单匝线圈取自感系数的定义式为L =Φ /I .当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L(A) 变大,与电流成反比关系. (B) 变小. (C) 不变.(D) 变大,但与电流不成反比关系. [ ]11. (本题 3分)(5675) 真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 2002(21a I πµµ (B) 2002(21aI πµµ (C) 20)2(21I a µπ (D)2002(21aI µµ [ ]12. (本题 3分)(2415) 用导线围成如图所示的回路(以O 点为心的圆,加一直径),放在轴线通过O 点垂直于图面的圆柱形均匀磁场中,如磁场方向垂直图面向里,其大小随时间减小,则感应电流的流向为[ ]二 填空题 (共76分)13. (本题 3分)(5303) 一平面试验线圈的磁矩大小p m 为1×10-8 A ·m 2,把它放入待测磁场中的A 处,试验线圈如此之小,以致可以认为它所占据的空间内场是均匀的.当此线圈的p m 与z 轴平行时,所受磁力矩大小为M =5×10-9 N ·m ,方向沿x 轴负方向;当此线圈的p m 与y 轴平行时,所受磁力矩为零.则空间A 点处的磁感强度B v的大小为____________,方向为______________.14. (本题 5分)(2066) 一带电粒子平行磁感线射入匀强磁场,则它作________________运动.一带电粒子垂直磁感线射入匀强磁场,则它作________________运动. 一带电粒子与磁感线成任意交角射入匀强磁场,则它作______________运动.如图所示,一半径为R ,通有电流为I 的圆形回路,位于Oxy 平面内,圆心为O .一带正电荷为q 的粒子,以速度v v沿z 轴向上运动,当带正电荷的粒子恰好通过O 点时,作用于圆形回路上的力为________,作用在带电粒子上的力为________.16. (本题 5分)(2070) 截面积为S ,截面形状为矩形的直的金属条中通有电流I .金属条放在磁感强度为B v 的匀强磁场中,B v的方向垂直于金属条的左、右侧面(如图所示).在图示情况下金属条的上侧面将积累____________电荷,载流子所受的洛伦兹力f m =______________.(注:金属中单位体积内载流子数为n )17. (本题 5分)(2580) 电子质量m ,电荷e ,以速度v 飞入磁感强度为B 的匀强磁场中,v v与B v 的夹角为θ ,电子作螺旋运动,螺旋线的螺距h =________________________,半径R =______________________.18. (本题 3分)(2387) 已知面积相等的载流圆线圈与载流正方形线圈的磁矩之比为2∶1,圆线圈在其中心处产生的磁感强度为B 0,那么正方形线圈(边长为a )在磁感强度为B v的均匀外磁场中所受最大磁力矩为______________________.19. (本题 3分)(2096) 在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.20. (本题 5分)(2603) A 、B 、C 为三根共面的长直导线,各通有10 A 的同方向电流,导线间距d =10 cm ,那么每根导线每厘米所受的力的大小为=l F Ad d ______________________, =l F Bd d ______________________, =lF Cd d ______________________. (µ0 =4π×10-7 N/A 2) I半径为a 的无限长密绕螺线管,单位长度上的匝数为n ,通以交变电流i =I m sin ωt ,则围在管外的同轴圆形回路(半径为r )上的感生电动势为_____________________________.22. (本题 5分)(2702) 如图所示,一直角三角形abc 回路放在一磁感强度为B 的均匀磁场中,磁场的方向与直角边ab 平行 ,回路绕ab 边以匀角速度ω旋转 ,则ac 边中的动生电动势为__________________________,整个回路产生的动生电动势为____________________________.v23. (本题 3分)(2692) 有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO ′上,则直导线与矩形线圈间的互感系数为_________________.24. (本题 3分)(2525) 一自感线圈中,电流强度在 0.002 s 内均匀地由10 A 增加到12 A ,此过程中线圈内自感电动势为 400V ,则线圈的自感系数为L =____________.25. (本题 4分)(2619) 位于空气中的长为l ,横截面半径为a ,用N匝导线绕成的直螺线管,当符合________和____________________的条件时,其自感系数可表成V I N L 20)/(µ=,其中V 是螺线管的体积.26. (本题 3分)(2624) 一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I =3 A 时,环中磁场能量密度w =_____________ .(µ 0 =4π×10-7 N/A 2)27. (本题 3分)(5678) 真空中一根无限长直导线中通有电流I ,则距导线垂直距离为a 的某点的磁能密度w m =________________.有两个长度相同,匝数相同,截面积不同的长直螺线管,通以相同大小的电流.现在将小螺线管完全放入大螺线管里(两者轴线重合),且使两者产生的磁场方向一致,则小螺线管内的磁能密度是原来的__________倍;若使两螺线管产生的磁场方向相反,则小螺线管中的磁能密度为____________(忽略边缘效应).29. (本题 4分)(2180) 写出麦克斯韦方程组的积分形式:_____________________________,_____________________________, _____________________________,_____________________________.30. (本题 3分)(2198) 坡印廷矢量S v的物理意义是:_____________________________________________________________; 其定义式为 _____________________ .31. (本题 3分)(2339) 反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为∫∫⋅=VSV S D d d ρv v, ① ∫∫⋅⋅∂∂−=SL S t B l E v vv v d d , ②0d =∫⋅S S B vv , ③ ∫⋅∫⋅∂∂+=SL S t DJ l H v vv v v d )(d . ④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处.(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________ (3) 电荷总伴随有电场.__________________________在没有自由电荷与传导电流的变化电磁场中, 沿闭合环路l (设环路包围的面积为S )=∫⋅ll H vv d __________________________________________.=∫⋅ll E vv d __________________________________________.三 计算题 (共46分)33. (本题10分)(2737) 两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率d I /d t =α >0.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图所示.求线圈中的感应电动势E ,并说明线圈中的感应电流是顺时针还是逆时针方向.34. (本题10分)(2409) 如图所示,一半径为r 2电荷线密度为λ的均匀带电圆环,里边有一半径为r 1总电阻为R 的导体环,两环共面同心(r 2 >> r 1),当大环以变角速度ω =ω(t )绕垂直于环面的中心轴旋转时,求小环中的感应电流.其方向如何?35. (本题10分)(2410) 一内外半径分别为R 1, R 2的均匀带电平面圆环,电荷面密度为σ,其中心有一半径为r 的导体小环(R 1 >>r ),二者同心共面如图.设带电圆环以变角速度ω =ω(t )绕垂直于环面的中心轴旋转,导体小环中的感应电流i 等于多少?方向如何(已知小环的电阻为R ')?36. (本题 8分)(2138) 求长度为L 的金属杆在均匀磁场B v中绕平行于磁场方向的定轴OO '转动时的动生电动势.已知杆相对于均匀磁场B v的方位角为θ,杆的角速度为ω,转向如图所示.O无限长直导线旁有一与其共面的矩形线圈,直导线中通有恒定电流I ,将此直导线及线圈共同置于随时间变化的而空间分布均匀的磁场B v 中.设0>∂∂tB,当线圈以速度v v垂直长直导线向右运动时,求线圈在如图所示位置时的感应电动势.一 选择题 (共36分)1. (本题 3分)(2734) (A)2. (本题 3分)(2595) (D)3. (本题 3分)(2657) (A)4. (本题 3分)(2404) (B)5. (本题 3分)(5137) (D)6. (本题 3分)(1932) (C)7. (本题 3分)(2417) (C)8. (本题 3分)(2752) (C)9. (本题 3分)(2421) (D)10. (本题 3分)(2417) (C)11. (本题 3分)(5675) (B)12. (本题 3分)(2415) (B)二 填空题 (共76分)13. (本题 3分)(5303) 0.5 T 2分y 轴正方向 1分参考解:B p M m v v v ×=,由m p v平行y 轴时M = 0可知B v 必与y 轴平行,m p v沿z 轴时M 最大,故有 5.0==mp M B T由B p M m v v v ×=定出B v沿y 轴正方向.14. (本题 5分)(2066) 匀速直线 1分 匀速率圆周 2分 等距螺旋线 2分15. (本题 4分)(0361) 0 2分 0 2分16. (本题 5分)(2070) 负 2分 IB / (nS ) 3分17. (本题 5分)(2580) )/(cos 2eB m θv π 3分 )/(sin eB m θv 2分3分19. (本题 3分)(2096) 4 3分20. (本题 5分)(2603) 3×10-6N/cm 2分 0 2分3×10-6N/cm 1分21. (本题 3分)(2615) t a nI m ωωµcos 20π− 3分22. (本题 5分)(2702) 8/2B l ω 3分 0 2分23. (本题 3分)(2692) 0 3分24. (本题 3分)(2525) 0.400 H 3分25. (本题 4分)(2619) l >>a 2分 细导线均匀密绕 2分26. (本题 3分)(2624) 22.6 J ·m -3 3分27. (本题 3分)(5678) )8/(2220a I πµ 3分28. (本题 5分)(2425) 4 3分 0 2分29. (本题 4分)(2180) ∫∫⋅=V S V S D d d ρv v 1分 ∫∫⋅⋅∂∂−=S L S t B l E v v v v d d 1分 0d =∫⋅SS B v v 1分∫⋅∫⋅∂∂+=SL S t D J l H v v v v v d )(d 1分 30. (本题 3分)(2198) 电磁波能流密度矢量 2分 H E S v v v ×= 1分31. (本题 3分)(2339) ② 1分 ③ 1分 ① 1分32. (本题 4分)(5160) ∫∫⋅∂∂S S D t v v d 或 t D /d d Φ 2分 ∫∫⋅∂∂−S S B t v v d 或 t m /d d Φ− 2分三 计算题 (共46分)33. (本题10分)(2737) 解:(1) 载流为I 的无限长直导线在与其相距为r 处产生的磁感强度为: )2/(0r I B π=µ 2分以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通量为: 23ln 2d 203201π=π⋅=∫Id r r I d d dµµΦ 与线圈相距较近的导线对线圈的磁通量为:2ln 2d 20202π−=π⋅−=∫Id r r I d d dµµΦ 总磁通量 34ln 2021π−=+=Id µΦΦΦ 4分感应电动势为: 34ln 2d d )34(ln 2d d 00αµµπ=π=−=d t I d t ΦE 2分由E >0和回路正方向为顺时针,所以E 的绕向为顺时针方向,线圈中的感应电流 亦是顺时针方向. 2分解:大环中相当于有电流 2)(r t I λω⋅=2分这电流在O 点处产生的磁感应强度大小λωµµ)(21)2/(020t r I B == 2分以逆时针方向为小环回路的正方向,210)(21r t π≈λωµΦ 2分∴ tt r t i d )(d 21d d 210ωλµΦπ−=−=E tt R r R i i d )(d 2210ωλµ⋅π−==E 2分方向:d ω(t ) /d t >0时,i 为负值,即i 为顺时针方向.1分 d ω(t ) /d t <0时,i 为正值,即i 为逆时针方向.1分35. (本题10分)(2410) 解:带电平面圆环的旋转相当于圆环中通有电流I .在R 1与R 2之间取半径为R 、宽度为d R 的环带,环带内有电流R t R I d )(d ωσ= 2分d I 在圆心O 点处产生的磁场R t R I B d )(21/.d 21d 00σωµµ== 2分由于整个带电环面旋转,在中心产生的磁感应强度的大小为))((21120R R t B −=σωµ 1分选逆时针方向为小环回路的正方向,则小环中2120))((21r R R t π−≈σωµΦ 1分tt R R r t i d )(d )(2d d 1220ωσµΦ−π−=−=E tt R R R r R i i d )(d 2)( 1220ωσµ⋅′−−=′=E 2分方向:当d ω (t ) /d t >0时,i 与选定的正方向相反.1分 当d ω (t ) /d t <0时,i 与选定的正方向相同.1分36. (本题 8分)(2138) 解:在距O 点为l 处的d l 线元中的动生电动势为d E l B v v v d )(⋅×=v 2分θωsin l =v 2分∴ E ∫∫⋅π=×=Ld cos )21sin(v d )v (l B l B L αv v v ∫∫==ΛθωθθωL l l B l lB 02d sin sin d sin θω22sin 21BL = 3分 E 的方向沿着杆指向上端.1分 O B v v ×v解:取顺时针方向回路正向.设动生电动势和感生电动势分别用E 1和E 2表示,则总电动势EE = E 1 + E 2 l B l B 211v v −=E ))(22(00b a I a I l +π−π=µµv )(20b a a lIb +π=v µ 4分 ∫∂∂−=⋅∂∂−=S t B bl S t B v v d 2E 3分∴ bl tB b a a I ])(2[0∂∂−+π=vµE 1分。
第十三章电磁感应电磁场习题(一)教材外习题电磁感应习题一、选择题:1.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将(A)加速铜板中磁场的增加(B)减缓铜板中磁场的增加(C)对磁场不起作用(D)使铜板中磁场反向()2.在如图所示的装置中,当把原来静止的条形磁铁从螺线管中按图示情况抽出时,(A)螺线管线圈中感生电流方向如A点处箭头所示。
(B)螺线管右端感应呈S极。
(C)线框EFGH从图下方粗箭头方向看去将逆时针旋转。
(D)线框EFGH从图下方粗箭头方向看去将顺时针旋转。
()3.在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A)以情况Ⅰ中为最大(B)以情况Ⅱ中为最大(C)以情况Ⅲ中为最大(D)在情况Ⅰ和Ⅱ中相同()4.如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中。
不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)5.如图,一矩形线框(其长边与磁场边界平行)以匀速v 自左侧无场区进入均匀磁场又穿出,进入右侧无场区,试问图(A )—(E )中哪一图象能最合适地表示线框中电流i 随时间t 的变化关系?(不计线框自感)( )6.在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa '和bb ',当线圈aa '和bb '如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是(A )M 1 = M 2 ≠ 0 (B )M 1 = M 2 = 0(C )M 1 ≠ M 2,M 2=0(D )M 1≠M 2,M 2≠0( )7.真空中两根很长的相距为2a 的平行直导线与电源组成闭合回路如图。
一、选择题1.沈括在《梦溪笔谈》中记载了“以磁石磨针锋”制造指南针的方法,磁针“常微偏东,不全南也”。
他是世界上第一个指出地磁场存在磁偏角的人,比西方早了400年。
关于地磁场,下列说法中正确的是()A.地磁场只分布在地球的外部B.地理南极点的地磁场方向竖直向上C.地磁场穿过地球表面的磁通量为零D.地球表面各处地磁场的磁感应强度相等2.如图是漏电保护器的部分电路图,由金属环,线圈,控制器组成,其工作原理是控制器探测到线圈中有电流时会把入户线断开,即称电路跳闸,下列有关漏电保护器的说法正确的是()A.当接负载的电线中电流均匀变化时,绕在铁芯上的线圈中有稳定的电流B.当接负载的电线短路或电流超过额定值时,漏电保护器会发出信号使电路跳闸C.只有当接负载的电线漏电时,绕在铁芯上的线圈中才会有电流通过D.当接负载的电线中电流不稳定时,漏电保护器会发出信号使电路跳闸3.磁通量可以形象地理解为“穿过磁场中某一面积的磁感线的条数”,如图所示的磁场中S1、S2、S3为三个面积相同并且相互平行的线圈,穿过S1、S2、S3的磁通量分别是φ1、φ2、φ3并且都不为零,那么磁通量最大的是()A.φ1B.φ2C.φ3D.φ1、φ2、φ3一样大4.最早发现电流磁效应的科学家是()A.库仑B.安培C.伏特D.奥斯特5.某同学为检验某空间有无电场或者磁场存在,想到的以下方法中不可行的是()A.在该空间内引入检验电荷,如果电荷受到静电力作用说明此空间存在电场B.在该空间内引入检验电荷,如果电荷没有受到静电力作用说明此空间不存在电场C.在该空间内引入“检验电流”,如果通电导线受到磁场力作用说明此空间存在磁场D.在该空间内引入“检验电流”,如果通电导线没有受到磁场力作用说明此空间不存在磁场6.在磁感应强度为B0、方向竖直向上的匀强磁场中,水平放置一根长通电直导线,电流的方向垂直于纸面向里。
如图所示,a、b、c、d 是以直导线为圆心的同一圆周上的四点,其中c 点的磁感应强度为零,则下列说法正确的是()A.d 点的磁感应强度为 2B0B.b、d 两点的磁感应强度相同C.a 点的磁感应强度在四个点中最大D.b 点的磁感应强度与竖直方向成 45°斜向右上方7.如图所示,在通电螺线管附近放置四枚小磁针a、b、c、d,小磁针静止时,指向正确的是(涂黑的一端为N极)()A.a B.b C.c D.d8.如图所示,一根通电直导线垂直放在磁感应强度为1T的匀强磁场中,以导线为中心,R为半径的圆周上有a、b、c、d四个点,已知c点的实际磁感应强度为0,则下列说法中正确的是()A.直导线中电流方向垂直纸面向里B.a点的磁感应强度为2T,方向向右C.b点的磁感应强度为2T,方向斜向下,与B成45°角D.d点的磁感应强度为09.四根完全相同的长直导线互相平行,它们的截面处于一个正方形abcd的四个顶点处,导线中通有方向如图所示的电流,若每根通电导线在正方形中点处产生的磁感应强度大小均为B,则正方形中点处实际磁感应强度的大小为()A.0 B.2B C.22B D.5B10.如图所示,M、N和P是以MN为直径的半圆弧上的三点,O为半圆弧的圆心,∠MOP=60°,在M、N处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O点的磁感应强度大小为B1.若将M处长直导线移至P处,则O 点的磁感应强度大小为B2,那么B2与B1之比为A.3∶1 B.3∶2 C.1∶1 D.1∶211.如图所示,矩形闭合线圈abcd竖直放置,OO′为它的对称轴,直导线AB与OO′平行,且AB、OO′所在平面与线圈平面垂直.当AB中的电流I逐渐增大时,下列关于线圈中感应电流的说法中正确的是:( )A.有感应电流,方向为abcdaB.有感应电流,方向为adcbaC.有感应电流,方向不能确定D.没有感应电流12.通常,测电流采用安培表。
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
《大学物理》电磁感应练习题及答案一、简答题1、简述电磁感应定律答:当穿过闭合回路所围面积的磁通量发生变化时,不论这种变化是什么原因引起的,回路中都会建立起感应电动势,且此感应电动势等于磁通量对时间变化率的负值,即dtd i φε-=。
2、简述动生电动势和感生电动势答:由于回路所围面积的变化或面积取向变化而引起的感应电动势称为动生电动势。
由于磁感强度变化而引起的感应电动势称为感生电动势。
3、简述自感和互感答:某回路的自感在数值上等于回路中的电流为一个单位时,穿过此回路所围成面积的磁通量,即LI LI =Φ=Φ。
两个线圈的互感M M 值在数值上等于其中一个线圈中的电流为一单位时,穿过另一个线圈所围成面积的磁通量,即212121MI MI ==φφ或。
4、简述位移电流与传导电流有什么异同答:共同点:都能产生磁场。
不同点:位移电流是变化电场产生的(不表示有电荷定向运动,只表示电场变化),不产生焦耳热;传导电流是电荷的宏观定向运动产生的,产生焦耳热。
5 简述感应电场与静电场的区别?答:感生电场和静电场的区别6、写出麦克斯韦电磁场方程的积分形式。
答:⎰⎰==⋅s v q dv ds D ρ dS tB l E s L ⋅∂∂-=⋅⎰⎰d 0d =⋅⎰S S B dS t D j l H s l ⋅⎪⎭⎫ ⎝⎛∂∂+=⋅⎰⎰d 7、简述产生动生电动势物理本质答:在磁场中导体作切割磁力线运动时,其自由电子受洛仑滋力的作用,从而在导体两端产生电势差8、 简述磁能密度, 并写出其表达式答:单位体积中的磁场能量,221H μ。
9、 简述何谓楞次定律答:闭合的导线回路中所出现的感应电流,总是使它自己所激发的磁场反抗任何引发电磁感应的原因(反抗相对运动、磁场变化或线圈变形等).这个规律就叫做楞次定律。
10、全电流安培环路定理答:磁场强度沿任意闭合回路的积分等于穿过闭合回路围成的曲面的全电流 s d t D j l d H s e •⎪⎪⎭⎫ ⎝⎛∂∂+=•⎰⎰二、选择题1、有一圆形线圈在均匀磁场中做下列几种运动,那种情况在线圈中会产生感应电流( D )A 、线圈平面法线沿磁场方向平移B 、线圈平面法线沿垂直于磁场方向平移C 、线圈以自身的直径为轴转动,轴与磁场方向平行D 、线圈以自身的直径为轴转动,轴与磁场方向垂直2、有两个线圈,线圈1对线圈2的互感系数为21M ,而线圈2对线圈1的互感系数为12M .若它们分别流过1i 和2i 的变化电流且dt di dt di 21<,并设由2i 变化在线圈1中产生的互感电动势为12ε,由1i 变化在线圈1中产生的互感电动势为21ε,下述论断正确的是( D )A 、 12212112,εε==M MB 、 12212112,εε≠≠M MC 、 12212112,εε>=M MD 、 12212112,εε<=M M3、对于位移电流,下列四种说法中哪一种说法是正确的 ( A )A 、位移电流的实质是变化的电场B 、位移电流和传导电流一样是定向运动的电荷C 、位移电流服从传导电流遵循的所有规律D 、位移电流的磁效应不服从安培环路定理4、下列概念正确的是 ( B )。
高中物理电磁感应现象习题知识归纳总结及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。
垂直纸面向里的匀强磁场的磁感应强度为B ,磁场上下边缘的高度为L ,上边界距离滑轮足够远,线圈ab 边距离磁场下边界的距离也为L 。
现将物块由静止释放,已知线圈cd 边出磁场前线圈已经做匀速直线运动,不计空气阻力,重力加速度为g ,求:(1)线圈刚进入磁场时ab 两点的电势差大小 (2)线圈通过磁场的过程中产生的热量【答案】(1)3245ab U BL gL =;(2)32244532m g R Q mgL B L =-【解析】 【详解】(1)从开始运动到ab 边刚进入磁场,根据机械能守恒定律可得214sin 30(4)2mgL mgL m m v =++,25v gL =应电动势E BLv =,此时ab 边相当于是电源,感应电流的方向为badcb ,a 为正极,b 为负极,所以ab 的电势差等于电路的路端电压,可得332445ab U E gL == (2)线圈cd 边出磁场前线圈已经做匀速直线运动,所以线圈和物块均合外力为0,可得绳子的拉力为2mg ,线圈受的安培力为mg ,所以线圈匀速的速度满足22mB L v mg R=,从ab 边刚进入磁场到cd 边刚离开磁场,根据能量守恒定律可知2143sin 3(4)2m mg L mgL m m v Q θ=+++,32244532m g R Q mgL B L =-2.如图,POQ 是折成60°角的固定于竖直平面内的光滑金属导轨,导轨关于竖直轴线对称,OP =OQ =L .整个装置处在垂直导轨平面向里的足够大的匀强磁场中,磁感应强度随时间变化规律为B =B 0-kt (其中k 为大于0的常数).一质量为m 、长为L 、电阻为R 、粗细均匀的导体棒锁定于OP 、OQ 的中点a 、b 位置.当磁感应强度变为12B 0后保持不变,同时将导体棒解除锁定,导体棒向下运动,离开导轨时的速度为v .导体棒与导轨始终保持良好接触,导轨电阻不计,重力加速度为g .求导体棒: (1)解除锁定前回路中电流的大小及方向; (2)滑到导轨末端时的加速度大小; (3)运动过程中产生的焦耳热.【答案】⑴23kL ,顺时针方向或b→a ;⑵g -2204B L v mR ;⑶【解析】 【分析】 【详解】⑴导体棒被锁定前,闭合回路的面积不变,B t∆∆=k 由法拉第电磁感应定律知:E =t Φ∆∆=B S t ∆∆=23kL 由闭合电路欧姆定律知:I =E R 总=23kL由楞次定律知,感应电流的方向:顺时针方向或b→a ⑵导体棒刚离开导轨时受力如图所示根据法拉第电磁感应定律有:E =012B Lv 根据闭合电路欧姆定律知:I =E R根据安培力公式有:F =012ILB 解得:F =012ILB 由牛顿第二定律知:mg -F =ma解得:a =g -2204B L vR⑶由能量守恒知:mgh =212mv +Q 由几何关系有:h =3L 解得:Q =34mgL -212mv3.如图所示,MN 、PQ 为足够长的平行金属导轨.间距L=0.50m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R=5.0Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0T .将一根质量m=0.05kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数0.50μ=,当金属棒滑至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离 2.0m s =.已知210m/s g =, sin370.60︒=,cos370.80︒=.求:(1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒达到cd 处的速度大小;(3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 【答案】(1)22.0/a m s = (2) 2.0/v m s = (3)0.10Q J = 【解析】 【分析】根据牛顿第二定律求加速度,根据平衡条件求金属棒速度大小,由能量守恒求电阻R 上产生的热量; 【详解】(1)设金属杆的加速度大小a ,则sin cos mg mg ma θμθ-= 解得22.0m/s a =(2)设金属棒达到cd 位置时速度大小为V ,电流为I ,金属棒受力平衡,有sin cos mg BIL mg θμθ=+BLvI R=解得: 2.0m/s V =.(3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒,有21sin cos 2mgs mv mgs Q θμθ⋅=+⋅+ 解得:0.10J Q =4.如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场.若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:(1)棒进入磁场前,回路中的电动势E 大小;(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流I 与时间t 的关系式.【答案】(1)0.04 V ; (2)0.04 N , I =22Bv tR;【解析】 【分析】 【详解】⑴在棒进入磁场前,由于正方形区域abcd 内磁场磁感应强度B 的变化,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,在棒进入磁场前回路中的电动势为E ==0.04V⑵当棒进入磁场时,磁场磁感应强度B =0.5T 恒定不变,此时由于导体棒做切割磁感线运动,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,回路中的电动势为:e =Blv ,当棒与bd 重合时,切割有效长度l =L ,达到最大,即感应电动势也达到最大e m =BLv =0.2V >E =0.04V根据闭合电路欧姆定律可知,回路中的感应电流最大为:i m ==0.2A根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:F m =i m LB =0.04N 在棒通过三角形abd 区域时,切割有效长度l =2v (t -1)(其中,1s≤t≤+1s ) 综合上述分析可知,回路中的感应电流为:i ==(其中,1s≤t≤+1s )即:i =t -1(其中,1s≤t≤1.2s ) 【点睛】注意区分感生电动势与动生电动势的不同计算方法,充分理解B-t 图象的含义.5.如图所示,“<”型光滑长轨道固定在水平面内,电阻不计.轨道中间存在垂直水平面向下的匀强磁场,磁感应强度B .一根质量m 、单位长度电阻R 0的金属杆,与轨道成45°位置放置在轨道上,从静止起在水平拉力作用下从轨道的左端O 点出发,向右做加速度大小为a 的匀加速直线运动,经过位移L .求: (1)金属杆前进L 过程中的平均感应电动势.(2)已知金属杆前进L 过程中水平拉力做功W .若改变水平拉力的大小,以4a 大小的加速度重复上述前进L 的过程,水平拉力做功多少?(3)若改用水平恒力F 由静止起从轨道的左端O 点拉动金属杆,到金属杆速度达到最大值v m 时产生热量.(F 与v m 为已知量)(4)试分析(3)问中,当金属杆速度达到最大后,是维持最大速度匀速直线运动还是做减速运动?【答案】(1)22aBL LW +2maL (3)2202122-m m F R mv B v (4)当金属杆速度达到最大后,将做减速运动 【解析】 【详解】(1)由位移﹣速度公式得2aL =v 2﹣0所以前进L 时的速度为v 2aL前进L 过程需时t =2=vaLa 由法拉第电磁感应定律有:tE ∆Φ=∆ =212222B L LB S a BL t L aL ⨯⨯⨯∆==∆(2)以加速度a 前进L 过程,合外力做功W +W 安=maL所以W 安=maL ﹣W以加速度4a 前进L 时速度为'=v =2v合外力做功W F ′+W 安′=4maL由22A B L vF BIL R==可知,位移相同时:F A ′=2F A则前进L 过程W 安′=2W 安所以W F ′=4maL ﹣2W 安=2W +2maL(3)设金属杆在水平恒力作用下前进d 时F A =F ,达到最大速度,由几何关系可知,接入电路的杆的有效长度为2d ,则220(2)2⨯===⨯mA B d v F BIl F R d所以d=22mFR B v 由动能定理有212-=m Fd Q mv 所以:Q =Fd ﹣222021122=2-m m m F R mv mv B v (4)根据安培力表达式,假设维持匀速,速度不变而位移增大,安培力增大,则加速度一定会为负值,与匀速运动的假设矛盾,所以做减速运动。
一、选择题1.(0分)[ID :126778]如图所示,等腰直角三角形ABC 中,D 是AB 边的中点,置于B 点的直导线中通垂直纸面向里恒定电流时,D 点的磁感应强度大小为0B 。
若在C 点放置一根电流大小相同、方向相反的直导线,则D 点的磁感应强度变为( )A .02B ,方向向上B .02B ,方向向右C .02B ,方向垂直于AB 向上D .022B ,方向向上2.(0分)[ID :126774]三根完全相同的长直导线互相平行,通以大小和方向都相同的电流,它们的截面处于一个正方形abcd 的三个顶点a 、b 、c 处,如图所示,已知每根通电长直导线在其周围产生的磁感应强度与距该导线的距离成反比,通电导线b 在d 处产生的磁场其磁感应强度大小为B ,则三根通电导线产生的磁场在d 处的总磁感应强度大小为( )A .2B B .3BC .2.1BD .3.8B3.(0分)[ID :126770]如图所示,一束磁感线全部穿过两圆环A 、B ,圆环A 的面积大于圆环B 的面积,a 、b 是磁感线分布中的两点,则下列说法正确的( )A .穿过A 、B 两环的磁通量的大小不相等,A B Φ>ΦB .穿过A 、B 两环的磁通量的大小不相等,A B Φ<ΦC .a 、b 两点的磁感应强度的大小不相等,a b B B >D .a 、b 两点的磁感应强度的大小不相等,a b B B <4.(0分)[ID:126756]下列关于物理史实正确的是()A.安培建立了场的概念并引入电场线和磁感线来形象直观描述电场和磁场B.法拉第发现了电流的磁效应并建立了右手螺旋定则来判断电流周围磁场的方向C.奥斯特发现了电流的磁效应,首先建立了电和磁的联系D.奥斯特建立了安培定则来判断电流周围的磁场,同时提出了分子电流假说将磁体的磁场和电流的磁场归于相同本质——电荷的运动5.(0分)[ID:126754]如图所示,线圈两端接在电流表上组成闭合电路.在下列情况中,电流表指针不发生偏转的是()A.线圈不动,磁铁插入线圈B.线圈不动,磁铁从线圈中拔出C.磁铁不动,线圈上、下移动D.磁铁插在线圈内不动6.(0分)[ID:126753]关于磁通量,下列说法正确的是()A.磁通量不仅有大小而且有方向,所以是矢量B.磁感应强度越大,磁通量越大C.通过某一平面的磁通量为零,该处磁感应强度不一定为零D.磁通量就是磁感应强度7.(0分)[ID:126739]1831年8月29日,法拉第经历近十年的研究终于在一次实验中发现了电磁感应现象:把两个线圈绕在同一个铁环上(如图),一个线圈接到电源上,另一个线圈接入“电流表”,在给一个线圈通电或断电的瞬间,另一个线圈中也出现了电流。
电磁场精选复习题一、单项选择题(在答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题2分,共20分)。
1、导体在静电平衡下,其体内电荷密度( B )。
A.为常数B.为零C.不为零D.不确定2、两个点电荷对试验电荷的作用力可表示为两个力的( D )。
A.算术和B.代数和C.平方和D.矢量和3、电介质极化后,其内部存在( D )。
A. 自由正电荷B. 自由负电荷C. 自由正负电荷D. 电偶极子4、在两种导电介质的分界面处,电场强度的( A )保持连续.A.切向分量B.幅值C.法向分量D.所有分量5、介电常数为ε的介质区域中,静电荷的体密度为ρ,已知这些电荷产生的电场为E(x,y,z),而D(x,y,z)=εE(x,y,z)。
下面的表达式中正确的是( C )。
A. ▽·D=0B. ▽·E=ρ/ε0C. ▽·D=ρD. ▽×D=ρ6、介质的极化程度取决于:( D )。
A:静电场B: 外加电场C: 极化电场D: 外加电场和极化电场之和7、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。
A.ε0εrB. 1/ε0εrC. εrD. 1/εr8、梯度的:( C )。
A: 散度为0 B: 梯度为0 C: 旋度为09、旋度的:( A )。
A: 散度为0 B: 梯度为0 C: 旋度为0 10、导体电容的大小( C ) A.与导体的电势有关 B.与导体所带电荷有关 C.与导体的电势无关D.与导体间电位差有关11、下面的矢量函数中哪些可能是磁场:( B )。
A: r ar =H e B:()x y ay ax =-+H e e C: ()x y ax ay =+-H e e12、在两种介质的分界面上,若分界面上存在传导电流,则边界条件为( B ) A. H t 不连续,B n 不连续B. H t 不连续,B n 连续C. H t 连续,B n 不连续D. H t 连续,B n 连续13、磁介质中的磁场强度由( D )产生. A.自由电流 B.束缚电流C.磁化电流D.自由电流和束缚电流共同14、相同场源条件下,磁媒质中的磁感应强度是真空中磁感应强度的( C )倍。
第十三章习题解答13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为r 1,r 2;已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间;导线框长为a 宽为b ,求导线框中的感应电动势;分析:当导线中电流I 随时间变化时,穿过矩形线圈的磁通量也将随时间发生变化,用法拉第电磁感应定律d d i tΦε=-计算感应电动势,其中磁通量s B d S Φ=⎰,B 为两导线产生的磁场的叠加;解:无限长直电流激发的磁感应强度为02IB rμ=π;取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右;取回路的绕行正方向为顺时针;由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+, 垂直纸面向里通过微分面积dS adx =的磁通量为00122()2()I I d B dS B dS adx r x r x μμππ⎡⎤Φ===+⎢⎥++⎣⎦通过矩形线圈的磁通量为000122()2()bI I adx r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰ 012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭感生电动势012012012012d ln ln cos d 2()()ln cos 2i a r b r b I t t r r ar b r b I t r r μωΦεωμωω⎛⎫++=-=-+ ⎪π⎝⎭⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针;题图13-1 题图13-213-2 如题图13-2所示,有一半径为r =10cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B 中B =;圆形线圈可绕通过圆心的轴O 1O 2转动,转速n =600rev/min;求圆线圈自图示的初始位置转过/2π时,1 线圈中的瞬时电流值线圈的电阻为R =100Ω,不计自感;2 感应电流在圆心处产生的磁感应强度;分析:应用法拉第电磁感应定律求解感应电动势;应用载流圆环在其圆心处产生的磁场公式求出感应电流在圆心处产生的磁感应强度; 解:1 圆形线圈转动的角速度2=2060nπωπ= rad/s 设t =0时圆形线圈处在图示位置,取顺时针方向为回路绕行的正方向;则t 时刻通过该回路的全磁通2cos cos NB S NBS t NB r t ψωπω===电动势 2d sin d i NB r t tψεπωω=-= 感应电流 2sin ii NB r t I R Rεπωω== 将圆线圈自图示的初始位置转过/2π时,2t πω=代入已知数值 得: 0.99i I A =2 感应电流在圆心处产生的磁感应强度的大小为40 6.2210T 2ii I B Nrμ-==⨯i B 的方向与均匀外磁场B 的方向垂直;13-3 均匀磁场B 被限制在半径R =10cm 的无限长圆柱形空间内,方向垂直纸面向里;取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如题图13-3所示;设磁场以d 1T/s d B t =的匀速率增加,已知6cm Oa Ob ==,3πθ=,求等腰梯形回路abcd 感生电动势的大小和方向;分析:求整个回路中的电动势,采用法拉第电磁感应定律,本题的关键是确定回路的磁通量;解:设顺时针方向为等腰梯形回路绕行的正方向.则t 时刻通过该回路的磁通量题图13-3 题图13-4B S BS Φ==其中S 为等腰梯形abcd 中存在磁场部分的面积,其值为2211()sin 22S R oa θθ=- 电动势d d d d i B St t Φε=-=-2211d ()sin 22d BR oa tθθ⎡⎤=--⎢⎥⎣⎦ 代入已知数值 33.6810V i ε-=-⨯“–”说明,电动势的实际方向为逆时针,即沿adcba 绕向;用楞次定律也可直接判断电动势的方向为逆时针绕向;13-4 如题图13-4所示,有一根长直导线,载有直流电流I ,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度v 沿垂直于导线的方向离开导线.设t =0时,线圈位于图示位置,求:1 在任意时刻t 通过矩形线圈的磁通量m Φ;2 在图示位置时矩形线圈中的电动势i ε;分析:线圈运动,穿过线圈的磁通量改变,线圈中有感应电动势产生,求出t 时刻穿过线圈的磁通量,再由法拉第电磁感应定律求感应电动势;解:1 设线圈回路的绕行方向为顺时针;由于载流长直导线激发磁场为非均匀分布,02IB xμπ=;因此,必须由积分求得t 时刻通过回路的磁通量; 取坐标Ox 垂直于直导线,坐标原点取在直导线的位置,坐标正方向为水平向右,则在任意时刻t 通过矩形线圈的磁通量为00d d ln22b vtSa vtI Il b vtl x x a vtμμΦππ+++===+⎰⎰B S 2在图示位置时矩形圈中的感应电动势00()d d 2i t Ilv b a tabμΦεπ=-=-=电动势的方向沿顺时针绕向;13-5 如题图13-5所示为水平面内的两条平行长直裸导线LM 与L M '',其间距离为l ,其左端与电动势为0ε的电源连接.匀强磁场B 垂直于图面向里,一段直裸导线ab 横嵌在平行导线间并可保持在导线上做无摩擦地滑动,电路接通,由于磁场力的作用,ab 从静止开始向右运动起来;求:1 ab 达到的最大速度;2 ab 到最大速度时通过电源的电流I ;分析:本题是包含电磁感应、磁场对电流的作用和全电路欧姆定律的综合性问题;当接通电源后,ab 中产生电流;该通电导线受安培力的作用而向右加速运动,由于ab 向右运动使穿过回路的磁通量逐渐增加,在回路中产生感应电流,从而使回路中电流减小,当回路中电流为零时,直导线ab 不受安培力作用,此时ab 达到最大速度;解:1电路接通,由于磁场力的作用,ab 从静止开始向右运动起来;设ab 运动的速度为v ,则此时直导线ab 所产生的动生电动势i Blv ε=,方向由b 指向a .由全电路欧姆定理可得此时电路中的电流为0Blv i Rε-=ab 达到的最大速度时,直导线ab 不受到磁场力的作用,此时0i =;所以ab 达到的最大速度为max v Blε=2ab 达到的最大速度时,直导线ab 不受到磁场力的作用,此时通过电路的电流i =0;所以通过电源的电流也等于零;13-6 如题图13-6所示,一根长为L 的金属细杆ab 绕竖直轴O 1O 2以角速度ω在水平面内旋转,O 1O 2在离细杆a 端L /5处;若已知均匀磁场B 平行于O 1O 2轴;求ab 两端间的电势差U a -U b . 分析:由动生电动势表达式先求出每段的电动势,再将ab 的电动势看成是oa 和ob 二者电动势的代数和,ab 两端的电势差大小即为ab 间的动生电动势大小;求每段的电动势时,由于各处的运动速度不同,因此要将各段微分成线元dl ,先由动生电动势公式计算线元dl 的两端的动生电动势i d ε,再积分计算整段的动生电动势;解:设金属细杆ab 与竖直轴O 1O 2交于点O ,将ab 两端间的动生电动势看成ao 与ob 两段动生电动势的串联;取ob 方向为导线的正方向,在铜棒上取极小的一段线元dl ,方向为ob 方向;线元运动的速度大小为v l ω=;由于,,v B dl 互相垂直;所以dl 两端的动生电动势()i d v B dl vBdl B ldl εω=⨯=-=-ob 的动生电动势为242501416d d 2550L ob i abL Bl l B B L εεωωω⎛⎫==-=-=- ⎪⎝⎭⎰⎰动生电动势ob ε的方向由b 指向O ;同理oa 的动生电动势为题图13-5 题图13-6225011d d 2550L oa i baL Bl l B B L εεωωω⎛⎫==-=-=- ⎪⎝⎭⎰⎰动生电动势oa ε的方向由a 指向O ;所以ab 两端间的的动生电动势为2310ab ao ob oa ob B L εεεεεω=+=-+=-动生电动势ab ε的方向由a 指向了b ;a 端带负电,b 端带正电;ab 两端间的电势差2310a b ab U U B L εω-==-b 端电势高于a 端;13-7 如题图13-7所示,导线L 以角速度ω绕其端点O 旋转,导线L 与电流I 在共同的平面内,O 点到长直电流I 的距离为a ,且a >L ,求导线L 在与水平方向成θ角时的动生电动势的大小和方向;分析:载流长直导线产生磁场,导线L 绕O 旋转切割磁力线;由于切割是不均匀的磁场,而且导体各处的运动速度不同,所以要微分运动导线,先由动生电动势公式计算线元dl 的两端的动生电动势i d ε,再积分计算整段的总动生电动势;解:取OP 方向为导线的正方向,在导线OP 上某处取极小的一段线元dl ,方向为OP 方向;线元运动的速度大小为v l ω=;由于,,v B dl 互相垂直;所以dl 两端的动生电动势()d v B dl vBdl B ldl εω=⨯=-=-将载流长直导线在该处激发磁场02(cos )IB a l μπθ=+代入,积分得导线L 在与水平方向线成θ角时的动生电动势为:()00d 2cos L i OP i I ldla l ωμεεπθ==-+⎰⎰020(cos )(cos )2cos (cos )LI a l ad l a l ωμθθπθθ+-=+⎰题图13-7 题图13-802+cos cos In 2cos I a L L a a ωμθθπθ⎛⎫=--⎪ ⎭⎝ 动生电动势的方向由P 指向O ;13-8 如题图13-8所示半径为r 的长直密绕空心螺线管,单位长度的绕线匝数为n ,所加交变电流为I =I 0sin ωt ;今在管的垂直平面上放置一半径为2r ,电阻为R 的导线环,其圆心恰好在螺线管轴线上;1计算导线环上涡旋电场E 的值且说明其方向; 2计算导线上的感应电流i I ;3计算导线环与螺线管间的互感系数M ;分析:电流变化,螺线管内部磁场也变化,由磁场的柱对称性可知,由变化磁场所激发的感生电场也具有相应的对称性,感生电场线是一系列的同心圆;根据感生电场的环路定理,可求出感生电场强度;由法拉第电磁感应定律及欧姆定律求感应电流,由互感系数定义式求互感系数; 解:1以半径为2r 的导线环为闭合回路L ,取回路L 的绕行正方向与B 呈右旋关系,自上向下看为逆时针方向;由于长直螺线管只在管内产生均匀磁场0B nI μ=,导线环上某点涡旋电场E 的方向沿导线环的切向;所以由规律LS BE dl dS t∂=-∂⎰⎰可得 22(2)dB E r r dtππ=-导线环上涡旋电场E 的值为00cos 44n r r dBE I t dt μωω=-=- 若cos ωt >0,E 电场线的实际走向与回路L 的绕行正方向相反,自上向下看为顺时针方向;若cos ωt <0,E 电场线的实际走向与回路L 的绕行正方向相同,自上向下看为逆时针方向; 2 导线上的感应电流i I22001cos ii d r dB r I nI t R R dt R dt RεππμωωΦ==-=-=3导线环与螺线管间的互感系数为220B r M n r I IπμπΦ===13-9 电子感应加速器中的磁场在直径为0.50m 的圆柱形区域内是匀强的,若磁场的变化率为×10-2T/S;试计算离开中心距离为0.10m 、0.50m 、1.0m 处各点的感生电场; 分析:由磁场的柱对称性可知,变化磁场所激发的感生电场分布也具有相应的对称性,即感生电场的电场线是一系列以圆柱体中心为轴的同心圆;根据LS BE dl dS t∂=-∂⎰⎰可求出感生电场强度;解:以圆柱形的区域的中心到各点的距离为半径,作闭合回路L ;取回路L 的绕行正方向与B呈右旋关系,为顺时针方向;由于回路上各点处的感生电场E 沿L 的切线方向;所以由规律LS BE dl dS t∂=-∂⎰⎰可得 22()2()LdB r r R dtE dl E r dB R r R dtπππ⎧-<⎪⎪==⎨⎪->⎪⎩⎰得 2d ()2d d ()2d r Br R tE R B r R r t⎧-<⎪⎪=⎨⎪->⎪⎩式中“-”说明:若d 0d Bt>,E 的实际方向与假定方向相反,否则为一致; r =0.10m 时,r <R , 4d || 5.010V/m 2d r BE t-==⨯r =0.50m 时, r >R , 24d || 6.2510V/m 2d R BE r t -==⨯ r =1.10m 时,r >R , 24d || 3.1310V/m 2d R BE r t-==⨯ 13-10 如题图13-10所示,一个限定在半径为R 的圆柱体内的均匀磁场B 以10-2T/s 的恒定变化率减小;电子在磁场中A 、O 、C 各点处时,它所获得的瞬时加速度大小、方向各为若干 设r =5.0cm; 分析:根据对称性,由感生电场的环路定理求出感生电场强度,由感生电场力及牛顿第二定律求出瞬时加速度;解:以圆柱形区域的中心到各点的距离为半径,作闭合回路L ;取回路L 的绕行正方向与B 呈右旋关系,由于回路上各点处的感生电场E 沿L 的切线方向;所以由规律题图13-10 题图13-11d d Ll t∂=-∂⎰⎰S BE S 可得 2d d 2d LB E r r t=π=-π⎰E l r <R 得 d 2d r BE t=-由于圆柱体内的均匀磁场B 以10-2T/s 的恒定变化率减小.所以d 0d Bt<,E 的实际方向与假定方向一致,为顺时针方向的切线方向;电子受到的电场力为e F eE =-,其方向为逆时针的切线方向; 瞬时加速度的大小为:d 2d eE e r B a m m t== 由于r A =0.05m,所以A 处的瞬时加速度的大小为:724.410/A a m s =⨯,方向为水平向右; 由于r C =0.05m,所以C 处的瞬时加速度的大小为:724.410/C a m s =⨯,方向为水平向左;由于r O =0,所以O 处的瞬时加速度:0O a =13-11 真空中的矩形截面的螺线环的总匝数为N ,其它尺寸如题图13-11所示,求它的自感系数;分析:自感系数一般可由LI ψ=计算,可见计算自感系数关键是确定穿过自感线圈的磁通量;假设螺线管通有电流,求出磁感应强度,再求出磁通量、磁通链,即可求出自感系数; 解:设螺绕管通有电流I ,由安培环路定理可得管内距轴线r 处的磁场强度为2NI H r =π, 2NI B H rμμ==π 通过某一截面的磁通量210021d d ln22R SR NINIhR B S h r rR μμΦ===ππ⎰⎰⎰螺绕管的磁通链2021ln2N N IhR N R μψΦ==π 自感系数:2021ln 2NN hR L IR ψμ==π13-12 设一同轴电缆由半径分别为1r 1和2r 的两个同轴薄壁长直圆筒组成,电流由内筒流入,由外筒流出,如题图13-12所示;两筒间介质的相对磁导率r 1μ=,求同轴电缆1 单位长度的自感系数;2单位长度内所储存的磁能;分析:先求磁场、磁通量,由自感系数定义式求自感系数,再由自感磁能表达式求磁能; 解:1电流由内筒流入,由外筒流出时,在内外筒之间产生的磁场为B=02Irμπ见11-19;通过内外筒之间单位长度截面的磁通量为212121d 1d lnln r Sr IIr x xr r L r μμΦμΦI 000===2π2π∴==2π⎰⎰S B2单位长度内所储存的磁能220211ln 24m I r W LI r μπ==13-13 一无限长直导线通以电流I =I 0sin ωt ,和直导线在同一平面内有一矩形线框,其短边与直导线平行,线框的尺寸及位置如题图13-13所示,且b /c =3;求: 1 直导线和线框的互感系数; 2 线框中的互感电动势;分析:互感系数由MI =φ计算,计算互感系数关键是确定穿过互感线圈的磁通量; 解:1 无限长直导线产生的磁场02IB r μπ=;取矩形线框的正法线方向为垂直纸面向里,通过矩形线框的磁通量为d d d ln ln 3bcSIIa x a xxxIa Ia b c μμΦμμ0000==-2π2π==2π2π⎰⎰⎰S B∴ 0ln 32aM IμΦ==π2线框中的互感电动势00ln 3d cos d 2i a I IMt t μωεω=-=-πi ε为正时,电动势的方向沿顺时针绕向;i ε为负时,电动势的方向沿逆时针绕向;13-14 一圆环,环管横截面的半径为a ,中心线的半径为R Ra ;有两个彼此绝缘的导线圈题图13-12 题图13-13都均匀地密绕在环上,一个N 1匝,另一个N 2匝,求: 1两线圈的自感L 1和L 2; 2两线圈的互感M ; 3M 与L 1和L 2的关系; 分析:由于Ra ,环中的磁感应强度可视为均匀;设两个线圈通有电流1I 、2I ,求出穿过螺线管线圈的磁通链数,进而求出自感、互感系数;解:1设N 1匝螺绕管线圈中通有电流I 1,由于中心线的半径R 环管横截面的半径a ,所以螺绕管内的磁场01112N I B Rμ=π,通过螺绕管线圈的磁通链数为222011011111122N I N a N B S N a I RRμμψ==π=πN 1匝螺绕管线圈自感系数:22011112N a L I Rμψ==同理,N 2匝螺绕管线圈自感系数:22022222N a L I Rμψ==2N 1匝螺绕管线圈产生的磁场B 1,通过N 2匝螺绕管线圈的磁通链数为2201101221212122N I N N a N B S N a I RRμμψ==π=π两线圈的互感20122112N N a M I Rμψ==3M 与L 1和L 2的关系22220120222N N a N aM RRμμ===13-15 一圆柱体长直导线,均匀地通有电流I ,证明导线内部单位长度储存的磁场能量为2m 0/(16)W I μ=π设导体的相对磁导率r 1μ≈;分析:均匀通有电流的长直导线,其内部和外部均存在磁场,且磁场分布呈轴对称性;据题意,只需求得单位长度导线内所储存的磁能,因此根据磁能密度公式,求得体元内的磁能,然后对圆柱内部的磁能进行积分即可;解:设圆柱形导体的半径为R .由安培环路定律可得长直导线内的磁场02,2rB I R μ=π r<R导线内的磁能密度222200m 2240012228r I r B w I R R μμμμ⎛⎫===⎪ππ⎝⎭在导线内取单位长度的同轴薄圆柱筒体元d 2d V r r =π 其磁能为 230m m 4d d d 4I W w V r r R μ==π单位长度导体柱内储存的磁场能量为22300m m 4d d 416RI I W W r r R μμ===ππ⎰⎰13-16 平行板电容器的电容为C=μF,两板上的电压变化率为dU/dt =×105V/s,则该平行板电容器中的位移电流为多少;分析:根据平行板电容器的性质,平行板间为均匀电场,电位移D 均匀分布,由平行板电容器场强与电压关系式,求出电位移通量ψ与电压U 的关系,并求出位移电流; 解:设平行板电容器的极板面积S 、间距d ,其间电位移通量为00U DS ES S dψεε=== 对平行板电容器,其电容为0SC dε=,代入上式得CU ψ= 位移电流为65d d d 2010 1.5103A d d UI C t tψ--===⨯⨯⨯= 13-17 一平行板电容器,极板是半径为R 的两圆形金属板,极板间为空气,此电容器与交变电源相接,极板上电量随时间变化的关系为q =q 0sin ωt ω为常量,忽略边缘效应,求: 1电容器极板间位移电流及位移电流密度;2极板间离中心轴线距离为rr <R 处的b 点的磁场强度H 的大小;3当/4t ω=π时,b 点的电磁场能量密度即电场能量密度与磁场能量密度之和; 分析:根据电流的连续性,电容器极板间位移电流等于传导电流求解位移电流;忽略边缘效应,极板间位移电流均匀分布求解位移电流密度;根据全电流安培环路定理求出磁场强度极板间的磁场强度;由极板间电场强度、磁场强度可求得电磁场能量密度; 解:1电容器极板间位移电流d 00d cos cos d UI CCU t q t tωωωω=== 或由电流连续性得:0cos d dqI q t dtωω== 位移电流密度02cos d d I q t S R ωωδπ== 2以中心轴线为圆心,过b 点作一半径为rr <R 的圆为回路,由全电流安培环路定理'd LH dl I =⎰,有2202cos 2d q t H r r r R ωωπδπππ==解得02cos 2q r tH Rωωπ=3 t ω=π/4时,0022cos 24q rrH R Rωπωππ/4== 0022000sin /412q E R R πσεεππε=== b 点的电磁场能量密度22222000024012244e mw w w E H q r R εμμωπε=+⎛⎫=+=+ ⎪⎝⎭13-18 由一个电容C =μF 的电容器和一个自感为L =10mH 的线圈组成的LC 电路,当电容器上电荷的最大值Q=×10-5C 时开始作无阻尼自由振荡;试求 1电场能量和磁场能量的最大值;2当电场能量和磁场能量相等时,电容器上的电荷量; 分析:由电容器储能,自感磁能,求电场能量,磁场能量;解:1由初始条件可知,电磁振荡的初相位0ϕ=.所以电容器上的电量振荡表达式为0cos q Q t ω=自感线圈上的电流振荡表达式为0sin dqI Q t dtωω==- 系统固有振动角频率ω=由于电场能量为2220cos 22e Q Q W t C Cω==,所以电场能量的最大值为 240 4.510J 2eMAXQ W C-==⨯ 由于磁场能量为2220sin 22m LI LI W t ω==,所以磁场能量最大值为 22400 4.510J 22mMAXLI Q W C-===⨯电场能量和磁场能量的最大值相同,都与系统总能量相等;2 电场能量和磁场能量相等时,e m W W = 解得2cos 2t ω=±所以电容器上的电荷量为5024.310C 2q Q -=±=±⨯ 13-19 一个沿负z 方向传播的平面电磁波,其电场强度沿x 方向,传播速度为c ;在空间某点的电场强度为300cos 2V /m 3x E vt ππ⎛⎫=+ ⎪⎝⎭试求在同一点的磁场强度表达式,并用图表示电场强度和传播速度之间相互关系;分析:根据电场强度与磁场强度的定量关系可得该点的磁场强度; 解:由于平面电磁波沿负z 方向传播,某点电场强度E 的振动方向沿x 轴正方向,根据电场强度、磁场强度和传播方向三者满足右旋关系,则该点磁场强度的振动方向沿负y 轴方向;由此,根据电场强度与磁场强度的定量关系式可得该点的磁场强度表示式为000.8cos 2A/m 3y x H E vt εππμ⎛⎫=-=-+ ⎪⎝⎭ 用坡印廷矢量S 的方向表示电磁波的传播方向;电场强度、磁场强度和电磁波的传播方向坡印廷矢量三者满足关系S E H =⨯;题13-19解图。
电磁感应练习题及解答电磁感应练习题及解答电磁感应是物理学中的一个重要概念,涉及到电磁场的变化过程中电场和磁场相互作用产生的现象。
它在日常生活和科学研究中都有广泛的应用。
下面是一些电磁感应练习题及解答,供大家进行练习。
1. 一根长导线以速度v从北向南方向通过均匀磁场B,该导线的两端分别连接一个电阻为R的电灯泡。
求当导线通过磁场过程中,电灯泡亮起的时间。
解答:根据法拉第电磁感应定律,导线通过磁场时产生感应电动势,导致电流流过电灯泡。
所以,在导线通过磁场期间,电灯泡会一直亮起。
因此,电灯泡亮起的时间等于导线通过磁场的时间。
2. 一个长方形线圈的边长为a和b,放置在匀强磁场B中,使得长方形线圈的法线与磁场方向垂直。
求长方形线圈在匀强磁场中的磁通量。
解答:根据法拉第电磁感应定律,在匀强磁场中,线圈的磁通量可以通过以下公式计算:Φ = B * A * cosθ,其中B表示磁场强度,A表示线圈的面积,θ表示磁场方向与线圈法线方向之间的夹角。
由于线圈的法线与磁场方向垂直,θ为0,所以磁通量Φ = B * A。
3. 在一个闭合导线中有一个直径为d的圆环,该圆环的电阻为R。
当一个恒定的磁场B垂直于圆环平面时,求圆环上感应的电动势。
解答:根据法拉第电磁感应定律,当磁场的变化导致一个闭合回路中的磁通量发生改变时,会在回路中产生感应电动势。
在这个问题中,磁场是恒定的,所以不会产生感应电动势。
4. 一个导线带有电流I,在该导线旁边有另一条导线,它们平行。
第二条导线的长度为L,并且距离第一条导线的距离为d。
求第二条导线中感应的电动势。
解答:当电流从第一条导线中流过时,会在周围产生磁场。
第二条导线因为位于磁场中,所以会感受到这个磁场产生的磁通量的改变。
根据法拉第电磁感应定律,第二条导线中的感应电动势可以通过以下公式计算:ε = -dΦ/dt,其中Φ表示磁通量的变化率。
在这个问题中,需要计算第二条导线中的磁通量的变化率,并由此得出感应电动势。
第十三章电磁感应
一选择题
3.如图所示,一匀强磁场B 垂直纸面向内,长为L 的导线ab 可以无摩擦地在导轨上滑动,除电阻R 外,其它部分电阻不计,当ab 以匀速v 向右运动时,则外力的大小是:
R
L B R
L B R
L B R BL L B2
222
2
22
2
2
E. D. 2 C. B. A. v
v v v v
解:导线ab 的感应电动势v BL =ε,当ab 以匀速v 向右运动时,导线ab 受到的外力与安培力是一对平衡力,所以R
L B L R B
F F v 2
2
=
==ε安外。
所以选(D )
4.一根长度L 的铜棒在均匀磁场B 中以匀角速度ω旋转着,B 的方向垂直铜棒转动的平面,如图,设t = 0时,铜棒与Ob 成θ角,则在任一时刻t 这根铜棒两端之间的感应电动势是:()
A. cos(2θωω+t B L
B.
t B L ωωcos 2
12
C. cos(22θωω+t B L
D. B L 2ω
E.
B L 2
2
1ω
解:⎰⎰⎰=
==⋅⨯=L L
BL l l B l B 002
2
1d d d ω
ωεv l B v (所
以选(E )
6.半径为R 的圆线圈处于均匀磁场B 中,B 垂直于线圈平面向上。
如果磁感应强度为B =3 t 2+2 t +1,则线圈中的感应电场为:()
A .2π(3 t + 1R 2 ,顺时针方向;B.2π(3 t + 1R 2 ,逆时针方向; C . (3 t + 1R ,顺时针方向; D . (3 t + 1R ,逆时针方向;解:由⎰⎰
⋅∂∂-=⋅S
B l E d d i t ,则感应电场的大小满足
选择题4图
选择题3图
v
2
i π 26(π2R
t R E +=⋅
解出 E i = (3 t + 1R 所以选(C )。
7.在圆柱形空间内有感应强度B 的均匀磁场,如图所示,B 的大小以速率d B/d t 变化,在磁场中有C ,D 两点,其间可放置直导线和弯曲导线,则(
A .电动势只在直导线中产生
B .电动势只在弯曲导线中产生
C .电动势在直导线和弯曲导线中产生,且两者大小相等
D .直导线中的电动势小于弯曲导线中的电动势解:在圆柱形空间内的感生电场是涡选场,电场线是与圆柱同轴的同心圆,因为⎰⋅=l
E d i ε,所以弯曲导线中的电动势
比直导线中的电动势大。
所以选(D )。
二填空题
1.如图所示,一很长的直导线通有交变电流I = I 0 sinωt ,它旁边有一长方形线圈ABCD ,长为l ,宽为b -a ,线圈与导线在同一平面内,则回路ABCD 中的感应电动势。
解:在矩形线圈上距直导线x 处,取一宽为d x ,长为
l ,且与直导线平行的长条形面积,该面积上磁感应强度
为x I
B π20μ= 磁通量 x x
l I S B Φd π2 d d 0μ== 整个线圈的磁通量 a
b l I x x
Il Φb
a π
2 d π200⎰=
=μμ
感应电动势 t I a
b
l t I a b l
t
Φωωμμεc o s (l π2d d (l π2d d 000-==
-
= 2.将条形磁铁插入与冲击电流计串联的金属环中时,有q = 2.0×10-5
C 的
电荷通过电流计,若连接电流计的电路总电阻R = 25Ω,则穿过环磁通的变化∆Φ 。
解:感生电流t
R R
I d d Φ=
=
ε,又因为t
q I d d =,所以有
t
q t
R d d d d =
φ,
即 Wb 105100. 22545--⨯=⨯⋅=∆=∆Φq R
8.一个薄壁纸筒,长为30cm 、截面直径为3.0cm ,筒上绕有500匝线圈,×× ×
×
× ×选择题7图
I l 填空题1图
纸筒内用μ r = 5000的铁芯充满,则线圈的自感系数为。
解:H
(7. 3
015. 0(π3
. 0 500(10
π450002
2
7
2
=⨯⨯
⨯⨯==-S l
N L μ
三计算题
1.两根无限长平行直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率d I /dt =α>0。
一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图所示,求线圈中的感应电动势ε,并说明线圈中的感应电动势是顺时针还是逆时针。
解:通过正方形线圈的总磁通为(以顺时针绕向为线圈回路的正方向):
r d r I
r d r
I
d
d
d
d
d π2d π22032021⋅⋅⎰-⋅⋅⎰=+=μμΦΦΦ
3
4ln
π
22ln π
22
3ln
π
2000Id Id Id μμμ-
=-
=
感应电动势为:
3
4
ln π2d d 34(lnπ2d d 00αμμΦ
εd t I d
t ==-=
由于ε>0,所以ε的绕向为顺时针方向。
3.如图,有两条相距l 的平行长直光滑裸导线MN 、M'N' ,其两端分别与电阻R 1、R 2相连;匀强磁场B 垂直于图面向里;裸导线ab 垂直搭在平行导线上,并在外力作用下以速率v 平行于导线MN 向右作匀速运动,裸导线MN 、M'N' 与ab 的电阻均不计;
(1)求电阻R 1与R 2中的电流I 1与I 2,并说明其流向;
(2)设外力提供的功率不能超过某值P 0,求导线ab 的最大速率。
解:(1)导线ab 中的动生电动势
ε=B /v 不计导线电阻时,a ,b 两点电势差
U a
-U b
=ε = Bl v
故 I 1 =(U a - U b )/ R 1 = Bl v / R 1 由M 流向M ' I 2 =(U a - U b )/ R 2=Bl v / R 2 由N 流向N '
(2 外力提供的功率等于两电阻上消耗的焦耳热功率 P = R 1 I 12 +R 2 I 22 = B 2 l 2 v 2 (R 1+R 2)/ R1R 2
′ R R 2 计算题3图
计算题1图
故 B 2l 2v 2
(R 1+R 2)/ R1R 2≤P 0 最大速率 2
1021m 1R R P R R Bl
+=
v
6.在一个长直密绕的螺线管中间放一正方形小线圈,若螺线管长1m ,绕了1000匝,通以电流I = 10cos100πt ( SI ,正方形小线圈每边长5cm ,共100匝,电阻为1Ω,求线圈中感应电流最大值(正方形线圈的法线方向与螺线管的轴线方向一致)。
解: n =1000(匝/m )B =μ0nI
nI a B a 022μ=⨯=Φ
100sin 10
d d d d 1
2
02
t t
I n
Na t
N
πφ-⨯=-=-=π
με
A 99. 0A 10
/1
2
m
m =⨯==-π
ε
R I
第十四章电磁场
一选择题
1.对位移电流,有下述四种说法,请指出哪一种说法正确。
()(A )位移电流是由变化电场产生的。
(B )位移电流是由线性变化磁场产生的。
(C )位移电流的热效应服从焦尔—楞次定律。
(D )位移电流的磁效应不服从安培环路定理。
解:本题选(A )。
2.在感应电场中电磁感应定律可以写成t
L d d d K Φ-=⋅l E ,式中E K 为感
应电场的电场强度。
此式表明:()(A )闭合曲线l 上E K 处处相等。
(B )感应电场是保守场。
(C )感应电场的电力线不是闭合曲线。
(D )在感应电场中不能像对静电场那样引入电势的概念。
解:本题选
(D )。
计算题6图。