保护储层技术作业
- 格式:pdf
- 大小:249.24 KB
- 文档页数:1
油田井下作业中的智能化技术应用与优化摘要:随着智能化技术的不断发展,人们开始探索利用传感器技术、数据分析与人工智能、机器人与自动化技术等手段来优化油田井下作业流程,提高作业效率和安全性。
本文旨在探讨智能化技术在油田井下作业中的应用与优化,为该领域的研究和实践提供参考。
关键词:油田;井下作业;智能化技术;应用与优化一、油田井下作业的重要性和挑战性油田井下作业是油气产业中至关重要的环节,它涉及到油井的钻探、完井、生产和维护等过程,油田井下作业的效率和安全性直接影响着整个油气产业的运行和生产效益。
首先,油田井下作业的高效性是一个关键因素。
油田井下作业涉及到复杂的工艺流程和设备,需要各个环节紧密协调。
传统的人工操作容易导致低效率和生产过程的不连贯。
通过引入智能化技术,可以实现数据的实时监测和集中管理,提高作业的效率和生产的连续性。
其次,井下作业的安全性是一个重要挑战。
由于采取的作业环境恶劣,井下作业存在高风险和危险因素。
人工操作容易导致人员伤亡和事故发生。
因此,实现井下作业的智能化监测和控制对于提高安全性至关重要。
智能化监测系统可以实时监测关键参数,如温度、压力和流量,同时通过自动控制系统,可以快速应对紧急情况,减少人为错误导致的风险。
此外,油田井下作业还面临着环境保护的挑战。
传统的作业方式可能会导致对环境的污染和资源浪费。
随着社会对环境保护意识的提高,油田井下作业需要采取更加环保的方法。
智能化技术可以实现对井下作业环境的精确监测,及时识别潜在的环境问题,并通过自动控制系统进行调整和优化,从而降低对环境的负面影响。
同时,油田井下作业还面临着复杂的地质条件和储层特性的挑战。
油气储层的地质属性和流体特性会对井下作业产生重要影响。
智能化技术的应用可以通过实时数据采集和分析,提供准确的地质和流体信息,帮助决策者做出更加明智的决策,优化作业流程。
二、油田井下作业中的智能化技术应用油田井下作业是石油行业的重要组成部分,它涉及到油井的钻探、完井、修井和生产等一系列工作。
储层:凡是能够储集和渗滤流体的地层的岩石构成的地层叫储层。
储层地质学:是一门从地质学角度对油气储层的主要特征进行描述、评价及预测的综合性学科。
研究内容:储层层位、成因类型、岩石学特征、沉积环境、构造作用、物性、孔隙结构特征、含油性、储集岩性几何特征储集体分布规律、对有利储层分布区的预测。
有效孔隙度:指那些互相连通的,且在一定压差下(大于常压)允许流体在其中流动的孔隙总体积与岩石总体积的比值。
绝对渗透率:如果岩石孔隙中只有一种流体存在,而且这种流体不与岩石起任何物理、化学反应,在这种条件下所测得的渗透率为岩石的绝对渗透率。
剩余油饱和度:地层岩石孔隙中剩余油的体积与孔隙体积的比值残余油饱和度:地层岩石孔隙中残余油的体积与孔隙体积的比值储层发育的控制因素:沉积作用、成岩作用、构造作用低渗透储层的基本地质特征:孔隙度和渗透率低、毛细管压力高、束缚水饱和度高低渗透储层的成因:沉积作用、成岩作用论述碎屑岩储层对比的方法和步骤:1、依据2、对比单元划分3、划分的步骤1、依据:①岩性特征:指岩石的颜色、成分、结构、构造、地层变化、规律及特殊标志层等。
在地层的岩性、厚度横向变化不大的较小区域,依据单一岩性标准层法,特殊标志层进行对比;在地层横向变化较大情况下依据岩性组合②沉积旋回:地壳的升降运动不均衡,表现在升降的规模大小不同。
在总体上升或下降的背景上存在次一级规模的升降运动,地层剖面上,旋回表现出次一旋回对比分级控制③地球物理特征:主要取决于岩性特征及所含流体性质,电测曲线可清楚反映岩性及岩性组合特征,有自己的特征对比标志可用于储层对比;测井曲线给出了全井的连续记录,且深度比较准确,常用的对比曲线:视电阻率曲线、自然电位曲线、感应测井曲线2、对比单元划分:储层层组划分与沉积旋回相对应,由大到小划分为四级:含油层系、油层、砂层组和单油层。
储层单元级次越小,储层特性取性越高,垂向连通性较好3、划分的步骤:沉积相的研究方法主要包括岩心沉积相标志研究、单井剖面相分析、连续剖面相对比和平面相分析四种方法岩心沉积相标志的研究方法是以岩石学研究为基础,可分为三类:岩性标志,古生物标志和地球化学标;单井剖面分析是根据所研究地层的露头和岩化剖面,以单井为对象,利用相模式与分析剖面的垂向层序进行对比分析,确是沉积相类型,最后绘出单井剖面相分析图;连井剖面相对比分析主要表示同一时期不同井之间沉积相的变化,平面相分析是综合应用剖面相分析结果进行区域岩相古地理研究的方法。
2019.05科学技术创新-55-油田开发过程中储层伤害分析及解堵技术应用曾金辉'马双政2赵新宇3(1、中海油能源发展股份有限公司工程技术湛江分公司,广东湛江5240002、中海油能源发展股份有限公司工程技术公司中海油实验中心(湛江),广东湛江5240003、内蒙古民族大学,国家级实验教学示范中心,化学化工学院,内蒙古通辽028000)摘要:油井在生产和作业过程中经常因有机或无机堵塞造成油层渗透率下降,导致油井产能降低,实施油井解堵是解除油气层污染的有效措施。
由于导致油井堵塞的因素是多方面的,因此各种各样的解堵技术也随之发展。
主要阐述了目前最新的各种物理、化学及物化复合解堵技术在海上油田群取得的应用效果。
通过建立一套完整的油井解堵优化决策系统,可以准确判断油井堵塞的主要因素,科学制定解堵对策,取得了显著的增产效果「关键词:油田开发;储层伤害;堵塞;解堵技术;优化决策中图分类号:TE258文献标识码:A文章编号:2096-4390(2019)05-0055-02在油田开发过程中,经常由于各种原因导致储层伤害,造成油气层有效渗透率的降低,严重影响油井正常生产,实施油井解堵是解除油气层污染的有效措施。
由于导致油井堵塞的因素是多方面的,因此各种各样的解堵技术也随之发展,包括各种物理方法、化学方法及物化复合方法。
油田作业者建立了一套完整的油井解堵优化决策系统,该系统是认真分析各类油井产量下降原因和不同油藏的供液能力,对确实因油层堵塞而致使产量下降的油井,通过细致了解油井储层物性、流体性质和开发状况,分析堵塞原因,研究堵塞类型,科学制定解堵对策,取得了显著的增产效果。
1储层伤害因素油气层污染是在外界条件影响下油气层内部性质变化造成的结果,油气层伤害的实质就是有效渗透率的下降,导致油井产能降低。
造成海上油田群储层伤害的原因,主要有以下几个方面:a•随着地层压力的下降,地层自身渗透率降低、连通性变差;b.外来流体与储层岩石矿物不配伍造成的“五敏”现象;c.外来流体与储层流体不酉己伍产生的无机垢和有机沉淀;d.在油水井生产、作业过程中,各种机械杂质、细菌等被带入地层造成的堵塞;e.润湿性改变、水锁及贾敏效应造成的伤害。
储层五敏性实验学习资料储集层敏感性及五敏试验1.基本概念所谓储集层敏感性,是指储集层岩石的物性参数随环境条件(温度,压力)和流动条件(流速,酸,碱,盐,水等)而变化的性质。
岩石的物性参数,我们主要研究孔隙度和渗透率。
衡量储集层岩石的敏感程度我们常用敏感指数来,敏感指数被定义为在条件参数变化一定数值时,岩石物性减小的百分数,习惯上用SI 来表示。
我们以渗透率这个物性参数为例,给出其一个基本公式:i ik p K K K SI -= (1-1)上标表示岩石物性参数,用下标表示条件参数。
上式定义的是渗透率对地层压力的敏感指数。
敏感指数的物理含义是指条件参数变化一定数值以后,岩石物性参数损失的百分数(主要是孔隙度和渗透率)。
所以我们要想了解油藏的敏感指数就必须了解条件参数的变化幅度,从而我们可以求出敏感指数。
在实际矿场中,渗透率比孔隙度更能影响储集层产能。
因此渗透率的研究尤为重要。
储集层渗透率因为地层压力的改变而呈现出的敏感性质,称作储集层的压力敏感,压力敏感指数用符号P SI 表示。
由以上可以知道下面的概念。
储集层渗透率因为地层温度的改变而呈现出的敏感性质,称作储集层的温度敏感,简称热敏,用T SI 表示。
储集层渗透率因为渗流速度的改变而呈现出的敏感性质,称作储集层的温度敏感,简称热敏,用v SI 表示。
储集层渗透率因为注入液体的盐度的改变而呈现出的敏感性质,称作储集层的盐度敏感,简称盐敏,用salSI 表示。
储集层渗透率因为注入液体的酸度的改变而呈现出的敏感性质,称作储集层的酸度敏感,简称酸敏,用aciSI 表示。
储集层渗透率因为注入液体的碱度的改变而呈现出的敏感性质,称作储集层的碱度敏感,简称酸敏,用alk SI 表示。
储集层渗透率因为注入淡水而呈现出的敏感性质,称作储集层的水敏性质,简称水敏,用w SI 表示。
其中我们最常用的就是五敏:速敏,水敏,盐敏,酸敏,碱敏,实验室常做五敏实验来判断油藏性质。
压裂提效措施引言压裂是一种常用的油气田开发技术,通过将高压液体注入地下储层,使储层破裂并增加渗透性,以提高油气产量。
然而,在实际生产中,压裂作业效果不稳定,效率低下的情况并不少见。
因此,采取一系列压裂提效措施是至关重要的。
本文将介绍一些压裂提效措施,帮助提高压裂作业效果和产量。
地质勘探与储层评价在进行压裂作业前,地质勘探与储层评价是至关重要的步骤。
通过对地下储层进行详细的地质评价,可以了解储层特征,包括厚度、渗透性、裂缝发育程度等,对选取合适的压裂工艺和方案具有重要意义。
压裂流体设计压裂流体是压裂作业的核心。
优化压裂流体设计是提高压裂效果的关键。
以下是一些常用的压裂流体设计技术:1. 流体性能优化流体的黏度、密度、含固量等参数对于压裂作业的效果有重要影响。
通过调整压裂液的组分和比例,可以优化流体的性能,提高压裂效果。
2. 添加增稠剂增稠剂可以增加压裂液的黏度,改善液体在裂缝中的传递性能。
常用的增稠剂有羟丙基甲基纤维素(HPMC)和砂岩胶等。
3. 添加断裂剂断裂剂可以加速储层破裂,增加裂缝的数量和渗透性。
常用的断裂剂有硼酸盐、低聚果糖等。
4. 控制压裂液的pH值压裂液的pH值对于储层的酸碱性具有重要影响。
通过调整压裂液的pH值,可以改变裂缝的宽度和形态。
压裂工艺优化除了流体设计外,压裂工艺的优化同样重要。
以下是一些常用的压裂工艺优化措施:1. 施工参数控制施工参数包括压裂液的注入速度、注液压力、注液量等。
控制好这些参数,可以确保压裂液在储层中的分布均匀,提高压裂效果。
2. 施工工艺优化优化压裂工艺可以减少工艺环节,提高施工效率。
常见的工艺优化措施包括减少带液时间、优化注液井段等。
3. 压裂组合技术压裂组合技术是将不同的压裂工艺组合起来,以提高压裂效果。
常用的压裂组合技术有多级压裂、微地震监测等。
压后措施与评价压裂作业结束后,进行后续的压后措施与评价同样重要。
以下是一些常用的压后措施与评价方法:1. 后期监测通过对压裂后的油气井进行后期监测,了解产量变化、裂缝发育情况等,评估压裂效果。
采油工程设计指南采油工程设计第一节完井工程设计一、完井方法1、油藏工程及采油工程对完井的要求列出各方案的井别及数量:采油井、注水井(或注气井)、水平井、丛式井、多底井、观察井及水源井等。
2、井身结构确定1)套管程序的确定根据原始地层压力和破裂压力剖面、注水压力,确定井身结构层次、下深和水泥面返高。
根据采油工程要求确定完井方式、完钻井眼尺寸及油层套管尺寸。
给出套管程序:(1)表层套管:钢级×外径×壁厚(2)技术套管:钢级×外径×壁厚(3)生产套管:钢级×外径×壁厚绘出完井工程示意图。
2)水泥固井根据要求确定注水泥方式(一次注水泥,分级注水泥或管外封隔器注水泥),根据油藏要求确定水泥性能、返高及主要外加剂和外加剂的数量。
3、完井设计根据油藏特性优选完井方法。
①.套管固井射孔完井若采用套管固井射孔完井,生产套管内径应与最大产油量油管相匹配,并要考虑大修和侧钻更新的要求。
在此基础上选择生产套管的尺寸、钢级、强度、壁厚、螺纹连接类型、螺纹密封脂的类型及上扣扭矩。
若尾管完井,则要给出悬挂深度及悬挂方式。
②.裸眼完井确定是采用先期裸眼完井还是后期裸眼完井。
③.割缝衬管完井割缝衬管完井,要确定缝割的形状、缝口宽度、缝眼排列形式及数量。
若尾管完井,给出悬挂深度及悬挂方式。
若选用定向井和水平井则要考虑套管弯曲,套管螺纹承受的拉力、螺纹的密封问题,造斜段过泵及井下工具等问题。
④.砾石充填完井砾石充填完井时要根据筛管及砾石充填设计要求,(比如绕丝筛管尺寸及缝隙尺寸要求,砾石质量要求、扩眼尺寸及工艺要求等确定充填砾石中径,携砂液配方及性能。
⑤.预充填烧丝筛管完井对预充填烧丝筛管完井进行施工设计。
⑥.其它防砂完成井是否选择有金属纤维防砂筛管、陶瓷防砂、化学预包砂人工井壁等完井,根据具体储层条件来筛选。
对事故井和抢险井的完井方法按现场条件来决定。
4、自喷井系统装置选择1)井口装置优选自喷井井口装置(采油树)的型号、连接基本形式(法兰、卡箍连接)、最大工作压力及公称通径和试压等级。
压裂施工操作规程压裂施工是一种常用于增加地下储层渗透性和提高天然气、石油开采效果的技术。
作为一项高风险作业,压裂施工的操作规程十分重要。
以下是一份压裂施工操作规程的模板,供参考。
一、安全准备1.所有参与施工的人员必须经过专业培训,并获得相应证件。
2.确保施工场地符合安全标准,清除所有可能导致事故的障碍物。
3.检查施工设备的完整性和可用性,确保其符合操作要求。
4.检查施工液的质量和配方,确保其符合工艺要求。
5.根据施工现场和工艺要求,设计并设置适当的警示标志和隔离措施。
二、施工前准备1.根据井口情况,选择合适的压裂工具和设备。
检查其性能和完好度。
2.确定压裂液的配方和所需用量。
核对压裂液的成分和浓度,确保其符合设计要求。
3.检查井筒和油管的完整性,确保其能够承受压裂压力和流量。
4.在井口设立安全防护措施,确保施工过程中的安全。
三、施工操作1.进行施工前检查,包括检查井口设备、油管、压裂工具和压裂液等。
2.根据设计要求,计算并确定压裂参数,如压裂压力、流量和压裂液浓度。
3.启动相关设备,包括压裂泵、搅拌槽和压力监测设备等。
4.开始注入压裂液,根据设计要求控制流量和压力,并定期检查参数是否正常。
5.监测压裂液的性能和效果,包括流量、压力、黏度和密度等。
6.根据需要进行压裂液的添加和调整,确保施工过程中的稳定性和效果。
7.在施工过程中,定期检查和记录压力、流量和其他参数,并根据需要进行调整。
8.在施工结束后,及时关闭压裂泵和其他设备,并进行压力释放和清理工作。
四、事故应急处理1.在施工过程中,如发生压力异常、设备故障或其他紧急情况,立即停止作业。
2.启动事故应急预案,采取紧急措施,确保人员安全和施工设备的完好。
4.在事故处理完毕后,对施工设备和场地进行检查和维修,并重新评估施工计划和参数。
五、施工记录和总结1.对施工过程中的参数、流程和断层情况等进行详细记录。
2.根据施工记录和现场观察,进行施工效果评估和总结。
气井带压作业技术现状与发展随着国内深层非常规气的深入开发,地层压力不断攀升,大量深层非常规气井地层压力在80MPa以上,温度在140℃以上。
目前非常规气井在开采早期、高压环境下下入油管,维持地层能量,减少弹性能量损失,实现单井可采储量(EUR)最大化、保证全生命周期产能体系维护。
为提高新井稳产能力,高压气井带压下完井管柱已成为深层非常规气井开发的核心技术。
中国石油西南油气田、长庆油田、青海油田、大庆油田、新疆油田等主要气区部分气井已进入中后期开采阶段,每年约有300口老井需要进行带压修井,这些气田地层能量低、稳产压力大,老井挖潜与维护作业对入井液十分敏感、储层保护十分重要。
为了避免压井后造成储层污染及降低采收率,带压修井已逐渐成为老井挖潜、维持高产稳产的最佳选择。
1气井带压作业技术国内外发展状况1.1国外气井带压作业技术发展情况带压作业工艺主要以美国、加拿大应用最为广泛和成熟,北美地区气井带压作业技术推广应用率超过90%,年带压作业已超过10000口井(图1),作业内容以带压完井、钻磨、打捞、起原井管柱作业为主(图2),最高施工压力为140MPa,最高硫化氢施工含量45%,最大作业深度9000m。
带压技术的应用实现了完井、修井、钻井全覆盖,应用范围包括带压下套管、尾管、单油管或双油管等完井作业,带压辅助分层压裂、酸化连续施工作业,带压下入、回收封隔器、桥塞及其他工具,带压冲砂、打捞、磨铣、清蜡等修井作业,带压欠平衡钻井、侧钻、射孔以及应急抢险等。
1.2国内气井带压作业技术发展状况国内气井带压作业技术起步较晚,直到“十三五”末,气井带压作业还主要以中低压井带压下光油管为主,通过10余年的技术发展,作业工艺已从带压完井向带压修井、起下复杂管柱拓展,作业压力已实现从低压到高压的覆盖,最高施工压力达到32MPa;研制、配套了3大类10余种气井带压作业管柱内堵塞工具,满足了多种工艺、工况气井带压作业管柱内封堵需要。
油气田井下作业技术和井控安全工作油气田井下作业技术和井控安全工作是石油工业中非常重要的一环,它们对于确保油气田的开发和生产具有至关重要的作用。
本文将从技术和安全两个方面介绍油气田井下作业的相关内容。
一、井下作业技术1. 钻井技术:钻井是油气田开发的重要环节,通过钻井将地面与油气储层连接起来,使油气能够被开采。
钻井技术主要包括钻井设备的选型、钻井液的选择和管理、钻头的选择和使用等。
2. 完井技术:完井是指在油气井钻完后对井口进行封堵和固井的一系列作业。
完井技术主要包括封堵井口、固井材料选择和固井工艺等方面。
3. 增产技术:增产技术是指利用各种方法和手段提高油气井的产能。
增产技术主要包括人工提液、压裂、酸化、改造等。
4. 井下作业设备:井下作业过程中需要使用各种设备,如抽油机、电泵、气举、射孔工具、测井工具等。
这些设备的选择和使用对井下作业的效果有着重要影响。
二、井控安全工作1. 井控监测:井控监测是指对井筒内高压油气或者井涌事故进行实时检测和监控,以保障井口安全。
常用的井控监测方法主要有压力监测、温度监测、流量监测等。
2. 井控防护:井控工作中需要采取各种措施保障井筒安全,如安装井口防喷装置、设置井鞍、设置钻井液池、设置爆破工作区域等。
还需要对井下人员进行培训和教育,提高他们的安全意识。
3. 井控预防:井控预防工作是指在井施工和井控作业过程中,提前预防和排除井涌和各种安全隐患。
井控预防工作主要包括钻井液的控制、井壁稳定性的维护、地质勘探和预测等。
4. 应急措施:在井控工作中,必须要有应急措施来应对突发事故。
应急措施包括应急预案的编制、应急救援队伍的培训和组建、应急设施的准备等。
油气田井下作业技术和井控安全工作对于油气开发和生产的安全和高效进行起到至关重要的作用。
需要通过不断的技术创新和安全措施的完善,提高井下作业的效率和安全性,确保油气资源的可持续开采和利用。
十项原则
1.以经济效益为中心,以提高油气产能和采收率为目标;
Focus on economic efficiency, focus on enhancing and improving oil recovery.
2.技术进步、经济效益和环境保护要统筹考虑;
Take into consideration technological progress, economic effect and environmental protection.
3.任何保护技术都应有利于及时发现、有利于准确评价、有利于高效开发;
Any reservoir protection technology should be helpful to timely find, accurately evaluate and efficiently develop the oil reservoir.
4.立足以预防损害为主,解除损害为辅;
Give priority to damage prevention, damage removal is awarded for complementary,
5.各作业环节的保护技术要前后照应,做到系统整体优化,实现全过程保护;
Protection technology of each operation link must be well organized, achieve the overall systematical optimization, realize the whole process of protection.
6.在保护中开发油气藏,在开发中保护油气藏;
Develop in protection, and protect in development.
7.不该进入储层的工作液要尽量避免进入,至少要少进入;
Try our best to avoid or at least reduce working fluid which leaks into the reservoir.
8.凡进入储层的固相和液相都能够通过物理、化学和生物化学方法予以解除;
The liquid and solid phase entering the reservoir can be removed through physical, chemical and biochemical methods.
9.不可避免要进入的工作液,应该与油气层配伍,且不含固相;
The working fluid inevitable to enter the reservoir should be compatible with it, and doesn’t contain any solid phase.
10.力争减少井下事故,避免各种复杂情况发生,否则前功尽弃。
Try our best to reduce the number of downhole accidents, avoid all kinds of complicated conditions, lest all the efforts are wasted.。