钢丝拉丝脆断原因分析之二
- 格式:docx
- 大小:14.12 KB
- 文档页数:4
拉丝过程中出现异常的三种原因及解决方法很多时候我们在进行拉丝操作的时候,会发现在这个过程中会出现问题,而且有时候出现的问题还不少,对于新手来说如果不了解情况,是很容易出问题的,所以针对于这些问题,小编就为大家总结一下。
第一种拉丝过程中出现断线产生的原因及解决方法1、接头不牢:需要调节对焊机的电流、通电时间、压力,提高焊接质量。
2、线材有杂质:需要加强原材料的验收。
3、配模不合理:需要对模具进行调整,消除变形过程度大和过小的现象。
4、模孔形状不正确或不光滑:需要严格按标准修模,定径区不可过长,保证模孔的光洁度。
5、反拉力过大:需要调整鼓轮上绕线的圈数。
6、鼓轮上压线:需要调整鼓轮上绕线的圈数,修正磨损的鼓轮。
7、润滑不良:需要检查一下润滑系统,测定润滑剂的成分和温度。
8、铝杆潮湿:需要防止铝杆受潮,潮湿的铝杆暂时不使用。
第二种拉丝过程中尺寸形状不正确产生的原因用解决办法1、模孔磨损:需要经常测量线径,发现超公差时更换模具。
2、线材拉细:需要调整配模,改善润滑效果。
3、用错模具:需要穿线后要测量线径。
4、线材划伤:需要检验模孔的质量和润滑。
5、模具歪斜:上模时注意摆正,检修模座。
第三种拉丝过程中擦伤、碰伤、刮伤产生的原因及解决办法1、锥形鼓轮上有跳线现象:需要将鼓轮表面修光,角度检修正确。
2、鼓轮上有沟槽:拆下鼓轮修复磨光。
3、设备上有伤线的地方:鼓轮接口不平,导轮转动不灵活。
4、线盘互相碰撞:线盘要“T”字摆放,运输时要彼此隔开。
5、地面不平整:需要整修地面,铺设钢板。
6、收线过满:需要坚守岗位,集中精力按规定下盘。
以上就是小编为大家讲述的拉丝过程一般会出现的问题及相应的解决方法。
如果以后再遇到这样的情况,相信大家都知道如何去进行解决了吧。
电梯钢丝绳断丝原因及改进措施摘要:电梯在运行过程中,钢丝绳经常会出现早期断丝、断股的现象,这直接影响电梯的运行安全。
因此,我们有必要探讨一下引起电梯早期钢丝绳断丝、断股的主要原因。
关键词:电梯钢丝绳断丝改进措施随着经济建设的快速发展,电梯应用越来越广泛。
电梯使用一定时间后,曳引钢丝绳会出现缺油现象,应对钢丝绳表面进行再润滑。
如果钢丝绳缺油,则容易使钢丝绳生锈,以及与绳轮槽之间产生干摩擦,从而严重磨损绳槽和钢丝绳。
同时,维保过程中必须经常调整钢丝绳的张力,确保各绳之间张力均匀,以利于提高钢丝绳的使用寿命。
随着电梯使用数量的增加,电梯的事故也逐渐增多,电梯安全已引起人们的普遍关注。
钢丝绳是影响到电梯安全的重要部件,钢丝绳的断丝、断股现象严重影响到电梯的使用寿命,同时影响到电梯的使用安全。
一、电梯钢丝绳检查钢丝绳是影响到电梯安全的重要部件,钢丝绳状况的好坏直接影响到电梯的使用安全,当钢丝绳断丝、断股后对钢丝绳做如下常规检查:断股、断丝的根数及部位。
案例(以下以此案例进行说明)新装客梯,钢丝绳有一处断股,断口整齐、光亮,其余各处无断丝,故未采用钢丝绳探伤仪对钢丝绳探伤。
用游标卡尺测量钢丝绳公称直径减少量小于7%,钢丝绳表面无明显外部磨损现象。
钢丝绳润滑、清洁状况良好,无锈蚀现象。
绳头及其组合无异常情况。
钢丝绳卧入绳槽情况良好,绳槽表面光滑,经深度卡尺测量钢丝绳卧入槽内深度基本一致。
二、钢丝绳断丝原因分析及判断钢丝绳非正常磨损导致断丝、断股现象的可能原因主要有以下几点:1.曳引绳张力偏差过大现场检验人员用钢丝绳测力计测量几根钢丝绳的张力偏差并进行计算,发现5根钢丝绳的张力基本均匀,且与平均值偏差都不大于5%,故排除此原因造成钢丝绳断股。
2.曳引机曳引条件设计不合理为保证设计要求的曳引能力,在当量摩擦因数不变的情况下应增加曳引绳与曳引轮的包角。
该电梯使用的是无齿轮曳引机,钢丝绳公称直径为10mm,为了提供足够的曳引能力,电梯设计为复绕形式以增大包角,钢丝绳在曳引轮上需要多次正反方向弯折及缠绕,大大影响了钢丝绳的寿命,同时对钢丝绳的强度、韧性、抗弯曲性能等提出了更高的要求。
电梯曳引钢丝绳断丝断股的原因分析随着电梯的提升速度越来愈快,对配套在电梯上的钢丝绳质量要求也越来越高。
电梯在运行过程中,钢丝绳经常会出现早期断丝、断股现象,这直接影响电梯的安全运行。
1、捻制质量在钢丝绳的生产过程中,捻制质量是关键,如果控制不好,就容易出现质量异议。
如绳芯直径的均匀度直接影响钢丝绳直径的稳定性,绳芯直径一旦出现较大偏差,就会导致局部钢丝绳直径产生较大的公差,电梯在运行过程中,绳径粗的位置,容易与绳轮之间形成不规则的磨损,出现早期疲劳磨损断丝再断股。
2、运输保管a、在运输过程中,使用铲车装卸时,如果铲刀铲倒钢丝绳,就会造成钢丝绳局部损伤变形,损伤部位的钢丝机械性能就会降低。
如果损伤的钢丝绳装上电梯,经过短期运行后,会出现早期断丝、断股的现象。
b、钢丝绳存放在工地,如果保管不善,一旦受到雨水的浸泡或沾上工地上的水泥、沙浆等杂物,会使钢丝绳受到腐蚀,腐蚀部分的表面钢丝的机械性能大大降低。
将这样的钢丝绳装上电梯后,会出现早期疲劳断丝、断股,缩短钢丝绳的使用寿命。
3、现场安装a、由于现在电梯绕绳比为2:1的比较多,曳引钢丝绳需要绕过轿顶轮、曳引轮、导向轮、对重轮等多个绳轮,如果在放绳过程中操作不当,会导致钢丝绳出现局部损伤(如起扭、打结、被其他尖锐物刮切等),损伤部位的钢丝绳强度就会降低。
如果装在电梯上,会出现早期断丝、断股的现象。
b、安装现场焊接构件时,如果电焊渣溅到钢丝绳上,会造成钢丝绳表面钢丝受到灼伤,灼伤后的钢丝绳装上电梯也会引起钢丝绳出现早期断丝、断股。
c、如果绳轮槽内有异物(电梯安装时留下的),高速运行中的钢丝绳某点被该异物硌到后,该点的一根或多根钢丝可能会受到损伤,损伤部位的钢丝扭转性能受到影响。
随着电梯运行的次数增加,被异物硌过的钢丝损伤也会越严重,经过一定时间后会出现断丝断股的现象。
d、曳引轮、导向(反绳)轮之间的位置差异也是一个原因。
如果机房内的曳引轮与导向(反绳)轮的平行度和垂直度都超过标准规定的1mm和0.5mm时,会引起钢丝绳与轮槽之间产生侧磨。
钢丝绳断绳原因及预防措施钢丝绳是一种广泛应用于吊装、运输、机械和建筑工程等领域的重要材料。
然而,由于环境、使用条件、维护和保养等原因,钢丝绳在使用过程中可能会出现断绳的情况。
为了避免钢丝绳断绳带来的危害和损失,我们需要了解钢丝绳断绳的原因和预防措施。
一、钢丝绳断绳原因1.材料质量问题:钢丝绳的材料质量与制造工艺密切相关。
如果材料质量不好或者制造工艺不规范,钢丝绳容易出现变形、硬度不足或裂纹等问题,从而导致钢丝绳断绳。
2.疲劳断裂:钢丝绳在长时间运行中,会经历反复弯曲和拉伸,从而导致疲劳损伤。
一旦钢丝绳出现疲劳损伤,就容易出现疲劳断裂,导致断绳。
3.使用过度或使用不当:如果使用者在使用钢丝绳时存在过度使用或使用不当的情况,就会导致钢丝绳的寿命缩短,从而出现断绳的情况。
4.外界因素:钢丝绳可能会遭受强烈的撞击、磨损、腐蚀、高温、低温等外界因素的影响,从而导致断绳。
二、钢丝绳断绳预防措施1.材料选择:在钢丝绳的选购过程中,应当优先选用优质的材料,从而确保钢丝绳的质量。
2.安装和使用:钢丝绳的安装和使用应当符合规范要求,并避免过度使用或使用不当的情况。
如果钢丝绳已经使用了一段时间,则应定期进行检查和维护,确保其安全可靠。
3.防腐处理:在钢丝绳表面喷涂防腐涂料,或定期使用防腐剂进行处理,可以有效地防止钢丝绳的腐蚀磨损,延长使用寿命。
4.加强保养:在钢丝绳使用过程中,要增强日常维护和保养。
定期对钢丝绳进行清洗、润滑、紧固等操作,可以有效地保护钢丝绳,减少断绳的风险。
以上就是关于“钢丝绳断绳原因及预防措施”的一些基本介绍。
我们要深入了解钢丝绳的性能和特点,遵守规范要求,合理使用和维护钢丝绳,从而保护自己和他人的安全和利益。
钢丝断裂原因分析一、夹杂物引起断裂线材中非金属夹杂物的存在,破坏了组织的连续性,起到了一个显微裂纹的作用。
当受到外力作用时,在夹杂物的顶端首先产生附加的应力集中。
尤其在原奥氏体晶粒交界处出现的大块状、条状或片状碳化物,这些异常碳化物在材料冷变形时,严重地阻塞了位错的移动,致使该处产生应力集中。
当应力集中达到一定大小时便会使碳化物开裂,或在碳化物与基体交界处产生裂纹。
当裂纹达到失稳状态尺寸,地瞬时产生断裂。
非金属夹杂物的多少是衡量帘线钢质量高低的一个重要因素。
在用SEM对断口进行分析的过程中,经常发现非金属夹杂物。
在典型的杯锥状断口上有时候就能发现夹杂物,SEM表明大多为三氧化二铝夹杂或其它高熔点脆性夹杂物。
其避免主要是通过精炼,使夹杂物变为塑性低熔点夹杂物。
脆性夹杂物是引起钢丝断裂的重要原因之一,而夹杂物引起断裂分为以下几种形势:1、夹杂物与钢基体之间界面脱开拉伸过程中,在夹杂物周围的局部加剧了应力集中;裂纹优先在与拉应力垂直的夹杂物与基体的界面产生并沿着夹杂物与钢基体界面扩展,致使夹杂物与基体界面脱开。
2、夹杂物本身开裂2、在结晶器和二冷安装电磁搅拌。
结晶器的电磁搅拌能够减少中心偏析的程度和范围。
电磁搅拌同样可改善V形偏在铸坯中心的存在;3、尽可能的降低拉速,能够减轻中心偏析程度。
三、马氏体组织造成拉拔脆断硬线属高碳钢,控制冷却时,若冷却时间太短,对钢材不起作用;若冷却时间太长,就容易引起脆断。
在斯太尔摩控制冷却上,穿水冷却是奥氏体急速过冷阶段。
它的目的是控制具有高形变能压扁的奥氏体晶粒长大和保留加工硬化的效果,为吐丝温度和后部风冷段控制做准备。
轧制硬线错误的指导思想是,企图使线材表面淬成马氏体,然后通过心部自回火方式形成回火马氏体。
如果这样,在高速的轧制下线材表面得不到充分自回火,难免出现马氏体残余。
因为线材直径只有5.5mm,最大也只有9mm,它的断面小,形变潜能也小,所以冷却不能过急,宜控制在0.3~0.6s,使线材表面温度始终在Ms以上(高于400℃),以防止表面淬成马氏体。
高碳线材拉拔断丝原因及其控制技术高碳钢线材拉拔断丝的一般原因有:1、线材表面质量差,轧制后的线材表面有结疤、压痕类缺陷,拉拔过程中在表面缺陷处形成裂纹源,从边部向中心扩展,形成斜劈状断口。
2、钢水纯净度不高,非金属夹杂物含量偏高。
从金相检验来看,夹杂物颗粒大,氧化物夹杂高达B3级,脆性夹杂物主要有含Al2O3、SiO2、CaO等成分的复合氧化物,还有含钛的夹杂物。
这些夹杂物对于拉拔和捻股的危害性较大,在冷拔时极易在钢基体与脆性夹杂物的界面上形成裂纹源。
并随着拉拔减面率的增加,裂纹年扩展为孔隙,最终导致断裂发生。
3、连铸坯中心偏析较严重,主要是C、Mn、P、S偏析,这些成分偏析经过轧制后易产生非正常组织,如马氏体、网状二次渗碳体和磷、硫偏析带等。
它们均会成为后续拉拔过程中的断裂源,由于这些组织很脆易发生裂纹,在拉拔时引起断丝,这些线材中心部缺陷引起的断裂,在宏观形貌上表现为尖状断口。
控制拉拔断丝的措施有:1、表面质量。
影响线材表面质量的因素有铸坯质量和轧制两个方面。
铸坯的缺陷有夹渣、结疤和微裂纹,在浇铸可通过二冷水的控制来解决。
轧钢方面主要是氧化铁皮压入、折叠和划伤,加强检查和过程控制可以防止表面缺陷发生。
2、炉后精炼工艺优化。
线材中的夹杂物有Al2O3、SiO2、CaO类脆性复合夹杂物。
通过在炉后精炼过程中降低钢液中自由氧的含量和对渣碱度的控制,可改善夹杂物的尺寸、形状和塑性,提高钢水的纯净度。
增加吹氩时间和流量,使大颗粒夹杂物能够充分上浮。
进行夹杂物的塑性化处理,使高熔点的脆性夹杂物转变为低熔点夹杂物,以利于在冷加工时变形。
3、降低钢水过热度,控制铸坯的中心缩孔、疏松和成分偏析。
控制钢水的浇注温度、铸坯温度拉速匹配,使用结晶器电磁搅拌和轻压下技术,改善高碳钢的碳偏析和夹杂物的聚集,减少因碳偏析导致的脆断问题发生。
(来源:钢丝)本文来源锌钢百叶窗:。
一、夹杂物引起断裂线材中非金属夹杂物的存在,破坏了组织的连续性,起到了一个显微裂纹的作用。
当受到外力作用时,在夹杂物的顶端首先产生附加的应力集中。
尤其在原奥氏体晶粒交界处出现的大块状、条状或片状碳化物,这些异常碳化物在材料冷变形时,严重地阻塞了位错的移动,致使该处产生应力集中。
当应力集中达到一定大小时便会使碳化物开裂,或在碳化物与基体交界处产生裂纹。
当裂纹达到失稳状态尺寸,地瞬时产生断裂。
非金属夹杂物的多少是衡量帘线钢质量高低的一个重要因素。
在用SEM对断口进行分析的过程中,经常发现非金属夹杂物。
在典型的杯锥状断口上有时候就能发现夹杂物,SEM表明大多为三氧化二铝夹杂或其它高熔点脆性夹杂物。
其避免主要是通过精炼,使夹杂物变为塑性低熔点夹杂物。
脆性夹杂物是引起钢丝断裂的重要原因之一,而夹杂物引起断裂分为以下几种形势:1、夹杂物与钢基体之间界面脱开拉伸过程中,在夹杂物周围的局部加剧了应力集中;裂纹优先在与拉应力垂直的夹杂物与基体的界面产生并沿着夹杂物与钢基体界面扩展,致使夹杂物与基体界面脱开。
2、夹杂物本身开裂由于脆性较矮杂物本身具有缺陷,在拉伸过程中,在缺陷处产生严重的应力集中,由于局部应力升高而导致夹杂物本身开裂。
;3、混合开裂钢中非金属夹杂物的形状、分布是没有规律的,因此夹杂物在钢中引起裂纹也是随机性的,取决于夹杂物的性质、尺寸、形状与分布,对于同类型的夹杂物,由于形状、分布和受力方向不同,往往产生断裂的情况也不尽相同,有时两种断裂方式同时存在,有时两种断裂方式交替进行。
4、沿两种不同类型夹杂物的相界开裂钢中经常出现几种夹杂物相共生在一起的复合夹杂物,由于各类夹杂物之间的力学性能和物理性质不同,相界结合力较弱,在拉应力作用下容易从相界开裂。
二、偏析引起的钢丝断裂在一定程度上,中心偏析对钢丝拉断的危害必脆性夹杂物。
因为偏析在更大程度上影响了钢丝的延伸性,从而使塑性变形不能在存在偏析的地方产生。
在钢丝最初的拉拔过程中偏析导致小的裂纹的出现,等进入了最终拉拔时就导致了人字形断口(chevroncracks) 在连铸过程中减少中心偏析的途径有以下几个:1、中心偏析随着中包过热度的降低而降低,因此中包的钢液温度应该尽可能的低;2、在结晶器和二冷安装电磁搅拌。
钢丝绳常见问题及整改措施
钢丝绳常见问题及整改措施主要有以下几个方面:
1. 磨损:钢丝绳在使用过程中容易出现磨损情况,主要是由于摩擦、撞击、挤压等原因引起的。
整改措施包括定期检查和更换磨损严重的部分,加强绳套保护,采用合适的油脂润滑。
2. 断丝:由于外力作用或钢丝本身质量问题,钢丝绳容易发生断丝情况。
整改措施包括定期检查,及时发现并更换断丝的部分,注意钢丝绳的使用寿命和载荷限制。
3. 变形:钢丝绳在使用过程中容易发生变形,主要是由于超载、扭曲等原因引起的。
整改措施包括合理使用钢丝绳,不超过其额定负荷,避免过度弯曲,采取增加绳套保护、使用绳端固定装置等措施。
4. 腐蚀:钢丝绳容易受到腐蚀的影响,特别是在潮湿、腐蚀性环境下。
整改措施包括定期检查,及时清洗和防腐处理,选择耐腐蚀性能好的材料。
5. 弯曲疲劳:钢丝绳在使用过程中经常发生弯曲,会引起疲劳断裂。
整改措施包括定期检查,及时更换疲劳严重的部分,合理使用钢丝绳,避免频繁弯曲。
总之,钢丝绳的常见问题需要通过定期检查、及时更换、合理使用和加强维护等措施来避免和解决,确保其安全可靠地使用。
造成钢丝绳折断的原因分析
钢丝绳在工程起重机上使用的非常普遍,一般由许多高强度钢丝编绕而成。
它首先由单根钢丝绕在一起形成股,然后将其中一些股绕成绳芯,再由其它股组成的外股围绕绳芯绕成钢丝绳。
有些进口钢丝绳内部还包含一个塑料插芯,通常以塑料涂层的形式经过特殊处理盖在绳芯上,重要的钢丝绳则在绳内部充填适当的润滑剂以减少摩擦。
有些起重设备没有安装上升极限位置限制器或限制器失灵,致使吊钩继续上升直到卷(拉)断起升钢丝绳,导致吊重物体坠落砸人;
起重设备超期服役,年久失修,电器元件老化使高度限位器开关不动作或动作迟缓,有的甚至被动作时产生的火花将触点烧熔粘连在一起无法断开,而造成过卷将钢丝绳卷断,使吊钩及吊重物坠落砸向工作面作业人员;
超负荷:"有些起重机特别是门座起重机上的力距限制器没有完成接线,只当幅度显示和起重量的显示器用,起不到限制器的作用;作业人员对吊重物体的重量不清楚(如吊物部分埋在地下、冻结地面上,地脚螺栓末松开等);
盲目起吊,发生超负荷拉断起吊钢丝绳,致使吊索具坠落或甩动砸人;由于歪拉斜吊发生超负荷而拉断吊索具,致使吊索具或吊物坠落砸人。
钢丝绳本身的问题。
通常钢丝绳在使用过程中受到拉伸、弯曲,钢丝绳容易产生“金属疲劳”现象,经过不断的弯曲、拉伸,钢丝绳之间相互产生摩擦,钢丝绳表面逐渐产生磨损或断丝现象。
磨损和断丝达到一定程度后,钢丝绳的安全性已不能保证,在吊运过程中或意外因素影响下,钢丝绳会突然折断。
钢丝绳在使用过程中会突然折断或拉断的主要原因是:使用了因断丝、磨损、锈蚀、麻芯外露、打死结、局部外层钢丝呈笼形状态等该报废或降载处理的钢丝绳所致。
钢丝拉丝脆断原因分析之二
一、夹杂物引起断裂
线材中非金属夹杂物的存在,破坏了组织的连续性,起到了一个显微裂纹的作用。
当受到外力作用时,在夹杂物的顶端首先产生附加的应力集中。
尤其在原奥氏体晶粒交界处出现的大块状、条状或片状碳化物,这些异常碳化物在材料冷变形时,严重地阻塞了位错的移动,致使该处产生应力集中。
当应力集中达到一定大小时便会使碳化物开裂,或在碳化物与基体交界处产生裂纹。
当裂纹达到失稳状态尺寸,地瞬时产生断裂。
非金属夹杂物的多少是衡量帘线钢质量高低的一个重要因素。
在用SEM对断口进行分析的过程中,经常发现非金属夹杂物。
在典型的杯锥状断口上有时候就能发现夹杂物,SEM表明大多为三氧化二铝夹杂或其它高熔点脆性夹杂物。
其避免主要是通过精炼,使夹杂物变为塑性低熔点夹杂物。
脆性夹杂物是引起钢丝断裂的重要原因之一,而夹杂物引起断裂分为以下几种形势:
1、夹杂物与钢基体之间界面脱开
拉伸过程中,在夹杂物周围的局部加剧了应力集中;裂纹优先在与拉应力垂直的夹杂物与基体的界面产生并沿着夹杂物与钢基体界面扩展,致使夹杂物与基体界面脱开。
2、夹杂物本身开裂
由于脆性较矮杂物本身具有缺陷,在拉伸过程中,在缺陷处产生严重的应力集中,由于局部应力升高而导致夹杂物本身开裂。
3、混合开裂
钢中非金属夹杂物的形状、分布是没有规律的,因此夹杂物在钢中引起裂纹也是随机性的,取决于夹杂物的性质、尺寸、形状及分布,对于同类型的夹杂物,由于形状、分布和受力方向不同,往往产生断裂的情况也不尽相同,有时两种断裂方式同时存在,有时两种断裂方式交替进行。
4、沿两种不同类型夹杂物的相界开裂
钢中经常出现几种夹杂物相共生在一起的复合夹杂物,由于各类夹杂物之间的力学性能和物理性质不同,相界结合力较弱,在拉应力作用下容易从相界开裂。
二、偏析引起的钢丝断裂
在一定程度上,中心偏析对钢丝拉断的危害必脆性夹杂物。
因为偏析在更大程度上影响了钢丝的延伸性,从而使塑性变形不能在存在偏析的地方产生。
在钢丝最初的拉拔过程中偏析导致小的裂纹的出现,等进入了最终拉拔时就导致了人字形断口(chevroncracks)
在连铸过程中减少中心偏析的途径有以下几个:
1、中心偏析随着中包过热度的降低而降低,因此中包的钢液温度应该尽可能的低;
2、在结晶器和二冷安装电磁搅拌。
结晶器的电磁搅拌能够减少中心偏析的程度和范围。
电磁搅拌同样可改善V形偏在铸坯中心的存在;
3、尽可能的降低拉速,能够减轻中心偏析程度。
三、马氏体组织造成拉拔脆断
硬线属高碳钢,控制冷却时,若冷却时间太短,对钢材不起作用;若冷却时间太长,就容易引起脆断。
在斯太尔摩控制冷却上,穿水冷却是奥氏体急速过冷阶段。
它的目的是控制具有高形变能压扁的奥氏体晶粒长大和保留加工硬化的效果,为吐丝温度和后部风冷段控制做准备。
轧制硬线错误的指导思想是,企图使线材表面淬成马氏体,然后通过心部自回火方式形成回火马氏体。
如果这
样,在高速的轧制下线材表面得不到充分自回火,难免出现马氏体残余。
因为线材直径只有,最大也只有9mm,它的断面小,形变潜能也小,所以冷却不能过急,宜控制在~,使线材表面温度始终在Ms以上(高于400℃),以防止表面淬成马氏体。
硬线的散卷风冷相当于“等温”处理阶段,它的目的是控制钢中以索氏体为主的组织,以利于提高拉拔性能。
要求组织中铁素体可能少且以块状均匀分布,而非网状析出,因而也应采用快速冷却方式。
但若冷却速度过快,也会产生贝氏体或马氏体组织。
尤其对于有合金元素偏析的铸坯,冷却速度达25℃/s就容易产生马氏体。
因此,冷却速度宜为6~15℃/s,使奥氏体分解转变在接近CCT曲线的鼻尖进行。
对大直径线材,可选择高的初始冷却速度,因为直径增大,随体积增加的热焓量比表面所失去的热量要大,有促使先共析铁素体增加,珠光体组织长大之趋势。
高碳马氏体既硬又脆,冲击吸收功很低,断后伸长率和断面收缩率几乎为零。
同时,马氏体的比容比奥氏体大,当奥氏体转变为马氏体时钢的体积增大。
由于马氏体转变的不均匀性,这种体积变化将引起很大的内应力,使钢发生变形,成为裂纹的根源。
这样,在拉拔力或其它外力的作用下,易引起应力集中而使硬线脆断。
四、严重脱碳层造成拉拔脆断
线材的脱碳层直接影响着硬线的拉拔,对高碳硬线来说,严重的脱碳层好像一个缺口,不但承受面积小,应力增大,而且由于突然缩颈,容易引起应力集中导致拉丝脆断。
通过脱碳层深度超标而使硬线脆断的试样断口观察和试样金相分析,发现有裂纹和组织两个重要特征。
第一,硬线表面均存在白色长条,其中平行地分布着横裂纹,有的横裂纹已深入基体。
因此,硬线的断线是由于它表层长条区内的横裂纹扩展而引起的。
白色长条区是全脱碳形成的铁素体组织,它是组织中的薄弱环节。
第二,硬线组织不是所要求的以索氏体为主的组织,而是网状铁素体和粗片状珠光体。
网状铁素体的存在会导致抗拉强度下降,拉拔时承受变形能力差;粗片状珠光体的存在也会导致硬线塑韧性及拉拔能力的降低。
这两种组织是由于加热温度过高、加热时间过长,钢的相变温度偏高,过冷度小而析出的,是脱碳的前沿产物。
此外,硬线随拉拔变形程度的加大,加工硬化程度也增大,网状铁素体和粗片珠光体的存在又增加硬线的脆性。
当硬线拉拔时,由于脱碳层产生横裂纹,而邻近
网状铁素体和粗片状珠光体又不能有效地阻止裂纹的扩展,且受到拉拔、收盘的扭绞力共同作用,部分硬线即刻脆断。
因此,铸坯加热温度愈高,加热时间愈长,炉内漏气或其他不正常因素愈多,脱碳会愈严重,从部分脱碳到全脱碳,使钢失去更多的碳。
为了防止脱碳,应严格执行规章制度,对不同钢号和规格钢坯及时调整加热温度,提高工作的责任感。
从控制脱碳优化氧化铁皮的角度考虑,炉内应保持一定氧化气氛,可形成薄的氧化铁皮,阻止钢坯表面继续脱碳。
在预热段应缓慢加热(至850℃,2h),并有合适的保温。
钢坯在850℃~1050℃时,由于脱碳有向抛物线顶点发展的趋势,应严格控制加热时间不超过30min,并要尽理缩短均热段保温时间。
五、其它非冶金原因
关于钢丝拉拔时的断丝,1984年ZeevZimerman和对此作了探讨。
他们对钢帘线用钢丝在水箱拉丝机上拉拔时断口用SEM进行分析,观察到拉拔断口大部分成杯锥状。
并指出,钢丝拉拔时,表面层金属比心部金属变形大,这引起表面层金属沿长度方向受压应力而中心部分受拉应力,当此拉应力过大时致使在中心部位产生中心破裂,即形成V型裂纹或人字形裂纹。
并认为这种V型裂纹是拉拔断丝成为大量杯锥状断口的原因。
虽然ZeevZimerman和对此研究得很详细,但是未能考虑后面工序中的捻制断丝问题,未能指出两种杯锥状断口的内在联系。
1981年,在研究高低碳钢的夹杂物对钢丝拉拔时的可加工性能和机械性能的影响时,曾指出,在钢丝拉拔到Φ过程中,很少或根本没有发现由于夹杂物引起的断丝更令人惊奇的是,即使50μm大的零星存在的夹杂物也未能造成拉拔断丝,而主要是由于表面缺陷或过在造成的断丝。
他说,这种情况与帘线捻制时不同,由于在捻制时钢丝受到扭转变形,则夹杂物的影响就显得中大。
显然,试图从夹杂物角度出发同时考虑帘线钢用钢丝的拉拔断丝和年至断丝问题,但在该文中,他对这两种断丝之间内在联系的探讨仅此而已,未能进行深入研究。
因此,钢丝表面缺陷、内部夹杂物、热处理工艺、拉拔工艺都可能导致钢丝质量不合理,从而在拉拔过程中断裂。