结构力学2课后思考题答案
- 格式:doc
- 大小:54.50 KB
- 文档页数:5
结构力学第二版课后题答案73页解析:解析:对于建筑物,建筑结构的稳定性对建筑物的抗震性能和建筑的使用寿命都有很大的影响,对建筑结构分析结果和相关模型进行比较分析,对于建筑物建筑结构的稳定性分析中是非常重要的一个环节。
在建筑物的主要构件可以分为结构构件和非结构构件二大类。
结构构件主要包括基础、承重墙体、框架结构、屋盖和楼板等构件(具体如图1);非结构构件主要包括支撑索和预应力索(见图2);屋盖承重墙体包括屋盖、檐口、墙体及檐口外壁柱等构件。
其基本组成包括支撑索和预应力索两大类。
支撑索主要包括梁柱、承台、桥墩等构件;预应力索主要包括预应力混凝土或钢筋混凝土梁等构件。
在实际工程中,一般根据实际情况采用下列两种方法确定支撑索和预应力索长度: A.按结构构件形式确定; B.按预应力的要求确定;C.按混凝土的抗压强度确定;D.按构件的刚度确定;E.按构件的荷载大小确定。
其中,刚度是指在不同的载荷作用下构件整体上受力情况的相对变化规律的总和,计算时先计算大、小柱分别受力情况对截面上相应混凝土强度的影响程度为: A. C. D;F. E。
1.梁的极限承载力计算是不是就等同于梁的破坏了呢?解析:梁柱的受力特点为轴向分布应力与水平分布应力的大小基本相同,受力特点是弹性变形和受力性能基本一致。
在实际工程中,我们常常把梁的极限承载力与柱承载力相等同。
这是不准确的。
柱子与梁是相对独立的两个实体。
柱子和梁受力时受力过程中的弹性变形与荷载产生时柱面上受到的载荷发生变化没有直接关系,柱和梁本身均没有受力作用的应力形态或者说仅仅是局部受力。
但是,柱子和梁荷载却能导致柱面出现破坏现象,导致柱面出现纵向开裂。
梁的极限承载力一般比构件尺寸更小(直径或长度)、截面更大(如混凝土截面等)、荷载影响范围更广(如荷载集中分布区域等)等因素造成更大规模的破坏。
因此,梁的极限承载力计算只考虑梁对整体荷载作用时对其截面内部钢筋疲劳破坏力和整个截面上产生破坏的荷载,并没有考虑整个截面上产生破坏后对构件外部受力结构产生破坏等因素形成的破坏作用。
概念题结构动力计算与静力计算的主要区别是什么答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。
什么是动力自由度,确定体系动力自由度的目的是什么答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。
确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。
结构动力自由度与体系几何分析中的自由度有何区别答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。
结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。
结构的动力特性一般指什么答:结构的动力特性是指:频率(周期)、振型和阻尼。
动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。
动力特性不同,在振动中的响应特点亦不同。
什么是阻尼、阻尼力,产生阻尼的原因一般有哪些什么是等效粘滞阻尼答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
当然,也包括结构中安装的各种阻尼器、耗能器。
阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。
粘滞阻尼理论假定阻尼力与质量的速度成比例。
粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。
朱慈勉 结构力学 第2章课后答案全解2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a)ⅠⅡⅢ(ⅠⅡ)(ⅠⅢ)(Ⅱ Ⅲ)舜变体系`ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)2-3 试分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(Ⅱ Ⅲ)几何不变W=3×3 - 2×2 – 4=1>0可变体系ⅠⅡⅢ(ⅠⅡ)(ⅠⅢ)(ⅡⅢ)几何不变2-4 试分析图示体系的几何构造。
(a)(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)ⅠⅡⅢ几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系ⅢⅠⅡ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)几何不变(d)(ⅠⅡ)ⅢⅠⅡ(ⅡⅢ)(ⅠⅢ)二元杆有一个多余约束的几何不变体ⅠⅡⅢ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)ⅠⅡⅢ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)无多余约束内部几何不变ⅠⅡⅢ(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)二元体(h)ⅠⅡⅢ(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)二元体多余约束W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)(ⅠⅢ)几何不变同济大学朱慈勉 结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)4P F a2P F a 2P F a M4P F Q34P F 2P F(b)ABCaa aaaF P a DEFF P2m6m2m4m2mABCD10kN2kN/m42020M Q10/326/3410(c)21018018040M1560704040Q(d)3m2m2mA B CEF15kN 3m3m4m20kN/mD 3m2m2m2mA2m 2m2mABCD E FG H 6kN ·m4kN ·m 4kN2m7.5514482.524MQ3-3 试作图示刚架的内力图。
概念题1.1 结构动力计算与静力计算的主要区别是什么?答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。
1.2 什么是动力自由度,确定体系动力自由度的目的是什么?答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。
确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。
1.3 结构动力自由度与体系几何分析中的自由度有何区别?答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。
结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。
1.4 结构的动力特性一般指什么?答:结构的动力特性是指:频率(周期)、振型和阻尼。
动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。
动力特性不同,在振动中的响应特点亦不同。
1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
当然,也包括结构中安装的各种阻尼器、耗能器。
阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。
粘滞阻尼理论假定阻尼力与质量的速度成比例。
粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。
第11章静定结构总论11.1复习笔记一、几何构造分析与受力分析之间的对偶关系1.从计算自由度W的力学含义和几何含义看对偶关系(1)W的几何含义W=各部件的自由度总数-全部约束数。
(2)W的力学含义W=各部件的平衡方程总数-未知力总数。
(3)根据W的数值,可对体系的静力特性得出下列结论①W>0,平衡方程个数大于未知力个数,体系不是都能维持平衡,体系为几何可变;②W<0,平衡方程个数小于未知力个数,体系如能维持平衡,体系有多余约束,是超静定的;③W=0,平衡方程个数等于未知力个数,考虑方程组的系数行列式D当D≠0,方程组有唯一解,体系几何不变且无多余约束;当D=0,方程组无解或有无穷多解,体系几何可变且有多余约束。
2.从W=0的一个简例看对偶关系(1)几何构造分析(图11-1(a))图11-1①α≠0(链杆1和2不共线)时,体系为几何不变,且无多余约束;②α=0(链杆1和2为共线)时,体系为几何可变(瞬变),且有多余约束。
(2)受力分析取结点C为隔离体(图11-1c),可写出两个投影平衡方程:F1cosα-F2cosα=F xF1sinct+F2sinoc=F y下面分为两种情况讨论①α≠0时(两根链杆1和2不共线)②α=0时(两根链杆共线)当荷载F y≠0时,方程组无解;如果考虑F y=0而只有水平荷载F x作用的特殊情况,此时解为:F1=F2+F x=任意值。
二、零载法1.零载法的作法表述对于W=0的体系,如果是几何不变的,则在荷载为零的情况下,它的全部内力都为零;反之,如果是几何可变的,则在荷载为零的情况下,他的某些内力可不为零。
2.零载法适用体系零载法是针对W=0的体系,用静力法来研究几何构造问题,用平衡方程的解的唯一性来检验其几何不变性的方法。
3.从虚功原理角度看零载法由于载荷为零,因此虚功方程左边只有一项Fx•△x=0(1)与F x相应的约束是非多余约束,△≠0,解得F=0;(2)与F x相应的约束是多余约束,△=0,则F等于任意值。
《结构⼒学II》习题集2017年解析结构的动⼒计算⼀、判断题(填 √ 或 ×)1. 单⾃由度体系中,刚度系数k 和柔度系数δ互为倒数,即k =1/δ()2.单⾃由度体系的⾃振频率ω与质量m 成正⽐,m 愈⼤,ω愈⼤() 3. 受简谐荷载的⽆阻尼单⾃由度体系,稳态振动时,其内⼒和荷载同时达到幅值() 4. 结构的动⼒反应只与初始条件和动荷载有关() 5. ⾃振频率(⾃振周期)与结构受到的动⼒荷载和结构受到的初始⼲扰有关( × ) 6. 结构体系简化的⾃由度数⽬与计算结果的精度有关。
( √ ) 7. 具有集中质量的结构体系,动⼒⾃由度数⽬就是体系集中质量的个数( × ) 8. 受简谐荷载的结构体系,加⼤结构的⾃振频率就可以减⼩其振幅( × ) 9. 在建⽴振动⾃由振动微分⽅程时,若考虑重⼒的影响,动位移会有所变化( × ) 10. 两个⾃由度体系同⼀质点的位移动⼒系数和内⼒动⼒系数相同。
( × ) 11. 当动荷载的频率远⼩于结构的⾃振频率时,动荷载主要与弹性⼒相平衡。
()12. 单⾃由度体系的⾃振频率与质量成反⽐。
( × ) 13. 两个不相同的结构,若其⾃振周期相近,则它们在动荷载作⽤下的动⼒性能基本⼀致() 14. 在有阻尼的结构中,结构共振时的动⼒系数与阻尼⽐成反⽐。
() 15. 体系的动⼒⾃由度与质点的个数相等。
() 16. 当动荷载的频率与结构的⾃振频率相近时,动荷载主要与阻尼⼒相平衡。
() 17. 多⾃由度体系的振型与外界⼲扰⽆关。
() 18. 在动⼒计算中,动⼒⾃由度数⽬等于体系集中质量的个数。
() 19. 在建⽴振动微分⽅程时,若考虑重⼒的影响,振动微分⽅程会有所变化。
() 20. ⾃由度的数⽬不完全取决于质点的数⽬,也与结构是否静定或超静定⽆关。
() 21.⽆阻尼单⾃由度体系仅由初始位移产⽣⾃由振动时,其振幅幅值等于初始位移。
结构力学2课后概念题答案(龙驭球)概念题1.1 结构动力计算与静力计算的主要区别是什么?答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。
1.2 什么是动力自由度,确定体系动力自由度的目的是什么?答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。
确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。
1.3 结构动力自由度与体系几何分析中的自由度有何区别?答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。
结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。
1.4 结构的动力特性一般指什么?答:结构的动力特性是指:频率(周期)、振型和阻尼。
动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。
动力特性不同,在振动中的响应特点亦不同。
1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
当然,也包括结构中安装的各种阻尼器、耗能器。
阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。
粘滞阻尼理论假定阻尼力与质量的速度成比例。
粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。
结构力学第二版课后习题答案结构力学第二版课后习题答案结构力学是一门研究物体受力情况和力学性质的学科,它在工程领域中有着广泛的应用。
结构力学的学习不仅需要理论的掌握,还需要通过实际的习题来加深对知识的理解和运用。
本文将为大家提供《结构力学》第二版课后习题的答案,希望能够帮助大家更好地学习和应用结构力学知识。
第一章弹性力学基础1.1 弹性力学的基本概念1. 弹性力学是研究物体在外力作用下发生形变时,恢复到原来形态的力学学科。
2. 牛顿第二定律:物体所受合外力等于物体质量乘以加速度。
3. 弹性体:在外力作用下,物体发生形变,当外力消失后,物体能够完全恢复到原来的形态。
4. 弹性力学的基本假设:线弹性假设、小变形假设、平面假设。
1.2 应力和应变1. 应力:单位面积上的力,即单位面积上的力的大小。
2. 应变:物体在外力作用下发生的形变程度。
3. 线弹性假设下的应力-应变关系:胡克定律,即应力与应变成正比。
4. 应力张量:描述物体内部各点上的应力状态,是一个二阶张量。
1.3 弹性体的本构关系1. 本构关系:描述物体应力和应变之间的关系。
2. 弹性体的本构关系:胡克定律。
3. 弹性模量:描述物体对应力的敏感程度。
4. 剪切模量:描述物体对剪切应力的敏感程度。
第二章弹性力学的基本方程2.1 平衡方程与应力平衡方程1. 平衡方程:描述物体在力的作用下的平衡状态。
2. 应力平衡方程:描述物体在外力作用下的应力分布情况。
2.2 应变平衡方程1. 应变平衡方程:描述物体在外力作用下的应变分布情况。
2.3 弹性力学基本方程1. 弹性力学基本方程:包括平衡方程、应力平衡方程和应变平衡方程。
第三章弹性体的力学性质3.1 弹性体的应力分析1. 弹性体的平面应力问题:在一个平面上受力的弹性体。
2. 弹性体的平面应变问题:在一个平面上发生应变的弹性体。
3.2 弹性体的弯曲1. 弹性体的弯曲:在外力作用下,物体发生弯曲变形。
2. 弯曲方程:描述弯曲变形的关系。
习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
题3-1图3-2 试不计算反力而绘出梁的M 图。
题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
题4-1图4-2 作图示刚架的M 图。
(b)(a)20kN40kN20kN/m40kN(b)5kN/m40kN(a)(c)(b)(a)//题4-2图4-3 作图示三铰刚架的M 图。
题4-3图4-4 作图示刚架的M 图。
题4-4图4-5 已知结构的M 图,试绘出荷载。
P(e)(d)(a)(b)(c)/4kN(b)(a)(a)(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。
题4-6图习题55-1 图示抛物线三铰拱轴线方程,试求D 截面的内力。
题5-1图5-2 带拉杆拱,拱轴线方程,求截面K 的弯矩。
题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(e)(g)(h)P(d)(c)(a)(b)(f)x x l lfy )(42-=x x l lfy )(42-=C题6-1图6-2 用结点法计算图示桁架中各杆内力。
题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
题6-4图6-5 用适宜方法求桁架中指定杆内力。
(c)(b)(b)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。
[课程]结构力学2课后概念题答案(龙驭球) 概念题于代替能量耗散的一种假想力。
粘滞阻尼理论假定阻尼力与质量的速度成比例。
1.1 结构动力计算与静力计算的主要区别是什么,粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时假设称为等效粘滞阻尼。
间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。
1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同,1.2 什么是动力自由度,确定体系动力自由度的目的是什么,答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或需要的独立参数的个某些位置上,认为其他数,称为体系的动力自由度(质点处的基本位移未知量)。
地方没有质量。
质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。
广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。
所假设的形状曲线数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和数目代表在这个理想化动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能形式中所考虑的自由度个数。
考虑了质点间均匀分布质量的影响(形位置有关。
状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集1.3 结构动力自由度与体系几何分析中的自由度有何区别,中质量法更为精确。
答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。
结构力学2课后概念题答案(龙驭球)概念题1.1 结构动力计算与静力计算的主要区别是什么?答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。
1.2 什么是动力自由度,确定体系动力自由度的目的是什么?答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。
确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。
1.3 结构动力自由度与体系几何分析中的自由粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。
1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同?答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。
质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。
广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。
所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。
考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。
有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。
一般的广义坐标中,广义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。
概念题1.1 结构动力计算与静力计算的主要区别是什么?答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。
1.2 什么是动力自由度,确定体系动力自由度的目的是什么?答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。
确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。
1.3 结构动力自由度与体系几何分析中的自由度有何区别?答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。
结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。
1.4 结构的动力特性一般指什么?答:结构的动力特性是指:频率(周期)、振型和阻尼。
动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。
动力特性不同,在振动中的响应特点亦不同。
1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
当然,也包括结构中安装的各种阻尼器、耗能器。
阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。
粘滞阻尼理论假定阻尼力与质量的速度成比例。
粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。
1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同?答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。
质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。
广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。
所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。
考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。
有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。
一般的广义坐标中,广义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。
而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义在分片区域的。
在有限元分析中,形函数被称为插值函数。
综上所述,有限元法综合了集中质量法和广义坐标法的特点:(l) 与广义坐标法相似,有限元法采用了形函数的概念。
但不同于广义坐标法在整体结构上插值(即定义形函数),而是采用了分片的插值,因此形函数的表达式(形状)可以相对简单。
(2) 与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,这与集中质量法相同。
———————————————————————————————————————2.1 建立运动微分方程有哪几种基本方法?各种方法的适用条件是什么?答:常用的有3 种:直接动力平衡法、虚功原理、变分法(哈密顿原理)。
直接动力平衡法是在达朗贝尔原理和所设阻尼理论下,通过静力分析来建立体系运动方程的方法,也就是静力法的扩展,适用于比较简单的结构。
利用虚功原理的优点是:虚功为标量,可以按代数方式相加。
而作用于结构上的力是矢量,它只能按矢量叠加。
因此,对于不便于列平衡方程的复杂体系,虚功方法较平衡法方便。
哈密顿原理的优点:不明显使用惯性力和弹性力,而分别采用对动能和势能的变分代替。
因而对这两项来讲,仅涉及标量处理,即能量。
而在虚功原理中,尽管虚功本身是标量,但用来计算虚功的力和虚位移则都是矢量。
2.2 直接动力平衡法中常用的有哪些具体方法?它们所建立的方程各代表什么条件?答:常用方法有两种:刚度法和柔度法。
刚度法方程代表的是体系在满足变形协调条件下所应满足的动平衡条件;而柔度法方程则代表体系在满足动平衡条件下所应满足的变形协调条件。
2.3 刚度法与柔度法所建立的体系运动方程间有何联系?各在什么情况下使用方便?答:刚度法与柔度法建立的运动方程在所反映的各量值之间的关系上是完全一致的。
由于刚度矩阵与柔度矩阵互逆,刚度法建立的运动方程可转化为柔度法建立的方程。
一般说来,对于单自由度体系,求[δ]和求[k]的难易程度是相同的,因为它们互为倒数,都可以用同一方法求得,不同的是一个已知力求位移,一个已知位移求力。
对于多自由度体系,若是静定结构,一般情况下求柔度系数容易些,但对于超静定结构就要根据具体情况而定。
若仅从建立运动方程来看,当刚度系数容易求时用刚度法,柔度系数容易求时用柔度法。
2.4 计重力与不计重力所得到的运动方程是一样的吗?答:如果计与不计重力时都相对于无位移的位置来建立运动方程,则两者是不一样的。
但如果计重力时相对静力平衡位置来建立运动方程,不计重力仍相对于无位移位置来建立,则两者是一样的。
———————————————————————————————————————3.1 为什么说结构的自振频率是结构的重要动力特征,它与哪些量有关,怎样修改它?答:动荷载(或初位移、初速度)确定后,结构的动力响应由结构的自振频率控制。
从计算公式看,自振频率和质量与刚度有关。
质量与刚度确定后自振频率就确定了,不随外部作用而改变,是体系固有的属性。
为了减小动力响应一般要调整结构的周期(自振频率),只能通过改变体系的质量、刚度来达到。
总的来说增加质量将使自振频率降低,而增加刚度将使自振频率增加。
3.2 自由振动的振幅与哪些量有关?答:振幅是体系动力响应的幅值,动力响应由外部作用和体系的动力特性确定。
对于自由振动,引起振动的外部作用是初位移和初速度。
因此,振幅应该与初位移、初速度以及体系的质量和刚度的大小与分布(也即频率等特性)有关。
当计及体系阻尼时,则还与阻尼有关。
3.3 阻尼对频率、振幅有何影响?答:按粘滞阻尼假定分析出的体系自振频率计阻尼与不计阻尼是不一样的,二者之间的关系为此=山厂萝,计阻尼自振频率此小于不计阻尼频率。
,计阻尼时的自振周期会长于不计阻尼的周期。
由于相差不大,通常不考虑阻尼对自振频率的影响。
阻尼对振幅的影响在频率比不同时大小不同,当频率比在1 附近(接近共振)时影响大,远离1 时影响小。
为了简化计算在频率比远离1 时可不计阻尼影响。
3.4 什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应之比值。
简谐荷载下的动力放大系数与频率比、阻尼比有关。
当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等。
原因是:当把动荷载换成作用于质量的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。
3.5 什么叫临界阻尼?什么叫阻尼比?怎样量测体系振动过程中的阻尼比?答:并不是所有体系都能发生自由振动的,当体系中的阻尼大到一定程度时,体系在初位移和初速度作用下并不产生振动,将这时的体系阻尼系数称为临界阻尼系数,其值为2mω。
当阻尼系数小于该值时(称为小阻尼),可以发生自由振动。
阻尼比是表示体系中阻尼大小的一个量,它为体系中实际阻尼系数与临界阻尼系数之比。
若阻尼比为0.05,则意味着体系阻尼是临界阻尼的5%。
阻尼比可通过实测获得,方法有多种,振幅法是其中之一。
3.6 若要避开共振应采取何种措施?答:共振是指体系自振频率与动荷载频率相同而使振幅变得很大的一种现象(无阻尼时趋于无穷)。
为避开共振,需使体系自振频率与动荷载频率远离。
由于动荷载通常是不能改变的,只能改变体系的自振频率。
改变体系的自振频率可通过改变体系的质量和刚度来实现。
3.7 增加体系的刚度一定能减小受迫振动的振幅吗?答:增加体系的刚度不一定能减小受迫振动的振幅。
对于简谐荷载作用下的振幅除与荷载有关以外,还与动力放大系数有关。
动力放大系数与频率比有关,频率比小于1 时动力放大系数是增函数,这时增加刚度会使自振频率增加,从而使频率比减小,动力放大系数减小,振幅会相应减小;频率比大于1 时动力放大系数是减函数,这时增加刚度会使自振频率增加,从而使频率比减小,动力放大系数增大,振幅会相应增大。
可见,减小体系的动位移不能一味增加刚度,要区分体系是在共振前区工作还是在共振后区工作。
3.8 突加荷载与矩形脉冲荷载有何差别。
答:这两种荷载的主要区别是在结构上停留的时间长短。
与结构的周期相比,停留较长的为突加荷载,较短的是矩形脉冲荷载。
矩形脉冲荷载属于冲击荷载,在它的作用下,结构的最大动力响应出现较早,分析时应考虑非稳态响应。
此外,由于最大响应出现时结构阻尼还未起多大作用,故在分析最大响应时可不计阻尼影响。
而突加荷载则不然。
3.9 杜哈迈积分中的变量τ与t 有何差别?答:杜哈迈积分是变上限积分,积分上限t 是原函数的自变量;τ是积分变量。
t 是动力响应发生时刻,τ是瞬时冲量作用的时刻。
3.10 什么是稳态响应?通过杜哈迈积分确定的简谐荷载的动力响应是稳态响应吗?答:稳态响应是指:由于阻尼影响,动力响应中按自振频率振动的分量消失后,剩下的按动荷载频率振动的部分。
通过杜哈迈积分确定的简谐荷载动力响应是非稳态响应,积分中并没有略去荷载所激起的按结构自振频率变化的伴随自由振动部分。
———————————————————————————————————————4.1 什么是振型,它与哪些量有关?答:振型是多自由度体系所固有的属性,是体系上所有质量按相同频率作自由振动时的振动形状。
它仅与体系的质量和刚度的大小、分布有关,与外界激励无关。
4.2 对称体系的振型都是对称的吗?答:像静力问题对称结构既可产生对称变形,也能产生反对称变形一样,究竟受外界作用产生什么变形要取决于外界作用。
对称体系的振型既有对称的,也有反对称的。
4.3 满足对质量矩阵、刚度矩阵正交的向量组一定是振型吗?答:体系的某一振型是按其对应频率振动时各质点的固定振动形式,是各质点间振动位移的比例关系,具体的振动位移值是不确定的。