形状记忆合金SMA讲解
- 格式:ppt
- 大小:1.90 MB
- 文档页数:57
新型材料―形状记忆合金阻尼器(SMA)的减振技术和工程应用摘要形状记忆合金(SMA)是一种在结构振动控制领域具有广阔应用前景的智能材料。
本文介绍了形状记忆合金最显著的两个特性:形状记忆效应和超弹性,并详细总结了形状记忆合金在结构振动控制中的应用。
关键词:形状记忆合金;减振;应用abstract形状记忆合金是一种智能材料,在结构振动控制领域有着广阔的应用前景。
本文介绍了形状记忆合金的两个重要特性:形状记忆效应和超弹性,总结了其最新的应用说明。
关键词:形状记忆合金;阻尼;应用1前言形状记忆合金是一种新型功能材料,具有许多特殊的力学性能。
与其他金属耗能器相比,采用形状记忆合金超弹性效应(SE)设计的被动耗能器具有耐久性好、耐腐蚀性好、使用寿命长、变形量大、变形恢复快等一系列优点,因此在结构振动控制领域具有良好的应用前景[1-4]。
形状记忆合金被设计成耗能器用于土木工程结构的振动控制是从上世纪90年代初开始的,并且到目前为止,大多数研究主要针对形状记忆合金的超弹性性能展开。
例如,graesser[5]等人提出的用于桥梁结构的2形状记忆合金的发展历史形状记忆合金的形状记忆效应早在1932年就被美国学者olander在aucd合金中发现了,在1948年苏联学者库尔久莫夫等曾预测到有一部分具有马氏体相变的合金会出现热弹性马氏体相变,在1951年张禄经和t.a.read报道了原子比为1:1的csci型aucd合金在热循环中会反复出现可逆相变,但是都未引起人们足够的注意。
形状记忆合金是一种新型功能材料,1963年成为一个独立的学科分支。
当时,美国海军武器实验室W.J.Buehler博士领导的研究团队发现,由于温度不同,镍钛合金的工作性能有显著差异,这表明合金的声学阻尼性能与温度有关,通过进一步研究,研究发现,原子比接近等的Ni-Ti合金具有良好的形状记忆效应,并报道了X射线衍射的研究结果。
后来,镍钛合金作为商品进入市场,原子比几乎相等的镍钛合金商品被命名为镍钛诺。
磁形状记忆合金在电磁器件中的应用磁形状记忆合金(magnetostrictive shape memory alloy, MSSMA)是一种具有特殊形状记忆特性的材料,它在电磁器件中具有广泛的应用前景。
本文将从原理、性能及其应用等方面进行分析和阐述。
一、磁形状记忆合金的原理磁形状记忆合金是一种能够通过磁场作用实现形状记忆的材料,它能够在外界磁场的作用下发生形状变化。
磁形状记忆合金的主要原理是磁场诱导产生应力,从而引发形状变化。
通过控制外加磁场的大小和方向,可以实现对磁形状记忆合金的形状、尺寸和位置的精确控制。
二、磁形状记忆合金的性能1. 磁致伸缩效应:磁形状记忆合金在外加磁场的作用下会发生尺寸的快速变化,即磁致伸缩效应。
这种效应使得磁形状记忆合金在电磁器件中能够实现精确的位置调节和控制。
2. 形状记忆特性:磁形状记忆合金在经历塑性变形后,通过对其加热或应用磁场的方式,可以恢复到最初的形状。
这种形状记忆特性使得磁形状记忆合金在电磁器件中具有很大的应用潜力。
3. 磁性特性:磁形状记忆合金不仅具有形状记忆特性,还具有磁性特性。
它可以用于制造磁传感器、电磁阀门和电磁悬浮装置等电磁器件。
三、磁形状记忆合金的应用1. 磁传感器:利用磁形状记忆合金的形状变化特性,可以制造高灵敏度的磁传感器。
这种磁传感器可以广泛应用于磁场测量、位移检测和应力监测等领域。
2. 电磁阀门:磁形状记忆合金的形状记忆特性使得它可以被应用于制造电磁阀门。
这种电磁阀门可以实现精确的开关控制,具有较高的响应速度和可靠性。
3. 电磁悬浮装置:磁形状记忆合金的磁致伸缩效应可以被用于制造电磁悬浮装置,用于实现物体的悬浮和移动。
这种装置在高速列车、风力发电机和精密仪器等领域具有广泛的应用前景。
结语:磁形状记忆合金作为一种具有特殊形状记忆特性的材料,在电磁器件中具有广泛的应用前景。
通过对磁形状记忆合金的原理和性能进行深入研究,可以更好地发挥其在电磁器件中的优势,并探索更多的应用领域。
形状记忆合金的制备及性能研究形状记忆合金(Shape Memory Alloy,SMA)是一种能够自主恢复形状的金属材料,具有广泛的应用领域,比如航空、汽车、医疗器械等。
它能够在外力或热力刺激下发生可逆形变,因此又被称为“记忆合金”。
下面,我们就来详细探讨一下形状记忆合金的制备及性能研究。
一、形状记忆合金的制备方法1. 等离子弧熔炼法等离子弧熔炼法是一种将纯金属或合金加热、熔化后急速冷却的方法。
这种制备方法能够制造出比较均匀的形状记忆合金,但是成本比较高。
2. 电弧熔炼法电弧熔炼法是将金属棒、丝等导体加热到熔点后用弧线将其喷出,制造出形状记忆合金的方法。
这种制备方法成本较低,但是合金的质量不如等离子弧熔炼法制造的优质。
3. 热机械变形法热机械变形法是将金属坯料加热到合金的相变温度,然后进行拉伸、压缩、扭转等变形,形成指定形状的铸锭。
这种方法能够制造成形状记忆合金的微型结构,生产成本较低。
二、形状记忆合金的性能研究1. 快速回弹性能形状记忆合金的快速回弹性能是指在外力作用下快速恢复原始形状的能力。
该性能的研究方法为采用脉冲能量、过冷膨胀等测试方法进行实验研究,该性能的提高会大大提高形状记忆合金的实际使用效果。
2. 环境适应性能形状记忆合金应用于不同的环境条件,温湿度等变化对其硬度、弹性等性能都会产生影响。
而形状记忆合金的适应环境条件的能力,是提高其实际使用寿命的关键。
3. 相变行为相变行为是指形状记忆合金在受到外界刺激时,发生相变的过程。
具体研究方法包括差示扫描量热、X射线衍射、电阻变化等方法。
相变行为对形状记忆合金的应用性能具有至关重要的影响。
总之,形状记忆合金作为一种高性能合金材料,在航空、汽车、医疗器械等领域有着广泛的应用。
其制备方法和性能研究是提高其工业化应用的关键。
未来,需要进一步研究和探索形状记忆合金的制备方法和性能变化机理,推动其更广泛的应用。
形状记忆合金(shape memory alloys,SMA)是一种由两种以上金属元素构成、能够在温度和应力作用下发生相变的新型功能材料,通过热弹性与马氏体相变及其逆变而具有独特的形状记忆效应、相变伪弹性等特性,广泛应用于航空航天、生物医疗、机械电子、汽车工业、建筑工程等领域。
形状记忆合金按合金种类主要分为镍钛基形状记忆合金(Ni-Ti SMA)、铜基形状记忆合金(Cu SMA)、铁基形状记忆合金(Fe SMA)3类。
其中,镍钛基形状记忆合金包括Ni-Ti-Cu、Ni-Ti-Co、Ni-Ti-Fe、Ni-Ti-Nb等具有较高实用价值的记忆合金;铜基形状记忆合金主要有Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Zn-Ga、Cu-Sn等种类;铁基形状记忆合金主要有Fe-Pt、Fe-Mn-Si、Fe-Ni-Co-Ti、Fe-Mn-Al-Ni、Fe-C-Mn-Si-Cr-Ni等种类。
1/形状记忆合金的研究现状形状记忆合金因其独特的形状记忆效应一直是各主要国家的研究热点。
近年来,美国、欧洲、日本等国家和地区针对形状记忆合金制备工艺、成分配比、与先进制造技术结合的研究已取得显著的进展,尤其以4D打印技术为代表的先进制造技术使用形状记忆合金作为原材料,扩展了其在软体机器人、医疗器械、航空航天等领域的应用范围。
(一)中美欧等国开发出多种形状记忆合金制备新工艺,扩大了材料应用范围形状记忆合金/聚合物的制备方法主要有熔炼法、粉末冶金法、喷射沉积工艺、4D打印技术等,再根据应用需求配置后续的锻造、热挤压、轧制、拉拔、冷加工等成型工艺。
其中,熔炼法是传统金属冶金工艺,在真空下将金属原材料通过电子束、电弧、等离子体、高频感应等方式加热后进行熔炼,易产生杂质污染、成分不均匀、能耗高等问题,且需要经过切割加工形成合金产品。
而粉末冶金法则是利用金属或合金粉末进行热等静压和烧结,制备出最终形状的合金产品。
形狀記憶合金形狀記憶合金,Shape Memory Alloy(SMA),是一種加熱後能恢復其原有形狀的特殊合金。
最早是在1951年時,在Au-Cu合金中發現具有形狀記憶的特性,之後又陸續在許多合金中發現有類似的反應,目前較引人注目的有Ti-Ni系合金及Cu系合金。
而形狀記憶合金所表現出來的特性有兩種,一種是形狀記憶效應(Shape Memory Effect,SME),一種是擬彈性效應(Pseudeoelastic Effect)。
形狀記憶合金的特色一般金屬的塑性變形乃是由於差排的移動,而差排移動之後造成的塑性變形無法用加熱方法使其恢復形狀。
在形狀記憶合金中,當材料溫度降低,一種新的結構,我們稱之為麻田散相,會自原來的結構(我們稱之為奧斯田母相)中長出。
而其過程為可逆的,當溫度升高時,會轉換成奧斯田母相。
形狀記憶效應是利用當溫度低於麻田散相轉換溫度時,若外力超過彈性極限,材料結構會重新排列,使材料產生如塑性變形的情形,當溫度升高時,麻田散相會轉換回原來的奧斯田母相,而記得原來的樣子。
當溫度高於麻田散相轉換溫度,外加應力一樣會促使奧斯田母相產生麻田散相而得到如塑?岒雱峈滷“峞A,但是若外力去除,不穩定的麻田散相將轉換回母相,此時其“塑性變形“會隨之消失,故稱此種效應為擬彈性效應。
一班來說,金屬的彈性變形量只有2%,形狀記憶合金能夠承受的彈性變形量是一般金屬的四到五倍。
而形狀記憶效應或擬彈性效應的發生,完全取決於材料的麻田散轉換溫度相對於測試溫度的變化,如(圖一)是發生此兩種效應的應力及溫度範圍相對於滑移臨界應力的關係。
(圖二)形狀記憶效應與擬彈性效應的示意圖。
如何製作形狀記憶合金使用形狀記憶合金最重要的就是它的麻田散相轉換溫度,此一轉換溫度會因經歷此寸、外加應力、熱循環次數....等因素而改變,其中以合金成份的改變對麻田散相轉換溫度的影響最劇烈,以Cu-Zn-Al記憶合金來說,增加一個重量百分比的鋅會使麻田散相轉換溫度下降51℃;增加一個重量百分比的鋁會使麻田散相轉換溫度下降134.5℃之多,因此成份的控制包括正確的百分比及均勻的品質將非常重要。
形状记忆合金的制备与性能测试技巧形状记忆合金(Shape Memory Alloy,简称SMA)是一种具有记忆性能的功能性材料,具有独特的特性和广泛的应用前景。
本文将介绍形状记忆合金的制备方法和性能测试技巧。
一、形状记忆合金的制备方法1. 熔融法制备:通过熔融、凝固和热处理等步骤制备形状记忆合金。
首先,将合金成分按照一定比例混合,在高温下熔化形成合金液体。
然后,将液体注入模具或通过快速凝固技术将其固化为非晶态合金。
最后,通过热处理使非晶态合金转变为具有形状记忆性能的单相合金。
2. 粉末冶金法制备:首先,将合金元素粉末按照一定比例、粒度混合,形成合金粉末。
然后,将合金粉末压制成型,形成尺寸精确的坯料。
最后,通过热处理使坯料转变为具有形状记忆性能的合金。
3. 化学沉积法制备:通过溶液中金属离子的还原沉积,制备形状记忆合金薄膜。
首先,准备包含金属盐的溶液,然后通过电解或化学方法将金属离子还原沉积在基材表面,形成合金薄膜。
二、形状记忆合金的性能测试技巧1. 形状记忆性能测试:形状记忆性能是形状记忆合金的重要指标之一。
通过加载和卸载循环实验,可以测试合金在不同温度条件下的形状记忆性能。
测试时需要记录载荷-位移曲线,以评估合金的形状恢复特性。
2. 变形能力测试:形状记忆合金具有良好的变形能力,可以实现大范围的弹性变形。
通过拉伸试验、弯曲试验等方式,可以测试合金的变形能力和变形行为。
3. 疲劳性能测试:形状记忆合金需要经历大量的变形循环,在长期使用中具有良好的疲劳性能。
通过疲劳试验,可以评估合金在循环加载下的耐久性能和寿命。
4. 硬度测试:硬度是衡量形状记忆合金力学性能的重要指标之一。
通过微硬度仪等设备进行硬度测试,可以了解合金的抗变形能力和硬度值。
5. 热分析测试:通过差示扫描量热仪(DSC)等设备进行热分析,可以测试合金的相变温度、热峰值等热性能参数,以评估合金的热稳定性。
6. 微观结构分析:通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)等设备进行结构观察和分析,可以了解合金的晶界、相变等微观结构特征,以揭示形状记忆机制。
形状记忆合金名词解释
形状记忆合金,简称SMA(Shape Memory Alloy),是一种具有记忆能力的特殊金属材料。
它在经历一定的变形之后,可以通过受热或其他外界刺激的方式恢复到最初的形状。
这种记忆效应是由于SMA 内部晶体结构的特殊性质所致。
形状记忆合金广泛应用于各个领域,包括机械、航空航天、医疗和电子等。
它具有优异的弹性、耐腐蚀性和耐疲劳性,可用于制造变形器件、阀门以及控制系统等。
其独特的性能和应用前景使得形状记忆合金成为材料科学和工程学领域的研究热点之一。
形状记忆合金的应用原理什么是形状记忆合金?形状记忆合金(Shape Memory Alloy,SMA),是一种能够记住自己形状的合金材料。
它具备两种不同的临界温度:A相临界温度和M相临界温度。
在低于A相临界温度时,SMA处于马氏体相(Martensite);而在高于M相临界温度时,它处于奥氏体相(Austenite)。
因此,当受到外部力的作用或者温度变化时,SMA可以从一种相转变为另一种相。
形状记忆合金的应用形状记忆合金因其独特的形状记忆性能和超弹性,被广泛应用于多个领域。
下面是一些常见的形状记忆合金的应用:1.医疗领域形状记忆合金在医疗领域中的应用非常广泛。
例如,它可以用于制造医疗器械,如导管、支架等。
由于SMA具有记忆形状的能力,这些器械能够在进入人体后自行扩展、调整形状,提高手术的准确性和可控性。
2.航空航天领域形状记忆合金在航空航天领域的应用也非常广泛。
由于SMA具有调整形状的特性,它可以用于制造航空航天器的锁定机构、控制元件等。
这些元件能够适应不同的温度和力学环境,提升航空航天器的性能和安全性。
3.自动化领域形状记忆合金在自动化领域中的应用也越来越多。
例如,它可以用于制造自动马桶盖、自动窗帘等家居智能化产品。
通过利用SMA的形状记忆特性,这些产品能够实现自动开闭、伸缩等功能,提升用户体验。
4.机械领域形状记忆合金在机械领域中的应用也不容忽视。
例如,它可以用于制造高精密度的微调组件,如调焦机构、机械臂等。
利用SMA的形状记忆特性,这些组件能够实现精确的位置调节和灵活的动作控制。
形状记忆合金的工作原理形状记忆合金的工作原理是基于固相相变的特性,在变温或变形的作用下实现形状的记忆。
一个常见的形状记忆合金元件通常由两个相互转变的组织相组成:马氏体相(Martensite)和奥氏体相(Austenite)。
当形状记忆合金处于低于A相临界温度时,它处于马氏体相(Martensite)。
在这个相中,原子排列比较紧密,形成了一种略微畸变的结构。
形状记忆合金090201 王晓刚20090573引言形状记忆合金(Shape Memory Alloys,SMA)是一种在加热升温后能完全消除其在较低的温度下发生的变形后,通过加热到某一临界温度以上又可恢复其变形前原始形状的合金材料。
除上述形状记忆效应外,这种合金的另一个独特性质是在高温(奥氏体状态)下发生的“伪弹性”(又称“超弹性”,英文pseudoelasticity)行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。
形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏体相变。
形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Memory Effect SME)。
研究表明,很多合金材料都具有SME,但只有在形状变化过程中产生较大回复应变和较大形状回复力的时候,才具有利用价值。
到目前为止,应用得最多的是Ni2Ti合金和铜基合金(CuZnAl 和CuAlNi)。
形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。
形状记忆合金的发展史最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。
他们观察到Au-Cd合金中相变的可逆性。
后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。
直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。
到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。
几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,不断丰富和完善了马氏体相变理论。
在理论研究不断深入的同时,形状记忆合金的应用研究也取得了长足进步,其应用范围涉及机械、电子、化工、宇航、能源和医疗等许多领域。
机器人中的形状记忆材料一.前言形状记忆合金(SMA)不仅是一种具有潜在用途的智能材料,而且是一种新的功能材料, 其主要特征是具有形状记忆效应, 能感知温度或位移的变化, 可将热能转换为机械功,如果控制加热或冷却, 可获得重复性很好的设定的循环性动作。
由于形状记忆合金可集传感、驱动及执行机构于一体, 因而是一种很好的智能材料。
用形状记忆合金制作的机械动作元件具有独特的优点:如结构简单、体积小巧、成本低廉、控制方便等。
二.定义及原理(1)定义:形状记忆合金是经过适当的加工热处理使其记忆所要求的形状后,即使再变形,只要再加热到一定的温度,即可恢复到变形前形状。
由于具有形状记忆效应的金属一般是由两种以上金属元素组成的合金,称为形状记忆合金(SMA)。
(2)原理:大部分合金和陶瓷记忆材料是通过马氏体相变而呈现形状记忆效应的。
马氏体相变具有可逆性,将马氏体向奥氏体的转变称为逆转变。
形状记忆效应是热弹性马氏体相变产生的低温相在加热时向奥氏体进行可逆转变的结果。
马氏相变是合金形状记忆效应与超塑性的基础。
三.形状记忆合金的分类(1)单程记忆效应形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。
(2)双程记忆效应某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。
(3)全程记忆效应加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。
四.形状记忆合金的应用记忆合金应用十分广泛。
近年来, 随着形状记忆合金的逐渐进入工业化生产应用阶段, 在机器人的应用如在机器人元件控制、触觉传感器、机器人手足和筋骨动作部分的应用十分引人注目。
日本在这方面的工作获得了很大成功, 在国际上处于领先水平。
早在年在日本科学城筑波举行的博览会上, 日本展出的机器人中就有台使用了形状记忆合金。
日本在海底机器人、微型机器人中采用的器件又取得了新进展。
形状记忆合金形状记忆合金(Shape Memory Alloys, SMA)是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。
除上述形状记忆效应外,这种合金的另一个独特性质是在高温(奥氏体状态)下发生的“伪弹性”(又称“超弹性”,英文 pseudoelasticity)行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。
形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏体相变。
功能机理形状记忆合金(Shape Memory Alloys,简称SMA)是一种能够记忆原有形状的智能材料。
当合金在低于相变态温度下,受到一有限度的塑性变形后,可由加热的方式使其恢复到变形前的原始形状,这种特殊的现象称为形状记忆效应(Shape Memory Effect,简称SME)。
而当合金在高于相变态温度下,施以一应力使其受到有限度的塑性变形(非线性弹性变形)后,可利用直接释放应力的方式使其恢复到变形前的原始形状,此种特殊的现象又称为拟弹性(Pseudo Elasticity,简称PE)或超弹性(Super Elasticity)。
这两种形状记忆合金所拥有的独特性质在普通金属或合金材料上是无法发现的。
发展历史最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。
他们观察到Au-Cd合金中相变的可逆性。
后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。
直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。
到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。
几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,不断丰富和完善了马氏体相变理论。
sma树脂生产工艺SMA树脂,全称为形状记忆合金树脂(Shape Memory Alloy Resin),是一种具有记忆性能的塑料材料。
它可以在受热或受力的情况下发生可逆形变,具有广泛的应用前景,例如在医疗、汽车、航空航天等领域。
SMA树脂的生产工艺主要包括原料合成、树脂成型、固化和调优等步骤。
首先,原料的合成是SMA树脂生产的关键一步。
SMA树脂的主要成分是聚氨酯弹性体和形状记忆合金粉末。
聚氨酯弹性体具有良好的弹性和可塑性,而形状记忆合金粉末则是实现形状记忆效应的关键。
合成这两种原料需要严格的配比和反应条件控制。
其次,树脂成型是将合成好的原料进行装瓶、注射或压制成型的过程。
具体的方法可以根据产品要求和工艺设备的不同而选用,例如注射成型机、压力机等。
在树脂成型过程中,需要控制好温度、压力和时间等参数,以确保树脂成型的质量和形状。
接下来,固化是将树脂成型后的材料在特定的温度下进行固化处理,从而使其形成稳定的记忆效应。
固化过程中会通过提高温度,使形状记忆合金粉末发生相变,并与聚氨酯弹性体交联,从而增加树脂的强度和硬度。
最后,调优是对固化后的SMA树脂进行调整和优化的过程。
根据产品的具体要求,可以通过调整树脂的成分、温度和固化时间等参数,来改善树脂的性能和记忆效应。
同时,还可以通过热处理、拉伸等加工方法,进一步提高树脂的形状记忆效应和力学性能。
总之,SMA树脂的生产工艺需要严格控制原料的合成、树脂的成型、固化和调优等步骤,以确保树脂的性能和质量。
这些工艺步骤的每一环节都需要精确控制和专业知识支持,才能生产出具有优异性能的SMA树脂材料。