推荐-保护储层技术 精品
- 格式:ppt
- 大小:4.04 MB
- 文档页数:43
低压油气藏储层保护技术1 前言低压油气藏是指作用于沉积盆地地层孔隙空间的流体压力低于静水压力或压力系数小于1的油气藏, 例如加拿大的阿尔伯达盆地西部气藏、美国Hgoton负压大气田、松辽盆地北部地区的扶杨油层、鄂尔多斯盆地中部奥陶系顶风化壳负压气藏、吐哈盆地台北凹陷浅层负压流体封存箱、渤海湾盆地东营凹陷边缘的浅层低压气藏等。
(金博, 刘震, 张荣新, 等. 沉积盆地异常低压( 负压)与油气分布[ J]. 地球学报2004, 25( 3): 351- 356.)按国外分类标准统计, 美国德克萨斯100多个油气田中, 低压油气田占18. 5% ; 世界160 个油气田中, 低压油气田占11. 7%。
可见低压油气藏在世界油气藏中占有一定比例, 研究适应低压油气藏开发的相关技术具有重要意义。
低压油气藏地层压力低, 开发上存在一定的困难, 国内外学者针对其特点总结出了一些切实可行的开发技术, 主要包括钻井、完井过程中的地层保护, 开发井网, 注水(气)增压, 增产措施(酸化压裂、清防砂等)等。
低压油气藏的地层压力低于正常地层压力, 在钻井、完井过程中由于钻井液、完井液等侵入地层,会产生水锁现象, 造成油气藏污染(何勇明, 王允诚, 董长银, 等. 稠油油藏储层伤害产能预测新模型及表皮因子研究[ J]. 油气地质与采收率,2006, 13( 1): 79- 81.和刘静, 康毅力, 陈锐. 碳酸盐岩储层损害机理及保护技术研究现状与发展趋势[ J]. 油气地质与采收率, 2006,13( 1): 99- 101.( 1) 低压油气藏开发前期, 必须在钻、完井过程中进行有效的地层保护;( 2) 提前注水或注气可以有效提高地层能量,改善开发效果;( 3) 通过压裂提高地层导流能力可以有效提高采收率;( 4) 改进采油工艺可提高低压油气藏的采收率2 低压油气藏分类及成因将低压成因归纳为4个方面:2.1岩石孔隙空间增大;Peterson[ 29] 和Matheton 等[ 30 ] 发现了加拿大阿尔伯达盆地的地层剥蚀反弹现象后, 由于这一原因形成的低压现象引起了国内外学者的高度关注[ 31~ 35 ] 。
列举五项非常规储层改造技术
1. 深水多段水平井:这种技术利用水力压裂和水平井钻探技术,可以在水平方向上延伸开发储层,提高油气产能,并减少应力差异带来的油藏损伤。
2. CO2驱油技术:这种技术通过注入二氧化碳气体来促进油
藏中的原油流动,提高采收率。
这种非常规储层改造技术可以将二氧化碳气体注入地下,使原油更容易流出。
3. 页岩气压裂:这种技术通过注入高压液体来破裂固态岩石,从而释放页岩储层中的天然气。
这种非常规储层改造技术可以提高页岩气的产量。
4. 重整烃制造:这种技术通过加氢和重整等化学反应,将低质油或高硫油转化为高质油和低硫油。
这种非常规储层改造技术可以改善油藏中的原油质量,并提高采收率。
5. 微生物采油:这种技术利用微生物来改造油藏,促进原油的流动。
微生物可以分解原油中的高分子化合物,使原油更容易被采出。
这种非常规储层改造技术可以提高采收率。
低渗油气田储层保护技术研究【摘要】储层的低渗透性是我国油气开发面临的主要问题,这种储层一般会出现单井产能低,经济效益差,生产压差大,储层易受污染等状况。
其中,前三个因素人力无法避免,而对于储层的伤害是人为可以防止的。
“预防”是油气层保护的全部内容,一旦储层受到污染,要想改善或恢复需付出极大代价,有时甚至是无法实现的。
因此,“预防”油气层损害是关键。
本文阐述了储层保护的重要性,结合储层损害的来源,提出储层保护的措施。
【关键词】储层保护岩心分析配伍性敏感性1 储层保护的重要性低渗透储层的孔喉小或连通性差,胶结物含量高,这样它容易受到粘土水化膨胀、乳化堵塞、分散运移、水锁和贾敏效应的损害,而受工作液(钻井液、完井液、射孔液等)固相颗粒侵入影响较小。
保护油气层技术是油气开发过程中一项非常具有现实意义的技术,油气层保护做得好,则投资的收益就大,反之会导致油气层不能发挥应有的生产能力,大大降低投资的回报率[1]。
根据油田开展油气层保护的经验,开展油气层保护比不进行油气层保护产能普遍提高1~2倍,可见油气层保护之重要性。
保护油气层技术也是一项系统工程,所涉及的专业知识面广,科技含量高,需多方协同努力方可实现。
2 油气层保护的主要内容2.1 岩芯分析岩芯分析实验是油气开发工作的最基础部分,一般包括孔隙度、渗透率、流体饱和度实验,x射线衍射实验,储层敏感性矿物分析等,国外在这方面还应用了ct扫描、核磁共振等技术更深层次地研究油气层损害机理。
2.2 储层敏感性评价包括水敏、速敏、盐敏、酸敏和碱敏性实验。
对于低渗储层,重点是做好水敏性评价。
国内外在这方面现已产生了一系列敏感性评价软件,这些软件不需要室内实验,仅通过岩芯分析结果即可迅速确定储层敏感性,解释结果可靠性较高,例如石油大学自行研制的一套软件,其解释结果与实际实验的符合率可达到80%左右。
2.3 油气层损害机理研究油气层损害机理是指油气层损害产生的原因和伴随损害发生的物理、化学变化过程,其实质就是有效渗透率下降。
新疆石油科技2008年第4期(第18卷)表1G3016井敏感性评价实验结果井号样品深度(m )水敏程度盐敏速敏体积流量敏感水敏指数水敏程度盐敏程度临界盐度(mg/L )损害率速敏程度G3*******.721524.561530.911534.730.850.970.60.71强水敏极强水敏中偏强强水敏高临界盐度高临界盐度高临界盐度高临界盐度20942.8620942.8620942.8620942.860.60.710.370.57中偏强强中偏强中偏强极强体敏极强体敏极强体敏极强体敏*作者简介:工程师,2002-07毕业于大庆石油学院精细化工专业保护储层从源头开始———储层保护对钻井完井液的技术要求刘志良*西部钻探公司克拉玛依钻井工艺研究院,834000新疆克拉玛依摘要保护储层从源头开始,为充分有效保护油气层,与储层接触的第一入井流体—钻井完井液,不仅满足钻井工程需要,更要满足保护油气层的技术要求。
举例说明了油气储层段钻进用钻井完井液的关键技术要求,并对新疆油田的油气储层保护提出了建议。
主题词油气层钻井完井液油气层保护暂堵剂级配1前言油气层保护与油气井的产能息息相关。
在钻井、完井、开采、增产、修井等各种作业中,由于油气层原有平衡状态被打破以及各种作业因素的影响,往往使外来工作液与油气层岩石及流体之间发生物理、化学等作用,造成储层伤害,引起储层孔隙度和渗透率的降低。
保护油气层的工作是一项涉及多学科、多专业、多部门,贯穿油田勘探开发生产整个过程的系统工程。
从钻揭油气层开始到油藏枯竭都需要加强保护油气层思想意识,“一着不慎,满盘皆输”,任何一个环节的不当措施都会影响到保护油气层的效果。
落实油气层保护措施,实施全过程的保护,才能达到有效的开发油气资源的目的。
钻井完井液是与储层接触的第一入井流体。
油气层段钻进,钻井液不仅要满足安全、快速、优质、高效的钻井施工要求,而且还要满足保护油气层的技术要求。
2储层保护对钻井液的关键技术要求钻井的目的是钻开油气层,构成油气的通道。
煤层气储层保护技术储层的伤害的影响因素主要有以下几方面(1)钻井压力伤害煤储层的力学性质与常规储集岩不同,煤的弹性模量小,而泊松比较高。
煤中天然裂隙的发育大大降低了煤的强度,使之比其它岩石更易受压缩、破碎。
因此,在钻井过程中,很小的压力变化都会引起渗透率的较大变化。
客观上煤的孔隙度、渗透率随压力的增加而降低(如图2-9),同时煤层裂隙和割理在高围压下闭合,并且是不可恢复的。
实验表明,煤样经过多次加压-卸压周期性的过程,可以发现,加压会使渗透率降低,但卸压时渗透率只能得到一定程度的恢复,从而造成渗透率的损失。
钻井过程中的压力变化,很可能引起煤层发生这种变化。
钻井压力变化对储层的伤害,通常由钻井液压力变化、钻柱压力变化和起下钻时压力激动造成的。
在欠平衡或过平衡钻井中,井内钻井液液柱压力变化引起井筒附近的纯应力变化,导致煤层塑性变形,造成渗透率降低。
钻柱压力变化和起下钻时引起的压力激动,会引起井筒附近煤层的变形,从而使煤层裂隙发生变形,同时也会加剧钻井液的侵入对储层造成伤害,降低储层的渗透率。
这些因素引起的储层伤害,完井后不可能完全恢复。
(2)基质膨胀和固相物质充填造成的储层损害煤体具有吸收液体和气体而膨胀的性质,其膨胀程度取决于液体和气体的化学性质。
由于煤中裂隙的孔隙度很低(约1%~2%),且只有它才与煤层的渗透率有关,并作为煤基质中所含气体的流通通道,所以煤吸收液体后即使煤基质有轻微膨胀,也会引起裂隙孔隙度和渗透率的大幅度降低。
研究表明,煤吸收液体并随之引起的基质膨胀和渗透率下降,这个过程几乎是不可逆的。
因此,钻井过程中钻井液中任何化学物质对煤体的接触都是有害的。
钻井过程中钻井液的固相颗粒对煤层裂隙系统的充填堵塞是客观存在的。
钻井液中的固相颗粒可来自钻井液中的粘土颗粒,也可来自钻屑,钻井液中颗粒分散的越细,越容易沿裂隙流动,使侵入半径增大并“镶嵌”在孔隙之中而无法清除,从而对储层造成永久性的伤害。
从钻井、压裂过程中常见的储层损害类型和防治措施,归纳总结国内外在这一领域内保护油(气)层技术的研究现状、存在的问题和发展趋势储层损害是指当打开储层时,由于储层内组分或外来组分与储层组分作用发生了物理、化学变化,而导致岩石及内部液体结构的调整并引起储层绝对渗透率降低的过程。
保护技术就是保护储层不受伤害所采用的措施。
作为油气井工程的一个分支,储层损害及保护技术是一个广义概念:不但在钻井,而且在完井、固井、增产压裂或酸化、以及生产等各个环节均存在储层损害和保护问题,其内容涉及到储层损害机理研究、模拟装置研制、评价方法和标准制订及保护技术研究等方面[1]。
1概述国外从50年代开始储层损害的机理研究。
随后的20多年时间里,研究工作却进展缓慢,只见到一些零星的文章报道。
直到70年代,油层保护工作才真正受到重视,开始有针对性地开展保护油层研究工作。
80年代,随着新的测试技术的发展以及对储层损害机理研究的不断加深,开始针对不同储层,应用岩类学、工程学、化学及物理学等方面的知识对储层的损害机理进行定性和定量的研究,并取得很大的进展。
80年代末到90年代,开始用数学模拟方法进行机理研究并取得重大进展,其间形成的主要技术有以下两方面。
1 .1钻井保护储层所需基础资料的取得技术(l)储层孔隙压力、地应力、地层坍塌和破裂压力的预测和监测技术,可为合理的钻井液密度确定提供依据。
(2)储层岩石矿物的组成结构、储层敏感性矿物、孔喉特征参数、孔渗特性、储层流体性质等分析技术,可为保护储层的钻井液研究提供储层特性资料。
(3)常温和模拟地层条件下的储层敏感性等潜在损害评价技术,可为保护储层的钻井液研究提供敏感性资料。
1 .2 储层损害机理研究技术1.2.1 CT扫描、核磁共振成象、电子能谱、电子探针、冷冻干燥升华等实验分析技术可以研究储层损害的原因、损害位置和损害带的空间分布情况。
1 .2.2统计分析、物理模型、数学模型等理论方法可用这些方法通过计算机研究储层损害规律、预测储层的损害程度。