新编物理基础学全册(王少杰版)课后习题答案及详解
- 格式:docx
- 大小:9.00 MB
- 文档页数:191
新编物理基础学(上、下册)课后习题详细答案王少杰,顾牡主编第一章1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++r r r r其中a ,b ,ω均为正常数,求质点速度和加速度与时间的关系式。
分析:由速度、加速度的定义,将运动方程()r t r对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。
解:/sin()cos()==-++r r r r rv dr dt a t i a t j bk ωωωω2/cos()sin()a dv dt a t i t j ωωω⎡⎤==-+⎣⎦r r r r1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kx v v e -= 。
其中0v 是发动机关闭时的速度。
分析:要求()v v x =可通过积分变量替换dxdvvdt dv a ==,积分即可求得。
证:2d d d d d d d d v x vv t x x v t v K -==⋅= d Kdx v =-v⎰⎰-=x x K 0d d 10v v v v , Kx -=0ln v v0Kx v v e -=1-3.一质点在xOy 平面内运动,运动函数为22,48x t y t ==-。
(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。
写出质点的运动学方程)(t r ρ表达式。
对运动学方程求一阶导、二阶导得()v t r 和()a t r ,把时间代入可得某时刻质点的位置、速度、加速度。
解:(1)由2,x t =得:,2x t =代入248y t =-可得:28y x =-,即轨道曲线。
1、质点作曲线运动[ D ](3)v dtds =;(D )只有(3)是对的。
2、质点沿半径为R [ B ](B) 0,t R π2 3、一运动质点在[ D ](D) 22)()(dt dy dt dx +4、一小球沿斜面[ B](B )t=2s ;5、一质点在平面(B )变速直线运动;6.质量为m 的小球在向心力作用下j mv B 2)(-7.一质点作匀速率圆周运动(C)它的动量不断改变,对圆心的角动量不变;8、质点在外力作用下运动时(B )外力的冲量为零,外力的功一定为零;9.选择正确答案(A)物体的动量不变,则动能也不变;10.人造卫星绕地球作圆运动(D)角动量守恒,动能不守恒;11.质点系内力可以改变 (C )系统的总动能;12.一力学系统由两个质点组成(C 动量守恒、但机械能和角动量守恒与否不能断定;13.对功的概念说法正确的是(C) 质点沿闭合路径运动,保守力对质点做的功等于零;14.用绳子系着一物体;(D )重力、张力都没对物体做功;15.狭义相对论中的相对性原理;(C) (3),(4);16.狭义相对论中的光速不变原理;(C) (3),(4);17.边长为a 的正方形薄板静止于惯性系S ;(B)0.62a ;18.有一直尺固定在系中; 45)(等于C ;19.电场强度qF E =;(D )任何电场。
; 20.下面列出的真空中静电场的场强公式[ D ] 半径为R ..r rR E 302εσ=; 21.一个带负电荷的质点22.如图所示,闭合面S 内有一点电荷q(B) S 面的电通量不变, P 点场强改变 23.若匀强电场的电场强度为E ;(B )E a 221π;24.下列说法正确的是(C)通过闭合曲面S 的总电通量,仅仅由S 面内所包围的电荷提供;24.静电场的环路定理⎰=∙0l d E 说明静电场的性质是;(D )静电场是保守场.25.下列叙述中正确的是(D) 场强方向总是从电势高处,指向电势低处。
习题一1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++其中a ,b ,ω均为正常数,求质点速度和加速度与时间的关系式。
分析:由速度、加速度的定义,将运动方程()r t 对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。
解:/sin()cos()==-++v dr dt a t i a t j bk ωωωω2/cos()sin()a dv dt a t i t j ωωω⎡⎤==-+⎣⎦1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kx v v e -= 。
其中0v 是发动机关闭时的速度。
分析:要求()v v x =可通过积分变量替换dxdvv dt dv a ==,积分即可求得。
证:2d d d d d d d d v x vv t x x v t v K -==⋅= d Kdx v =-v⎰⎰-=x x K 0d d 10v v v v , Kx -=0ln v v 0Kx v v e -=1-3.一质点在xOy 平面内运动,运动函数为22,48x t y t ==-。
(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。
写出质点的运动学方程)(t r表达式。
对运动学方程求一阶导、二阶导得()v t 和()a t ,把时间代入可得某时刻质点的位置、速度、加速度。
解:(1)由2,x t =得:,2x t =代入248y t =-可得:28y x =-,即轨道曲线。
画图略 (2)质点的位置可表示为:22(48)r ti t j =+- 由/v dr dt =则速度:28v i tj =+ 由/a dv dt =则加速度:8a j =则:当t=1s 时,有24,28,8r i j v i j a j =-=+=当t=2s 时,有48,216,8ri j v i j a j =+=+=1-4.一质点的运动学方程为22(1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。
1.已知质点的运动方程为; a = 4i j -+。
2.说明质点做何种运动时; 变速率曲线运动;变速率直线运动 3.一质点运动方程为26x t t =-; 8m;10m 4.飞轮作加速转动时; 26m s ; 24m s ;5.一个力F 作用在质量为kg 0.1的质点上;16N S ; 176J ;6.如图为一圆锥摆; 0 ;2m g πω ;2m gπω;7.一质量为m 的物体;0m v ;竖直向下; 8.一质量为m 小球;竖直向上;mgt;9.一颗子弹在枪筒里前进时; 0.003s; 0.6N*S; 2g ; 10.一质点在几个力同时作用下; 38J ; 11.一人把质量为10kg 的物体; 196 ; 216; 12.二质点的质量各为; 1211()G m m ab--;13.狭义相对论是建立在; 伽利略 ; 14.一光子以速度c 运动; c; 15.在测量物体长度中; 最长 ; 最短 ; 16.一观察者测量得沿尺长;32c ;17.静止时边长为a 的立方体;3221a u c -;18.一点电荷q 位于一立方体中心;6Oq ε; 0 ;24Oq ε;19.描述静电场性质的两个物理量是;E ;u ;F E q=;0u Pu E dl ==⎰;20.如图,真空中两个点电荷;O Q ε;0;201094QR πε;21.如图示,两个平行的无限大;2Oσε;32O σε;2Oσε; 方向向右; 方向向右; 方向向左;22.图中曲线表示一种球对称性静电场;均匀带电实心球; 23.真空中有一半径为R 的半圆细环;4O Q Rπε;4O qQ Rπε-;24.如图示,在带电量为q 的点电荷;11()4O abqq r r πε-;25.如图所示,负电荷Q 的电场中有b a ,两点;b; a ; 增加; 26.在点电荷q 的电场中;7210C --⨯;27一带电量为Q 的导体环;Q - ; Q ;28.一孤立金属球带电量Q +;径向方向向外;0;电荷均匀分布于金属球的外表面;29.在带电量为Q +的金属球外面;24Q rπ; Q ;204r Q rπεε;0rQεε;30.一平行板电容器,充电后与电源保持连接;r ε; 1; r ε; 31.半径为0.5cm 的无限长的直圆柱形导体上; 0 ;32.在安培环路定理;_环路所包围的所有稳恒电流的代数和;环路上的磁感应强度;环路内外全部电流所产生的磁场的叠加;33.在均匀磁场中放置两个面积相等;相等;34.一平面实验线圈的磁矩大小为;0.5T ;沿y 轴正向;35.如右图,无限长直导线中流有的电流分别为;不相等;0123()I I I μ--;01()I μ-;36.无限长直圆筒入在相对磁导率为;2Irπ;02r Irμμπ;37.三根无限长载流直导线;5I; 38.一自感线圈中;0.4H;39.产生动生电动势的非静电场力;洛伦兹 ; 涡旋电场;。
《新编基础物理学》第2章习题解答和分析2-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第2章 质点动力学2-30 一物体在介质中按规律2x ct =作直线运动,c 为一常量。
设介质对物体的阻力正比于速度的平方。
试求物体由x 0=0运动到x =l 时,阻力所做的功。
(已知阻力系数为k )分析 本题是一个变力做功问题,按功的定义式d W F x =⋅⎰来求解。
解 由运动学方程2x ct =,可得物体速度d 2d xct t==v 物体所受阻力大小为22244F k kc t kcx ===v阻力做的功为200d d 4d 2llW F x F x kcx x kcl =⋅=-=-=-⎰⎰⎰2-31.一辆卡车能沿着斜坡以115km h -⋅的速率向上行驶,斜坡与水平面夹角的正切tan 0.02α=,所受的阻力等于卡车重量的0.04,如果卡车以同样的功率匀速下坡,则卡车的速率是多少?分析:求出卡车沿斜坡方向受的牵引力,再求瞬时功率。
注意:牵引力和速度同方向。
解:如解图2-31所示,由于斜坡角度很小所以有sin 0.02tg αα≈=且阻力0.04f G =上坡时牵引力为sin 0.06F f G G α=+=下坡时牵引力为sin 0.02F f G G α'==-由于上坡和下坡时功率相同,故P F F ''==v v所以1145km h 12.5m s --'=⋅=⋅v2-32.某物块重量为P ,用一与墙垂直的压力N F 使其压紧在墙上,墙与物块间的滑动摩擦系数为μ,试计算物块沿题图2-32所示的不同路径:弦AB ,劣弧AB ,折线AOB 由A 移动到B 时,重力和摩擦力的功。
已知圆弧半径为r 。
解图2-31α分析:保守力做功与路径无关,非保守力做功与路径有关。
解:重力是保守力,而摩擦力是非保守力,其大小为f N μ=。
(1) 物块沿弦AB 由A 移动到B 时,重力的功1G W mgh Pr ==摩擦力的功12f W f AB Nr μ=⋅=(2) 物块沿圆弧AB 由A 移动到B 时,重力的功2G W mgh Pr ==摩擦力的功212f W f AB Nr πμ=⋅=2(3) 物块沿折线AOB 由A 移动到B 时,重力的功3G W mgh Pr ==。
题9-2解图新编物理基础学下册(9-17章)课后习题(每题都有)详细答案之阿布丰王创作王少杰,顾牡主编第九章9-1 两个小球都带正电,总共带有电荷55.010C -⨯,如果当两小球相距时,任一球受另一球的斥力为1.0N.试求总电荷在两球上是如何分配的? 分析:运用库仑定律求解。
解:如图所示,设两小球分别带电q 1,q 2则有q 1+q 2×10-5C ① 由题意,由库仑定律得:912122091014π4q q q q F r ε⨯⨯⨯===②由①②联立得:5152 1.210C3.810Cq q --⎧=⨯⎪⎨=⨯⎪⎩ 9-2 两根×10-2m 长的丝线由一点挂下,每根丝线的下端都系着一个质量为×10-3kg 的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与沿垂线成60°角的位置上。
求每一个小球的电量。
分析:对小球进行受力分析,运用库仑定律及小球平衡时所受力的相互关系求解。
解:设两小球带电q 1=q 2=q ,小球受力如图所示220cos304πq F T R ε==︒①sin30mg T =︒②联立①②得:2o 024tan30mg R qπε=③ 3sin 6062r l =︒=⨯⨯其中代入③式,即: q ×10-7CF E q =,9-3 电场中某一点的场强定义为若该点没有试验电荷,那么该点是否存在场强?为什么?答:若该点没有试验电荷,该点的场强不变.因为场强是描述电场性质的物理量,仅与场源电荷的分布及空间位置有关,与试验电荷无关,从库仑定律知道,试验电荷q 0所受力F与q 0成正比,故0F E q =是与q 0无关的。
9-4直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知BC =0.04m ,AC ,求C 点电场强度E的大小和方向(cos37°≈0.8,sin37°≈0.6). 分析:运用点电荷场强公式及场强叠加原理求解。
习题二2-1.两质量分别为m 和M (M m)≠的物体并排放在光滑的水平桌面上,现有一水平力F 作用在物体m 上,使两物体一起向右运动,如题图2-1所示,求两物体间的相互作用力? 若水平力F 作用在M 上,使两物体一起向左运动,则两物体间相互作用力的大小是否发生变化? 分析:用隔离体法,进行受力分析,运用牛顿第二定律列方程。
解:以m 、M 整体为研究对象,有:()F m M a =+…① 以m 为研究对象,如图2-1(a ),有Mm F F ma +=…② 由①、②,有相互作用力大小Mm MFF m M=+若F 作用在M 上,以m 为研究对象, 如图2-1(b )有Mm F ma =…………③ 由①、③,有相互作用力大小Mm mFF m M=+,发生变化。
2-2. 在一条跨过轻滑轮的细绳的两端各系一物体,两物体的质量分别为M 1和M 2 ,在M 2上再放一质量为m 的小物体,如图所示,若M 1=M 2=4m ,求m 和M 2之间的相互作用力,若M 1=5m ,M 2=3m ,则m 与M 2之间的作用力是否发生变化?分析:由于轻滑轮质量不计,因此滑轮两边绳中的力相等,用隔离体法进行受力分析,运用牛顿第二定律列方程。
解:取向上为正,如图2-2,分别以M 1、M 2和m 为研究对象, 有: 111T M g M a -=222() ()M m g T M m a -++=-+2 M mmg ma F-=-又:T 1=T 2,则: 2M mF =1122M mgM M m++当M 1=M 2= 4m , 289M mmg F = 当M 1=5m, M 2=3m, 2109M mmg F =,发生变化。
m(a )MmF Fm(b )MmF2-3.质量为M 的气球以加速度a 匀加速上升,突然一只质量为m 的小鸟飞到气球上,并停留在气球上。
若气球仍能匀加速向上,求气球的加速度减少了多少? 分析:用隔离体法受力分析,运用牛顿第二定律列方程。
新编基础物理学王少杰第二版习题解答习题八8-1 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所做的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为3114.1810J kg K --)解由上述分析得水下落后升高的温度8-2 在等压过程中,0.28kg 氮气从温度为293K 膨胀到373K ,问对外做功和吸热多少?内能改变多少?解:等压过程气体对外做功为气体吸收的热量内能的增量为8-3 一摩尔的单原子理想气体,温度从300K 加热到350K 。
其过程分别为体积保持不变和压强保持不变。
在这两种过程中:(1) 气体各吸取了多少热量?(2) 气体内能增加了多少?(3) 气体对外界做了多少功?解:已知气体为1 摩尔单原子理想气体(1) 体积不变时,气体吸收的热量压强保持不变时,气体吸收的热量(2) 由于温度的改变量一样,气体内能增量是相同的(3) 体积不变时,气体对外界做功压强保持不变时,根据热力学第一定律,气体对外界做功为8-4 一气体系统如题图8-4所示,由状态A 沿ACB 过程到达B 状态,有336J 热量传入系统,而系统做功126J,试问:(1) 若系统经由ADB 过程到B 做功42J,则有多少热量传入系统?(2) 若已知168J D A E E -=,则过程AD 及DB 中,系统各吸收多少热量?(3)若系统由B 状态经曲线BEA 过程返回状态A ,外界对系统做功84J,则系统与外界交换多少热量?是吸热还是放热?解:已知ACB 过程中系统吸热336J Q =,系统对外做功126J W =,根据热力学第一定律求出B 态和A 态的内能增量(1) ADB 过程,42J W =, 故(2) 经AD 过程,系统做功与ADB 过程做功相同,即42J W =,故经DB 过程,系统不做功,吸收的热量即内能的增量所以,吸收的热量为(3)因为是外界对系统做功,所以BEA 过程210J BEA E E ?=-?=-,故系统放热.8-5 如题图8-5所示,压强随体积按线性变化,若已知某种单原子理想气体在A,B 两状态的压强和体积,题图8-4题图8-5问:(1)从状态A 到状态B 的过程中,气体做功多少?(2)内能增加多少?(3)传递的热量是多少?解:(1) 气体做功的大小为斜线AB 下的面积(2) 对于单原子理想气体气体内能的增量为由状态方程 m pV RT M=代入得 (3)气体传递的热量为8-6一气缸内储有10mol 的单原子理想气体,在压缩过程中,外力做功200J,气体温度升高o 1C ,试计算:(1) 气体内能的增量;(2) 气体所吸收的热量;(3) 气体在此过程中的摩尔热容量是多少?解:(1) 气体内能的增量(2) 气体吸收的热量(3) 1mol 物质温度升高(或降低) o 1C 所吸收的热量叫摩尔热容量,所以 8-7一定量的理想气体,从A 态出发,经题图8-7所示的过程经C 再经D 到达B 态,试求在该过程中,气体吸收的热量.解:由题图8-7可得A 状态: 5810A A p V =?B 状态: 5810B B p V =? 题图8-7因为A AB B p V p V =,根据理想气体状态方程可知所以气体内能的增量根据热力学第一定律得8-8 一定量的理想气体,由状态A 经B 到达C .如题图8-8所示,ABC 为一直线。
专业班级 学号 姓名机械振动本章知识点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,简谐运动的合成,阻尼振动,受迫振动,共振本章重点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,同方向同频率简谐运动的合成 一、填空题1.一个给定系统做简谐振动时,其振幅和初相位决定于 、 和 ;弹簧振子做简谐振动时,其频率决定于 和 .2.一弹簧振子,弹簧的劲度系数为0.32 N/m ,重物的质量为0.02 kg ,则这个系统的固有角频率为 rad/s ,相应的振动周期为 s .3.在两个相同的弹簧下各悬挂一物体,两物体的质量比为4:1,则两者做简谐运动的周期之比为 . 4.质点做简谐运动的位移和时间关系如图1所示,则其运动方程为 . 5.两个同频率的简谐运动曲线如图2所示,则2x 的相位比1x 的相位落后 .6.两个简谐振动曲线如图3所示,两个简谐振动的频率之比12:νν= ,加速度最大值之比a 1m :a 2m = ,初始速率之比1020:=v v .7.简谐振动的方程为)cos(ϕω+=t A x ,势能最大时位移x= ,此时动能E k = .8.已知一质点做简谐运动曲线如图4所示,由图可确定振子在t= s 时速度为零;在t= s 时弹性势能最小;在(__________)s 时加速度取正的最大值.9.两个同方向同频率的简谐振动,其合振动的振幅为0.20m ,合振动与第一分振动的相位差为60度,已知第一分振动的振幅为0.10m ,则第二分振动的振幅为 m ,第二分振动与第一分振动的相位差为 .10.某谐振子同时参与两个同方向的简谐运动,其运动方程分别为))(3/4cos(10321m t x ππ+⨯=-;))(4cos(10422m t x ϕπ+⨯=-当ϕ= 时合振动的振幅最大,其值max A = ;当ϕ= 时合振动的振幅最小,其值min A = .11.图5中所示为两个简谐振动的振动曲线,若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=11x x xt/s7x/m0.050.10 图1x 1xx 2to图32 1xt/s图4图5x 2x 1 xt图2(____________________)。
新编物理基础学全册课后习题详细答案王少杰,顾牡主编第一章1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++其中a ,b ,ω均为正常数,求质点速度和加速度与时间的关系式。
分析:由速度、加速度的定义,将运动方程()r t 对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。
解:/sin()cos()==-++v dr dt a t i a t j bk ωωωω2/cos()sin()a dv dt a t i t j ωωω⎡⎤==-+⎣⎦1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kxv v e -= 。
其中0v 是发动机关闭时的速度。
分析:要求()v v x =可通过积分变量替换dxdvv dt dv a ==,积分即可求得。
证:2d d d d d d d d v x vv t x x v t v K -==⋅= d Kdx v =-v⎰⎰-=x x K 0d d 10v v v v , Kx -=0ln v v0Kxv v e -=1-3.一质点在xOy 平面内运动,运动函数为22,48x t y t ==-。
(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。
写出质点的运动学方程)(t r表达式。
对运动学方程求一阶导、二阶导得()v t 和()a t ,把时间代入可得某时刻质点的位置、速度、加速度。
解:(1)由2,x t =得:,2x t =代入248y t =-可得:28y x =-,即轨道曲线。
画图略 (2)质点的位置可表示为:22(48)r ti t j =+- 由/v dr dt =则速度:28v i tj =+ 由/a dv dt =则加速度:8a j =则:当t=1s 时,有24,28,8r i j v i j a j =-=+=当t=2s 时,有48,216,8ri j v i j a j =+=+=1-4.一质点的运动学方程为22(1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。
(1)求质点的轨迹方程;(2)在2t s =时质点的速度和加速度。
分析同1-3.解:(1)由题意可知:x ≥0,y ≥0,由2x t =,,可得t =代入2(1)y t =-1=,即轨迹方程(2)质点的运动方程可表示为:22(1)r t i t j =+- 则:/22(1)v dr dt ti t j ==+- /22a dv dt i j ==+因此, 当2t s =时,有242(/),22(/)v i j m s a i j m s =+=+1-5.一质点沿半径为R 的圆周运动,运动学方程为2012s v t bt =-,其中v 0,b 都是常量。
(1)求t 时刻质点的加速度大小及方向;(2)在何时加速度大小等于b ; (3)到加速度大小等于b 时质点沿圆周运行的圈数。
分析:由质点在自然坐标系下的运动学方程()t s s =,求导可求出质点的运动速率dtdsv =,因而,dt dv a =τ,2n v a ρ=,00n a a a n ττ=+,22n a a a +=τ,当b a =时,可求出t ,代入运动学方程()t s s =,可求得b a =时质点运动的路程,Rsπ2即为质点运动的圈数。
解:(1)速率:0dsv v bt dt ==-,且dv b dt=- 加速度:2200000()v bt dv v a n b n dt Rττρ-=+=-+则大小:a ==……………………①方向:()bRbt v 20tan --=θ(2)当a=b 时,由①可得:0vt b=(3)当a=b 时,0v t b =,代入201,2s v t bt =-可得:202v s b =则运行的圈数 2024==v s N R bRππ 1-6.一枚从地面发射的火箭以220m s -⋅的加速度竖直上升0.5min 后,燃料用完,于是像一个自由质点一样运动,略去空气阻力,试求(1)火箭达到的最大高度;(2)它从离开地面到再回到地面所经过的总时间。
分析:分段求解:s t 300≤≤时,220s m a =,求出v 、a ;t >30s 时,g a -=。
求出2()v t 、2()x t 。
当02=v 时,求出t 、x ,根据题意取舍。
再根据0x =,求出总时间。
解:(1)以地面为坐标原点,竖直向上为x 轴正方向建立一维坐标系,且在坐标原点时,t=0s ,且0.5min=30s则:当0≤t ≤30s ,由x x dv a dt=, 得200,20(/)x t v x x x a dt dv a m s ==⎰⎰,20(/),30()x v t m s t s ==时,1600(/)v m s =由x dxv dt=,得13000=⎰⎰x x v dt dx ,则:19000()x m =当火箭未落地, 且t >30s,又有:21222230,9.8(/)x tv x x x v a dt dv a m s ==-⎰⎰,则:28949.8(/)x v t m s =- 且:1230txx x v dt dx =⎰⎰,则:24.989413410()x t t m =-+-…①当20x v =,即91.2()t s =时,由①得,max 27.4x km ≈(2)由(1)式,可知,当0x =时,166()t s ≈,t ≈16(s)<30(s)(舍去)1-7. 物体以初速度120m s -⋅被抛出,抛射仰角60°,略去空气阻力,问(1)物体开始运动后的1.5s 末,运动方向与水平方向的夹角是多少? 2.5s 末的夹角又是多少?(2)物体抛出后经过多少时间,运动方向才与水平成45°角?这时物体的高度是多少?(3)在物体轨迹最高点处的曲率半径有多大?(4)在物体落地点处,轨迹的曲率半径有多大? 分析:(1)建立坐标系,写出初速度0v ,求出()v t 、θtan ,代入t 求解。
(2)由(1)中的θtan 关系,求出时间t ;再根据y 方向的运动特征写出()t y ,代入t 求y 。
(3)物体轨迹最高点处,0=y v ,且加速度2n v a a g ρ===,求出ρ。
(4)由对称性,落地点与抛射点的曲率相同 ρθ2cos v g a n ==,求出ρ。
解:以水平向右为x 轴正向,竖直向上为y 轴正向建立二维坐标系 (1)初速度0020cos6020sin6010103(/)v i j i j m s =+=+, 且加速度29.8(/),a j m s =-则任一时刻:10(1039.8)(/)v i t j m s =+-………………①与水平方向夹角有1039.8tan 10tθ-=……………………………②当t=1.5(s)时,tan 0.262,1441'θθ==︒当t=2.5(s)时,tan 0.718,3541'θθ=-=-︒ (2)此时tan 1θ=, 由②得t=0.75(s)高度22111030.759.80.7510.23()22yo y v t gt m =-=⨯-⨯⨯= (3)在最高处,210(/),10(/),n v v i m s v m s a g ρ====,则:210.2()==v m gρ (4)由对称性,落地点的曲率与抛射点的曲率相同。
由图1-7可知:cos cos xn v a a g gvθθ=== 2104.9(/)20gm s == 240082()4.9n v m a ρ===1-8.应以多大的水平速度v 把一物体从高h 处抛出, 才能使它在水平方向的射程为h 的n 倍? 分析:若水平射程hn vt =,由gt h 21=消去t ,即得()h v 。
解:设从抛出到落地需要时间t则,从水平方向考虑vt hn =,即从竖直方向考虑21,2h gt =消去t , 则有: 22nv gh =1-9.汽车在半径为400m 的圆弧弯道上减速行驶,设在某一时刻,汽车的速率为-110m s ⋅,切向加速度的大小为-20.2m s ⋅。
求汽车的法向加速度和总加速度的大小和方向。
分析:由某一位置的ρ、v 求出法向加速度n a ,再根据已知切向加速度τa 求出a 的大小和方向。
解:法向加速度的大小222100.25(/),400===n v a m s ρ 方向指向圆心 总加速度的大小222220.20.250.32(/)=+=+=n a a a m s τ如图1-9,tan 0.8,3840',naa ταα===︒则总加速度与速度夹角9012840'θα=︒+=︒1-10. 质点在重力场中作斜上抛运动,初速度的大小为0v ,与水平方向成α角.求质点到达抛出点的同一高度时的切向加速度,法向加速度以及该时刻质点所在处轨迹的曲率半径(忽略空气阻力).已知法向加速度与轨迹曲率半径之间的关系为2/ n a v ρ=。
分析:运动过程中,质点的总加速度 a g =。
由于无阻力作用,所以回落到抛出点高度时 质点的速度大小0v v =,其方向与水平线夹角也是α。
可求出 n a ,如图1-10。
再根据关系2 / n a v ρ=求解。
解:切向加速度 a g a sin =τ 法向加速度 a g a n cos =因 αρρcos 2022g a a n n v v v ==∴= 1-11.火车从A 地由静止开始沿着平直轨道驶向B 地,A ,B 两地相距为S 。
火车先以加速度a 1gt avααna α0v图1-10作匀加速运动,当速度达到v 后再匀速行驶一段时间,然后刹车,并以加速度大小为a 2作匀减速行驶,使之刚好停在B 地。
求火车行驶的时间。
分析:做v-t 图,直线斜率为加速度,直线包围面积为路程S 。
解:由题意,做v-t 图(图1-11)则梯形面积为S ,下底为经过的时间t , 12tan ,tan a a αβ==则:[](cot cot )2vS t t v v αβ=+-- 则:12111()2S t v v a a =++1-12. 一小球从离地面高为H 的A 点处自由下落,当它下落了距离h 时,与一个斜面发生碰撞,并以原速率水平弹出,问h 为多大时,小球弹的最远?分析:先求出小球落到A 点的小球速度,再由A 点下落的距离求出下落时间,根据此时间写出小球弹射距离l ,最后由极植条件求出h 。