lk ( xk 1 ) 0
n=2的情况,假定插值节点为
xk 1 , xk , xk 1 , 要求一个二次插值多项式L2 ( x),使它满足 L2 ( x j ) y j ( j k 1, k , k 1)
y L2 ( x)在几何上就是通过三点(xk-1 , yk 1 ),(xk , yk ),(xk+1, yk 1 )的抛物线
插值法
§2.1 §2.2 §2.3 §2.4 §2.5 §2.6 §2.7 引言 拉格朗日插值 均差与牛顿插值公式 差分与等距节点插值 埃尔米特插值 分段低次插值 三次样条插值
一、插值问题
或者函数本身只是 一组实验数据,很 难对函数的性质进 行分析
对函数f (x),其函数形式可能很复杂且不利于在计算机上 ,
设函数
y f ( x ) 在区间 [a, b] 上有定义,且已知在
a x0 x1 x2 xn b
f ( xi ) yi , i 0,1,, n
如果存在一个简单函数 P ( x ),使得
P( xi ) f ( xi ) yi , i 0,1,, n
xx x x
如函数y sin x, 若给定 0, ]上5个等分点 [
其插值函数的图象如图
对于被插函数 ( x)和插值函数 ( x) f P
在节点xi处的函数值必然相等
但在节点外 ( x)的值可能就会偏离 ( x) P f 因此P( x)近似代替 ( x)必然存在着误差 f
整体误差的大小反映了插值函数的好坏
成立,则称 P ( x ) 为 f ( x ) 的插值函数
称点 xi , i 0,1,2,, n为插值节点
称区间 a , b]为插值区间 [