高一数学第一章知识点全部
- 格式:docx
- 大小:37.63 KB
- 文档页数:4
高一数学第一单元知识点归纳一、集合的概念。
1. 集合的定义。
- 集合是由确定的元素组成的总体。
例如,所有小于10的正整数组成的集合{1,2,3,4,5,6,7,8,9}。
这些元素具有确定性,即给定一个对象,能明确判断它是否属于这个集合。
2. 元素与集合的关系。
- 属于(∈):如果a是集合A中的元素,就说a∈ A。
例如,3∈{1,2,3}。
- 不属于(∉):如果a不是集合A中的元素,就说a∉ A。
比如5∉{2,4,6}。
3. 集合中元素的特性。
- 确定性:集合中的元素必须是确定的,不能模棱两可。
- 互异性:集合中的元素互不相同。
例如,集合{1,1,2}不符合互异性,应写成{1,2}。
- 无序性:集合中的元素没有顺序之分,{1,2,3}和{3,1,2}表示同一个集合。
二、集合的表示方法。
1. 列举法。
- 把集合中的元素一一列举出来,写在大括号内。
例如,A = {xx是小于5的正整数}={1,2,3,4}。
2. 描述法。
- 用确定的条件表示某些对象是否属于这个集合。
一般形式为{xp(x)},其中x 是集合中的代表元素,p(x)是元素x所满足的条件。
例如,B={xx^2 - 1 = 0},解x^2 -1 = 0得x = 1或x=- 1,所以B = {1,-1}。
三、集合间的基本关系。
1. 子集。
- 定义:对于两个集合A,B,如果集合A中的任意一个元素都是集合B中的元素,就称集合A是集合B的子集,记作A⊆ B(或B⊇ A)。
例如,A={1,2},B = {1,2,3},则A⊆ B。
- 性质:- 任何一个集合是它本身的子集,即A⊆ A。
- 空集是任何集合的子集,即varnothing⊆ A。
2. 真子集。
- 定义:如果集合A⊆ B,但存在元素x∈ B,且x∉ A,就称集合A是集合B 的真子集,记作A⊂neqq B。
例如,A={1,2},B={1,2,3},则A⊂neqq B。
- 性质:空集是任何非空集合的真子集。
高一数学必修一知识点归纳第一章二次函数1.1 一元二次方程及其解法一元二次方程的标准形式为ax^2 + bx + c = 0,可以通过公式法、配方法和因式分解等方式求解。
1.2 二次函数的图像及性质二次函数y=ax^2+bx+c的图像为抛物线,开口向上或向下,顶点坐标为(-b/2a,c-b^2/4a)。
1.3 二次函数与一元二次方程的关系一元二次方程可以通过二次函数的图像特征求解,二次函数的各项系数与一元二次方程的特征之间有一一对应的关系。
第二章直线与圆2.1 直线的方程及性质直线的一般方程为Ax+By+C=0,斜率为-k/A,其中k为直线的垂直距离。
2.2 圆的方程及性质圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)为圆心坐标,r为半径。
第三章度量衡3.1 长度、面积和体积的计算长度、面积和体积的计算包括常见图形的计算公式和应用场景,如长方形、正方形、圆形等。
3.2 单位换算长度、面积和体积的不同单位之间的换算,包括长度单位、面积单位、体积单位等。
第四章三角函数4.1 弧度制下的角度角度的度量单位有度、分、秒和弧度制,弧度制下一周的角度为2π。
4.2 三角函数的概念三角函数包括正弦函数、余弦函数、正切函数等,它们与直角三角形的边和角之间有一一对应的关系。
4.3 三角函数的图像及性质三角函数的图像具有周期性、对称性,通过振幅和周期来描述函数的性质。
第五章概率5.1 随机事件及基本概率随机事件的基本概率计算方法包括等可能概率、加法原理和乘法原理等。
5.2 条件概率及事件的独立性条件概率描述了随机事件在已知其他事件发生的情况下自身发生的概率,事件的独立性指两个事件发生与否互不影响。
第六章初等数论6.1 整除、最大公因数、最小公倍数整除、最大公因数和最小公倍数概念及计算方法,涉及质数、合数、素数分解等内容。
6.2 同余式同余式描述了整数之间的某种特殊的相等关系,同余式的性质包括传递性、对称性和相容性等。
新人教版高中数学知识点总结 高中数学必修1知识点第一章集合与函数概念(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法表示自然数集,*或表示正整数集,表示整数集,表示有理数集,表示实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().(6)子集、真子集、集合相等名称记号意义性质示意图子集(或)AB⊇A中的任一元素都属于B(1)A⊆A(2)A∅⊆(3)若BA⊆且B C⊆,则A C⊆(4)若BA⊆且B A⊆,则A B=A(B)或B A N N N+Z QRa M a M∈a M∉x x x∅真子集A ≠⊂B(或B ≠⊃A)B A ⊆,且B中至少有一元素不属于A (1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C≠⊂集合相等A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆A (7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.(8)交集、并集、补集名称记号意义性质示意图交集{|,x x A ∈且}x B ∈(1)A A A= (2)A ∅=∅ (3)A B A ⊆ 并集{|,x x A ∈或}x B ∈(1)A A A= (2)A A ∅= (3)A B A ⊇ 补集(1)∅=⋂A C AU (2)UA C AU =⋃【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|x x a <-或}x a >A (1)n n ≥2n 21n -21n -22n -把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法〖〗函数及其表示(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法A B f A x B ()f x A B A B f A B :f A B →①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做.注意:对于集合与区间,前者可以大于或等于,而后者必须.(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数.②是分式函数时,定义域是使分母不为零的一切实数.③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数大于零且不等于1.⑤中,.⑥零(负)指数幂的底数不能为零.⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.,a b a b <a x b ≤≤x [,]a b a x b <<x (,)a b a x b ≤<a x b <≤x [,)a b (,]a b ,,,x a x a x b x b ≥>≤<x [,),(,),(,],(,)a a b b +∞+∞-∞-∞{|}x a x b <<(,)a b a b a b <()f x ()f x ()f x tan y x =()2x k k Z ππ≠+∈()f x ()f x [,]a b [()]f g x ()a g x b ≤≤(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念()y f x =y x 2()()()0a y x b y x c y ++=()0a y ≠,x y 2()4()()0b y a y c y ∆=-⋅≥①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作.②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象.〖〗函数的基本性质(1)函数的单调性①定义及判定方法函数的性质定义图象判定方法如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在这个区间上是增函数.(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.A B f A B A B A B f A B :f A B →A B ,a A b B ∈∈a b b a a byxo③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减.(2)打“√”函数的图象与性质分别在、上为增函数,分别在、上为减函数.(3)最大(小)值定义①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最大值,记作.②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最小值,记作.(4)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法[()]y f g x =()u g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()(0)af x x ax=+>()fx (,-∞)+∞[()y f x =I M x I ∈()f x M ≤0x I ∈0()f x M =M ()f x max ()f x M =()y f x =I m x I ∈()f x m ≥0x I ∈0()f x m =m ()f x max ()f x m =如果对于函数f(x)定义域内任意一个x ,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(-x)=f(x),那么函数f(x)叫做偶函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数为奇函数,且在处有定义,则.③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换②伸缩变换③对称变换(2)识图()f x 0x =(0)0f =y y对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图第二章基本初等函数(Ⅰ)〖〗指数函数(1)根式的概念①如果,且,那么叫做的次方根.当是奇数时,的是偶数时,正数的正的次方次方根用符号的次方根是0;负数没有次方根.叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶数时,.③根式的性质:;当;当为偶数时,.(2)分数指数幂的概念①正数的正分数指数幂的意义是:且.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:且.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①,,,1n x a a R x R n =∈∈>n N+∈x a n n a n n a n nn a n n a n a n 0a ≥n a =n a =n (0)|| (0) a a a a a ≥⎧==⎨-<⎩0,,,m na a m n N +=>∈1)n >1(0,,,mm n n aa m n N a -+==>∈1)n >(0,,)r s r s a a a a r s R +⋅=>∈②③(4)指数函数〖〗对数函数(1)对数的定义①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.②负数和零没有对数.③对数式与指数式的互化:.(2)几个重要的对数恒等式,,.()(0,,)r s rs a a a r s R =>∈()(0,0,)r r r ab a b a b r R =>>∈(0,1)x a N a a =>≠且x a N log a x N =a N log (0,1,0)x a x N a N a a N =⇔=>≠>log 10a =log 1a a =log b a a b =(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中…).(4)对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:(5)对数函数(6)反函数的概念lg N 10log N ln N log e N 2.71828e =0,1,0,0a a M N >≠>>log log log ()a a a M N MN +=log log log a a a MM N N-=log log ()n a a n M M n R =∈log a N a N =log log (0,)b n a a nM M b n R b =≠∈log log (0,1)log b a b N N b b a=>≠且设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域.(8)反函数的性质①原函数与反函数的图象关于直线对称.②函数的定义域、值域分别是其反函数的值域、定义域.③若在原函数的图象上,则在反函数的图象上.④一般地,函数要有反函数则它必须为单调函数.〖〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分()y f x =A C ()y f x =x ()x y ϕ=y C ()x y ϕ=x A ()x y ϕ=x y ()x y ϕ=()y f x =1()x f y -=1()y f x -=()y f x =1()x f y -=1()x f y -=1()y f x -=()y f x =1()y f x -=y x =()y f x =1()y f x -=(,)P a b ()y f x ='(,)P b a 1()y f x -=()y f x =y x α=x αy布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在都有定义,并且图象都通过点.③单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.(0,)+∞(1,1)0α>[0,)+∞0α<(0,)+∞x y ααqpα=,p q p q Z ∈p q qp y x =p q qp y x =p q q py x =,(0,)y x x α=∈+∞1α>01x <<y x =1x >y x =1α<01x <<y x =1x >y x =2()(0)f x ax bx c a =++≠2()()(0)f x a x h k a =-+≠12()()()(0)f x a x x x x a =--≠③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便.(3)二次函数图象的性质①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是.②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,.③二次函数当时,图象与轴有两个交点(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程的两实根为,且.令,从以下四个方面来分析此类问题:①开口方向:②对称轴位置:③判别式:④端点函数值符号.①k<x 1≤x 2x ()f x 2()(0)f x ax bx c a =++≠,2bx a=-24(,24b ac b a a--0a >(,2ba-∞-[,)2b a -+∞2b x a=-2min 4()4ac b f x a -=0a <(,]2ba -∞-[,)2b a -+∞2bx a=-2max 4()4ac b f x a -=2()(0)f x ax bx c a =++≠240b ac ∆=->x 11221212(,0),(,0),||||M x M x MM x x =-20(0)ax bx c a ++=≠20(0)ax bx c a ++=≠12,x x 12x x ≤2()f x ax bx c =++a 2bx a=-∆⇔②x1≤x2<k③x1<k<x2af(k)<0④k1<x1≤x2<k2⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2此结论可直接由⑤推出.(5)二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令.(Ⅰ)当时(开口向上)①若,则②若,则③若,则x叫做函数))((Dxxfy∈=的零点。
高一数学必修第一章知识点第一节实数实数是指可以在数轴上表示的数,包括有理数和无理数。
1.1 有理数有理数是可以表示为两个整数之比的数,可以用分数表示。
有理数包括正整数、负整数、零和分数。
1.2 无理数无理数是不能表示为两个整数之比的数,无限不循环小数或无限循环小数。
常见的无理数有根号2、圆周率π等。
第二节幂次方与根式2.1 幂次方幂次方是指由底数和指数组成的数,表示为a的n次方,其中a是底数,n是指数。
2.2 幂运算法则- 乘法法则:a的m次方乘以a的n次方等于a的(m+n)次方;- 除法法则:a的m次方除以a的n次方等于a的(m-n)次方;- 幂的幂:(a的m次方)的n次方等于a的(m*n)次方;- 幂的0次方:任何数的0次方等于1;- 幂的负指数:a的负n次方等于1除以a的n次方。
2.3 根式根式是求一个数的平方根、立方根等的运算,表示为√a、³√a 等。
2.4 根式的运算法则- 基本性质:如果a≥0,那么√a≥0;- 乘法法则:√(a*b)等于√a乘以√b;- 除法法则:√(a/b)等于√a除以√b;- 次方:(√a)的n次方等于√(a的n次方)。
第三节整式与分式3.1 整式整式是由常数、变量及它们的运算(加法、减法、乘法)组成的代数表达式。
- 单项式:由单个项组成的整式,如3x、-4y²等;- 多项式:由多个项组成的整式,如2x+3y、-4x²+5xy+6等。
3.2 分式分式是由整式的运算(加法、减法、乘法、除法)和整数指数(有理数)组成的代数表达式。
- 分子:分式的上部,表示为a;- 分母:分式的下部,表示为b;- 分子与分母的关系:如果a和b都是整数,且b不等于0,则表示一个真分式;如果a和b都是整数,且b等于1,则表示一个整式;如果a和b都是整数,且a能被b整除,则表示一个整数;- 分子和分母都为多项式的分式:分式的分子和分母都是多项式。
第四节一元一次方程与一元一次不等式4.1 一元一次方程一元一次方程是指未知数的最高次数为1的方程。
高一必修一数学知识点考点第一章:集合与常用逻辑1. 集合及其表示方法- 集合的定义和基本概念- 集合的表示方法:列举法、描述法和定语从句法- 包含关系与相等关系2. 集合的运算- 交集、并集和差集的含义与计算- 互斥事件与对立事件的关系- 集合的运算律:交换律、结合律、分配律3. 常用逻辑符号与命题- 命题的概念与性质- 非、与、或、异或等逻辑运算符号的意义与运算规则 - 命题的合取范式与析取范式第二章:函数与方程1. 函数的概念与性质- 函数的定义及其基本性质- 定义域、值域和象集的概念- 函数的分类:一次函数、二次函数、指数函数、对数函数等2. 初等函数的图像与性质- 一次函数、二次函数、指数函数、对数函数等常用函数的图像特征- 函数的单调性、奇偶性和周期性等性质- 函数与方程的关系:函数方程、隐函数、显函数等3. 方程与不等式- 方程与等式的概念及其解的求解方法和性质- 一元一次方程和一元二次方程的解法- 不等式的概念和性质,不等式的解集表示方法第三章:平面几何1. 平面内的基本图形与性质- 点、线、线段、射线和角的概念与基本性质- 直线的分类:平行线、垂直线、相交线等- 三角形的分类:等边三角形、等腰三角形、直角三角形等2. 三角形的面积和周长- 三角形的面积公式及其推导- 三角形的周长计算方法- 与三角形相关的重要定理:海伦公式、正弦定理、余弦定理等3. 圆的性质与圆的应用- 圆的定义及其基本性质- 弧的概念与弧长、弦长的计算方法- 圆的切线与切点的概念及其性质第四章:立体几何1. 空间几何体的基本概念- 简单体与复合体的概念与区别- 空间直线、平面、立体角等的定义和性质- 空间几何体的分类与性质:球体、柱体、锥体等2. 直线与平面的位置关系- 平行关系、垂直关系和斜率关系的概念- 平面与平面的位置关系:相交、平行、垂直等- 平面与直线的交点的分类:内交点、外交点等3. 空间几何体的表面积和体积- 立体几何体的表面积计算方法- 立体几何体的体积计算方法- 相似立体几何体的表面积和体积的比较第五章:数据统计与概率1. 数据的收集与整理- 数据的概念与数据的收集方法- 数据的整理与分析方法:频数分布表、频率分布直方图等- 分类数据与数值数据的概念和处理方法2. 数据的图表表示与分析- 数据的图表表示方法及其选择技巧- 直方图、折线图、饼图等常用图表的绘制和分析- 统计指标(平均数、中位数、众数、四分位数等)的计算和比较3. 概率与统计- 随机事件与样本空间的概念- 概率的定义和性质- 古典概型、几何概型和统计概型的应用以上是高一必修一数学知识点的考点概述,希望能对你有所帮助。
高一数学必修1 数学。
第一章。
完整知识点梳理大全(最全)集合与函数概念集合是数学中的基本概念之一,它包含了一些确定性、互异性和无序性的元素。
常见的数集有自然数集、正整数集、整数集、有理数集和实数集等。
集合中的元素与集合之间存在着一些关系,例如一个元素属于一个集合,可以表示为a∈M,而不属于则表示为a∉M。
集合的表示方法有自然语言法、列举法、描述法和图示法等。
其中,描述法是通过{x|x具有的性质}来表示集合,而图示法则是用数轴或XXX来表示集合。
集合还可以分为有限集、无限集和空集。
空集是不含有任何元素的集合,记为∅。
集合间的基本关系有子集、真子集和集合相等等。
子集指一个集合中的所有元素都属于另一个集合,而真子集则是指一个集合是另一个集合的子集,但不等于该集合。
如果两个集合中的元素完全相同,则它们是相等的。
集合的基本运算有交集、并集和补集等。
交集是指两个集合中共同存在的元素所组成的集合,而并集则是指两个集合中所有的元素所组成的集合。
补集是指一个集合中不属于另一个集合的所有元素所组成的集合。
最后,含有绝对值的不等式和一元二次不等式的解法也是数学中的重要知识点。
对于含有绝对值的不等式,可以通过分情况讨论来求解。
而对于一元二次不等式,则可以通过求解二次函数的根来确定其解集。
x|>a (a>0)x|c (c>0)XXX:x|-a<x<a}x|xa}We can treat ax+b as a whole and transform it into the form of |x|a (a>0) XXX.Summary of Knowledge Points in Chapter 1 of High School Mathematics2.Solving Quadratic InequalitiesDiscriminantΔ>0Δ=b-4acQuadratic ny=ax^2+bx+c (a>0) Δ=Δ<0XXXax^2+bx+c=0 (a>0) Ox=(-b±√Δ)/(2a)1,2where x1<x2)x|xx2}x|x1<x<x2}x1=x2=-b/2an of No Real Root ax^2+bx+c>0 (a>0) n setx|x≠-b/2a}Rax^2+bx+c0)n set1.2 n and Its XXX1.2.1 Concept of n1.A n is a correspondence een two non-empty sets A and B。
高一数学知识点归纳大全第一章【(一)、映射、函数、反函数】1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.2、对于函数的概念,应当特别注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.(2)掌控三种表示法——列表法、解析法、图象法,能够根实际问题谋求变量间的函数关系式,特别就是会求分段函数的解析式.(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的通常步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式算出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.特别注意①:对于分段函数的反函数,先分别算出在各段上的反函数,然后再分拆至一起.②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.【(二)、函数的解析式与定义域】1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数源自于一个实际问题,这时自变量x存有实际意义,谋定义域必须结合实际意义考量;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母严禁为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正弦函数y=tanx(x∈r,且k∈z),余切函数y=cotx(x∈r,x≠kπ,k∈z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)未知一个函数的定义域,谋另一个函数的定义域,主要考量定义域的深刻含义即可.已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.2、求函数的解析式通常存有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设得出函数特征,求函数的解析式,可以使用未定系数法.比如说函数就是一次函数,entitledf(x)=ax+b(a≠0),其中a,b为未定系数,根据题设条件,列举方程组,算出a,b即可.(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.(4)若未知f(x)满足用户某个等式,这个等式除f(x)就是未知量外,还发生其他未知量(如f(-x),等),必须根据未知等式,再结构其他等式共同组成方程组,利用求解方程组法求出来f(x)的表达式.【(三)、函数的值域与最值】1、函数的值域依赖于定义域和对应法则,不论使用何种方法求函数值域都应当先考量其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将Rewa的繁杂函数转化成另一种直观函数Ploudalm值域,若函数解析式中所含根式,当根式里一次式时用代数换元,当根式里就是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)分体式方法:对于二次函数或二次函数有关的函数的值域问题可以考量用分体式方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”谋值域.其题型特征就是解析式中所含根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所则表示的几何意义,借助几何方法或图象,谋出来函数的值域,即以数形融合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上就是相同的,事实上,如果在函数的值域中存有一个最轻(小)数,这个数就是函数的最轻(小)值.因此求函数的最值与值域,其实质就是相同的,只是回答的角度相同,因而答题的方式就有所雷同.如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用领域函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.【(四)、函数的奇偶性】1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,必须特别注意两点:(1)定义域在数轴上关于原点等距就是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)就是定义域上的恒等式.(奇偶性就是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。
第一章1.1.1、集合的含义与表示:(1)、定义:一般地,我们把研究的对象统称为“元素”,把一些元素组成的整体叫集合,简称集。
(2)、性质:1、确定性(主要用于判断是否是集合)2、无序性3、互异性(主要用于确定集合中元素)(3)、常用大写字母表示集,小写字母表示元素。
如果a是集合A的元素,则说a属于集合A,写作a∈A。
同理,如果a不是集合A的元素,则称a不属于A,写作aA(4)、常见的数集:1、非负整数集(自然数集)【记住最小自然数是0】N2、正整数集N*或N3、主体数集Z4、有理数集Q5、实数集R(5)、集合的表示法:1、(自然语言描述)2、列举法3、描述法4、图列法1.1.2、集合的基本关系:(1)、AB【A含于B或B包含A】用因式分解法〔两种情况2、3〕(2)、A=B [A集合与B集合相变](3)、【A真含于B或A是B的真子集,﹦〉意义:因存在元素x ∈A(4)、空集﹦>不包含任何元素的集,叫空集结论:(1)、任何集分是它本身的子集(2)、传递性学生迅速口头做课后练习1.1.3、集合的基本运算:1、并集:定义,有所有属于A的元素结构组成的集合,为集合A于集合B的并集,记作A∨B2、交集:定义,所有属于集合A是属于集合B的元素,称为集合A与集合B的交集,记作A∧B3、全集:定义,一般地如果一个集合含有我们所研究问题中所涉及的所有元素,那么这个集合称为全集,常记作4、补集:定义,对于一个集合A,由全集中不属于集合A的所有元素组成的集合,称为集合A,相对于全集的补集,简称集合A的补集课后练习题1.2.1、函数及其表示(1)、函数的概念:一般的我们有设集合A、B是非空集数,如果按照确定的对应关系,使集合A中的任意一个数X,在集合B中都有唯一确定的数与之对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作Y=f(x),(2)、函数三要素:定义域、值域、对应关系→相交的函数必须三要素均相同;定义域:由变量的取值范围A;值域:与X相对应得Y值叫做函数值,函数的集合叫函数的值域(3)、区间→开区间、闭区间、半开半闭区间、半闭半开区间区间在数轴上叫做实心点与虚心点课:练习1.2.2、函数表示法(1)、初中学过解析法、图像法和列表法(2)、分段函数(3)、实射:定义:一般的,设集合为A、B是两个非空集合,如果按照某确定的对应关系f,使对于集合中的任一个元素,在集合B中都有唯一确定的元素与之对应,那么就种对应f:A→B为集合B的实射做课后练习回家做练习1.3、函数的基本性质1.3.1、单调性与最大值、最小值(1)、曾函数定义:}注意定义域!(2)、减函数定义:(3)、最大值定义:(4)、最小值定义:2.奇偶性[定义域对称](1)、偶函数定义:f(x)=f(-x)(2)、奇函数定义:f(x)=―f〔-x〕。
数学高一全知识点第一章代数与函数1.1 实数集与数轴实数的定义与性质数轴及其运用1.2 代数式与代数方程代数式的定义与性质代数方程的解与解的检验1.3 多项式与因式分解一元多项式的基本概念多项式的加减乘除因式分解的方法及其应用1.4 一元一次方程与不等式一元一次方程与方程的解一元一次不等式及其解集1.5 二元一次方程组与二元一次不等式组二元一次方程组与方程组的解二元一次不等式组及其解集1.6 幂指对数函数与方程幂函数及其性质指数函数及其性质对数函数及其性质第二章几何与三角函数2.1 几何基本概念点、线、面的基本概念与性质几何图形的分类与性质2.2 直线与圆直线的性质、方程与应用圆的性质、方程与应用2.3 平面向量平面向量的定义与性质向量的加减与数量积2.4 三角函数基本概念角度与弧度的转换三角函数的定义与性质2.5 三角函数的图像与性质正弦、余弦、正切函数的图像及其性质2.6 三角函数的运算与方程三角函数的和差化积三角方程的解与应用第三章解析几何与数列3.1 解析几何的基本概念坐标系与坐标的表示平面直角坐标系与空间直角坐标系3.2 直线与平面的方程直线的点斜式与截距式平面的点法式与一般式3.3 空间中的位置关系点和直线的位置关系点和平面的位置关系直线和直线的位置关系平面和平面的位置关系3.4 数列与数列的性质等差数列与等比数列的定义与性质数列的通项与部分和3.5 递推数列与数列求和递推数列的定义与性质数列求和的方法与应用第四章概率与统计4.1 事件与概率随机事件与样本空间概率的定义与性质4.2 几何概型与概率计算基本几何概型的概率计算概率计算的四则运算4.3 统计与统计量样本与总体的统计量频率分布及其统计图表4.4 常用分布与抽样调查正态分布的性质与应用抽样调查的基本方法与误差分析以上是高一数学的全知识点,每个知识点可进一步展开论述,并且适当增加案例分析,以加深对知识点的理解与应用。
希望对你的学习有所帮助!。
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。
⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。
高一数学第一章知识点全部高一数学第一章主要介绍了数与代数的基本概念和运算法则。
本章的知识点包括数的分类、数的表达方式、有理数与无理数、代数式和一元一次方程等内容。
下面将逐一进行详细介绍。
一、数的分类
数是人们用来度量事物数量和比较大小的工具。
数的分类主要有自然数、整数、有理数和无理数四种类型。
1.自然数:自然数是人们最早掌握的数,它包括了0和所有正整数,用N表示。
2.整数:整数包括了自然数和负整数,用Z表示。
3.有理数:有理数包括了整数和所有可以表示为两个整数之比的数,用Q表示。
有理数可以是有限小数或循环小数。
4.无理数:无理数是指不能表示为两个整数之比的数,它们的小数形式是无限不循环的,用R-Q表示。
无理数包括了开方数、圆周率π等。
二、数的表达方式
数的表达方式有数轴上的点表示法、数的集合表示法和数的分
数表示法。
1.数轴上的点表示法:我们可以用数轴上的点表示一个数,数
轴上的0点表示0,右侧的点表示正数,左侧的点表示负数。
例如,数轴上的点A表示数a。
2.数的集合表示法:将一个数的集合用花括号{}括起来表示,
例如整数集合Z={...,-3,-2,-1,0,1,2,3,...}。
3.数的分数表示法:有理数可以用分数表示,分数由分子和分
母组成,分子表示等份中的几份,分母表示等份的总数。
例如,
数a可以表示为分数a/b。
三、有理数与无理数
有理数和无理数是数的两个主要分类。
1.有理数:有理数包括了整数和可以表示为两个整数之比的数。
有理数可以进行四则运算,并保持运算的封闭性。
例如,2和-3是有理数。
2.无理数:无理数是指不能表示为两个整数之比的数,它们的
小数形式是无限不循环的。
无理数可以通过近似值的方式表示。
例如,√2和π是无理数。
四、代数式
代数式由数、字母和运算符号组成。
它是数学中表示各种数量
关系和运算规律的一种方式。
代数式可以进行各种运算,如常数
相加减、代数式相加减、代数式乘法和代数式除法等。
1.常数:常数是一个没有字母的代数式,例如3、5等。
2.变量:变量是代表任意数的字母,如x、y等。
变量可以与常
数进行运算,也可以与其他变量进行运算。
3.系数:系数是在字母前面的数,用于表示字母的倍数。
例如,在代数式3x中,3就是x的系数。
4.项:项是由连乘或连加的因子构成的代数式的基本单位。
例如,在代数式3x + 2y中,3x和2y都是项。
五、一元一次方程
一元一次方程是指未知数只有一个,并且未知数的最高次数为
1的方程。
一元一次方程的一般形式为ax + b = 0,其中a和b为
已知数,x为未知数。
一元一次方程可以通过逆运算的方式求解。
逆运算包括加减运
算和乘除运算。
解方程的过程是将已知数和变量的项分别移到方
程的两边,并依次进行逆运算,最终得出未知数的值。
总结起来,高一数学第一章的知识点主要包括数的分类、数的
表达方式、有理数与无理数、代数式和一元一次方程等内容。
这
些知识点是进一步学习数学的基础,掌握好这些知识对于后续的
数学学习至关重要。
通过学习本章知识,我们可以更好地理解数
学中的基本概念和运算规则,为后续学习打下坚实的基础。
同时,我们也应该注重实际应用,将数学知识与生活实际问题相结合,
更好地理解和应用数学。
希望同学们能够通过认真学习,掌握这
些知识,为数学学习的成功打下坚实的基础。