不可压缩粘性流体的运动微分方程
- 格式:ppt
- 大小:4.63 MB
- 文档页数:89
第七章不可压缩流体动力学基础在前面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的观点,求得平均量。
但是,很多问题需要求得更加详细的信息,如流速、压强等流动参数在二个或三个坐标轴方向上的分布情况。
本章的内容介绍流体运动的基本规律、基本方程、定解条件和解决流体问题的基本方法。
第一节流体微团的运动分析运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。
位移和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则是基于液体的易流动性而特有的运动形式,在刚体是没有的。
在直角坐标系中取微小立方体进行研究。
一、平移:如果图(a )所示的基体各角点的质点速度向量完全相同时,则构成了液体基体的单纯位移,其移动速度为z y x u u u 、、。
基体在运动中可能沿直线也可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不变)。
二、线变形:从图(b )中可以看出,由于沿y 轴的速度分量,B 点和C 点都比A 点和D 点大了dy yu y ∂∂,而yu y ∂∂就代表1=dy 时液体基体运动时,在单位时间内沿y 轴方向的伸长率。
x u x ∂∂,y u y ∂∂,zuz ∂∂ 三、角变形(角变形速度)ddd DCABCDBAdt yu dy dt dy y u d x x ∂∂=⋅∂∂=α dt x udx dt dx x u d yy∂∂=⋅∂∂=β θβθα+=-d d 2βαθd d -=∴ 角变形: ⎪⎪⎭⎫⎝⎛∂∂+∂∂=+=-=x u y u d d d y x z 212βαθαθ ⎪⎭⎫⎝⎛∂∂+∂∂=x u z u z x y 21θ⎪⎪⎭⎫⎝⎛∂∂+∂∂=y u z u z y x 21θ 四、旋转(旋转角速度)⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=-=y u x u x y z 21θω ⎪⎪⎭⎫⎝⎛∂∂-∂∂=z u y u y zx 21ω 即, ⎪⎭⎫⎝⎛∂∂-∂∂=x u z u z x y 21ωzyxu u u z y x k ji ∂∂∂∂∂∂=21ω 那么,代入欧拉加速度表达式,得:z x x x x x x z y y z z y y y y y y y x z z x x z z z z z z z y x x y y x x y du u u u u u u u dt t xu u u u u u u u dt t y u u uu u u u u dt t z αθθωωαθθωωαθθωω∂∂⎫==++++-⎪∂∂⎪∂∂∂⎪==++++-⎬∂∂⎪⎪∂∂∂==++++-⎪∂∂⎭各项含义: (1) 平移速度(2)线变形运动所引起的速度增量(3)(4)角变形运动所引起的速度增量 (5)(6)微团的旋转运动所产生的速度增量流体微团的运动可分解为平移运动,旋转运动,线变形运动和角变形运动之和。
Chapter 9-1 粘性不可压缩流体流动§1概述一、粘性不可压缩流动模型1、关于粘性 粘性摩擦的存在必导致绕流阻力的存在,运动的衰减及涡量的扩散。
在大e R 数下,惯性力>>粘性力,采用理想流体模型,理想流体理论对不脱体绕流情况下的升力,压力分布和速度分布给出了符合实际的结果,但在阻力等与粘性效应相关的问题上却无能为力。
因而,在研究阻力等起源于粘性的现象时须抛弃理想流体假设。
在小e R 数和中e R 数情况下,粘性作用不可忽略。
2、关于不可压缩流动(流体的压缩性对流动的影响可略)液体压缩系数小,一般可认为不可压缩(极端情况如激波等除外)。
气体在低速运动(速度远小于声速)、非定常时速度变化缓慢,且重力方向上流场的尺度<10km 时,可略其压缩性。
(当研究对流层(~10km )内大气运动时,不能忽略重力场引起的压缩效应)。
3、基本方程组和边界条件均质不可压缩流体.const ρ=,且温度变化小,const μ=,故有20V dV pF V dt γρ⎫∇⋅=⎪⎬∇=-+∇⎪⎭求速度和压力场的完备方程组。
能量方程22:dUk T S S dtρμ=∇+ 用于求温度场 本构方程 2P p I S μ=-+ 用于求应力边界条件:在固壁表面上,流体的法向和切向速度分别等于固体表面的对应速度分量。
在自由表面上,0, 0nn n p p p τ=-=。
二、粘性流动分类,求解问题的几种途径层流:流体运动规则、稳定,各部分分层流动互不掺混,质点轨迹光滑。
脉线清晰 湍流:流体运动极不规则、极不稳定,伴有高频扰动,各部分激烈掺混,质点轨迹杂乱无章。
决定流动状态的参数是e R 数(Batchlor page255),e R <<2000 一定是层流,此时粘性力足以保持流动的稳定。
层流:极少有准确解(某些特殊的简单问题,非线性方程得以简化) 近似解法:大e R 数,边界层理论小e R 数,部分或全部忽略惯性力。
流体力学第八章答案【篇一:流体力学第8、10、11章课后习题】>一、主要内容(一)边界层的基本概念与特征1、基本概念:绕物体流动时物体壁面附近存在一个薄层,其内部存在着很大的速度梯度和漩涡,粘性影响不能忽略,我们把这一薄层称为边界层。
2、基本特征:(1)与物体的长度相比,边界层的厚度很小;(2)边界层内沿边界层厚度方向的速度变化非常急剧,即速度梯度很大;(3)边界层沿着流体流动的方向逐渐增厚;(4)由于边界层很薄,因而可以近似地认为边界层中各截面上压强等于同一截面上边界层外边界上的压强;(5)在边界层内粘性力和惯性力是同一数量级;(6)边界层内流体的流动与管内流动一样,也可以有层流和紊流2种状态。
(二)层流边界层的微分方程(普朗特边界层方程)??v?vy?2v1?p?vy?????vx?x?y??x?y2????p??0?y???v?vy???0?x?y??其边界条件为:在y?0处,vx?vy?0 在y??处,vx?v(x)(三)边界层的厚度从平板表面沿外法线到流速为主流99%的距离,称为边界层的厚度,以?表示。
边界层的厚度?顺流逐渐加厚,因为边界的影响是随着边界的长度逐渐向流区内延伸的。
图8-1 平板边界层的厚度1、位移厚度或排挤厚度?1?1?2、动量损失厚度?2?vx1?(v?v)dy?(1?)dy x??00vv?2?1?v2???vx(v?vx)dy???vxv(1?x)dy vv(四)边界层的动量积分关系式??2???p?vdy?v?vdy?????wdx xx??00?x?x?x对于平板上的层流边界层,在整个边界层内每一点的压强都是相同的,即p?常数。
这样,边界层的动量积分关系式变为?wd?2d?vdy?vvdy?? x?x??00dxdx?二、本章难点(一)平板层流边界层的近似计算根据三个关系式:(1)平板层流边界层的动量积分关系式;(2)层流边界层内的速度分布关系式;(3)切向应力关系式。
1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。
1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。
1781年拉格朗日首先引进了流函数的概念。
1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。
1876年雷诺发现了流体流动的两种流态:层流和紊流。
1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。
19世纪末,相似理论提出,实验和理论分析相结合。
1904年普朗特提出了边界层理论。
20世纪60年代以后,计算流体力学得到了迅速的发展。
流体力学内涵不断地得到了充实与提高。
理想势流伯努利方程(3-14)或(3-15)物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。
(应用条件:“”所示)符号说明二、沿流线的积分1.只有重力作用的不可压缩恒定流,有2.恒定流中流线与迹线重合:沿流线(或元流)的能量方程:(3-16)注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。
一般不同流线各不相同(有旋流)。
(应用条件:“”所示,可以是有旋流)流速势函数(势函数)观看录像>>•存在条件:不可压缩无旋流,即或必要条件存在全微分d直角坐标(3-19)式中:——无旋运动的流速势函数,简称势函数。
•势函数的拉普拉斯方程形式对于不可压缩的平面流体流动中,将(3-19)式代入连续性微分方程(3-18),有:或(3-20)适用条件:不可压缩流体的有势流动。
点击这里练习一下极坐标(3-21)流函数1.流函数存在条件:不可压缩流体平面流动。
直角坐标连续性微分方程:必要条件存在全微分d y(3-22)式中:y——不可压缩流体平面流动的流函数。
适用范围:无旋流、有旋流、实际流体、理想流体的不可压缩流体的平面流动。
对流流动方程通常指的是描述流体运动的方程,也被称为动量守恒方程或Navier-Stokes方程。
这个方程基于牛顿第二定律,即力等于质量乘以加速度。
对于不可压缩粘性流体,其守恒型的表达形式为:
质量守恒方程:
div(u)=0
动量守恒方程:
ρ * ∂u/∂t + ρ * div(u*u) = μ * div(grad(u)) - ∇p
其中,u是速度矢量,ρ是流体密度,t是时间,μ是动力粘度,p是压力,grad和div分别表示梯度和散度。
这个方程描述了流体运动中力的作用和动量的传递。
它对于理解和预测流体动力学中的许多现象至关重要,如湍流、流动分离、波动等。
对流方程也可简化为对流动的基本方程,如连续性方程(质量守恒方程)和动量守恒方程。
这些方程基于质量守恒和牛顿第二定律,用于描述流体运动的宏观性质。
需要注意的是,对流流动方程是一个非线性偏微分方程,求解非常复杂。
在实际应用中,通常需要采用数值方法进行求解,如有限差分法、有限元法等。
同时,也需要根据具体问题对模型进行适当的简化和假设,以便更好地理解和预测流体运动的行为。
连续介质模型:把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u(t,x,y,z)。
不可压缩流体:流体密度随压强变化很小,流体的密度可视为常数的流体(ρ =const)。
9. 毛细液柱高度h 与 C 成反比。
(A) 表面张力系数 (B) 接触角 (C) 管径 (D) 粘性系数1. 流体的切应力与剪切变形速率有关,而固体的切应力与剪切变形大小有关。
2.流体的粘度与哪些因素有关?它们随温度如何变化?流体的种类、温度、压强。
液体粘度随温度升高而减小,气体粘度随温度升高而增大。
3.为什么荷叶上的露珠总是呈球形?表面张力的作用。
4.一块毛巾,一头搭在脸盆内的水中,一头在脸盆外,过了一段时间后,脸盆外的台子上湿了一大块,为什么?毛细现象。
5.为什么测压管的管径通常不能小于1cm ?如管的内径过小,就会引起毛细现象,毛细管内液面上升或下降的高度较大,从而引起过大的误差。
6.在高原上煮鸡蛋为什么须给锅加盖?高原上,压强低,水不到100℃就会沸腾,鸡蛋煮不熟,所以须加盖。
4. 流体平衡微分方程或 dp =ρ(X dx +Y dy +Z dz ) 全微分方程 dp =ρd W 其积分为: p =ρW +C 或 p =p 0+ρ(W-W 0) 5. 流体静力学基本方程重力作用下静压强的分布: 常数=+γp z ;p=p 0+γh6. 平面上流体静压力 P =γh c A压力中心 Az J z z cc D c +=1.什么是等压面?等压面的条件是什么?等压面是指流体中压强相等的各点所组成的面。
只有重力作用下的等压面应满足的条件是:静止、连通、连续均质流体、同一水平面。
2.盛有液体的敞口容器作自由落体时,容器壁面AB 上的压强分布如何?∵dp =ρ(X dx +Y dy +Z dz )=ρ(g-g )dz =0 ∴p =const ,自由液面上p = 0 ∴p = 03.若人所能承受的最大压力为 1.274MPa (相对压强),则潜水员的极限潜水深度为多少?潜水员的极限潜水深度为:1.274×106÷9800=130(米) 4.为什么虹吸管能将水输送到一定的高度? 因为虹吸管内出现了真空。