固定污染源监测中颗粒物的测定,你知道多少?
- 格式:docx
- 大小:134.44 KB
- 文档页数:3
固定污染源废气监测颗粒物采样方法...固定污染源废气监测是环境监测工作中最常见的工作任务之一,而颗粒物采样又是其中最常见的一种。
本篇内容讲讲固定污染源废气监测颗粒物采样方法的选择。
目前固定污染源废气监测颗粒物主要的采样方法依据有:1.《固定污染源废气低浓度颗粒物的测定重量法》(HJ 836-2017)2.《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)及其修改单3.《固定污染源废气监测技术规范》(HJ/T 397-2007)其中《固定污染源废气监测技术规范》(HJ/T 397-2007)可以看做是《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)的更新版,其内容基本一致,只是《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)也是在用版本而已。
这两个都是属于监测技术规范。
2017年12月19日原环境保护部发布了《固定污染源废气低浓度颗粒物的测定重量法》(HJ 836-2017)用于规范固定污染源废气中低浓度颗粒物的测定方法。
这个属于监测分析方法。
这三个都是可以用来监测颗粒物,那么应该如何确定应用范围?为了明确区分范围,生态环境部发布《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)修改单,有了明确的规定:增加“1.3 在测定固定污染源排气中颗粒物浓度时,浓度小于等于20 mg/m3 时,适用HJ 836(《固定污染源废气低浓度颗粒物的测定重量法》);浓度大于20 mg/m3且不超过50 mg/m3时,本标准与HJ 836 同时适用。
采用本标准测定浓度小于等于20mg/m3 时,测定结果表述为'< 20 mg/m3”。
《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)修改单那么修改单发布后,固定污染源废气监测颗粒物采样就要按照相应的测定浓度选择相应的采样方法。
固定污染源排气中烟尘(颗粒物)的测定1.概述1.1固定源的定义固定源是指:将生产过程中产生的废气通过排气筒向空气中排放的污染源。
如:燃煤、燃油、燃气锅炉和工业炉窑的废气排放源,石油化工、冶金、建材等行业的废气收集和排放源等。
固定源中污染物的存在形式有两种:颗粒物和气态污染物。
颗粒物:是指悬浮于排放气体中的固体和液体颗粒状物质,是燃料和其它物质在燃烧、合成、分解以及各种物料在机械处理中所产生的。
通俗的说就是可以用滤筒(刚玉滤筒或玻璃纤维滤筒)采集的物质。
颗粒物在化学上可分为两大类,一类是有机颗粒物,另一类是无机颗粒物;按其形成的过程不同可分为三类:第一类是烟尘flue dust),是煤、石油等燃料燃烧产生的固体颗粒气溶胶;第二类是粉尘(dust),是由机械过程(破碎、研磨、筛分、运输等)而产生的微细粒子;第三类是微细颗粒物,是指物料通过各种化学或物理化学过程产生的颗粒物等。
1.2评价固定源排放情况的指标评价指标有三项:废气排放量、污染物排放浓度和污染物排放速率(由前两项计算而来),单位分别是。
废气排放量:Ndm3/h(Nd表示标准状态下的干排气:温度为273K,压力为101325Pa条件下不含水分的排气);污染物排放浓度:mg/Ndm3;污染物排放速率:kg/h,通常也简称排放量。
1.3固定源颗粒物监测的规范、方法和相关标准1.3.1通用监测规范及方法(表1-1)表1-1固定源废气监测通用规范和方法2.固定污染源监测中颗粒物采样技术2.1 现场采样根据规范中的布点要求进入现场确定采样点的具体位置,并根据采样管径的大小搭建符合采样要求的平台。
1)采样孔的位置和数量采样孔位置:优先选择在垂直管段。
距变径位置下游方向不小于6倍直径和上游方向不小于3倍直径处,矩形管道以当量直径D=2AB/(A+B)计。
不能满足上述要求的,可选择比较适宜的管段,距弯头等的距离至少是管道直径的1.5倍。
对这一段的理解有两个重点:(1)优先选择垂直管段;(2)下六、上三。
固定污染源废气低浓度颗粒物的测定重量法(HJ836-2017)方法确认报告1. 方法依据及适用范围本方法依据固定污染源废气低浓度颗粒物的测定重量法(HJ836-2017)。
本方法适用于各类燃煤、燃油、燃气锅炉、工业窑炉、固定式燃气轮机以及其他固定污染源废气中颗粒物的测定。
本方法适用于低浓度颗粒物的测定,当测定结果大于50mg/m3时,表述为“>50 mg/m3”。
当采样体积为1 m3时,此方法的检出限为1.0mg/ m3。
2. 方法原理本方法采用烟道内过滤的方法,使用包含过滤介质的低浓度采样头,将颗粒物采样管由采样孔插入烟道中,利用等速采样原理抽取一定量的含颗粒物的废气,根据采样头上所捕集到的颗粒物量和同时抽取的废气体积,计算出废气中颗粒物浓度。
3. 主要仪器、设备及试剂3.1主要仪器3.1.1便携式大流量低浓度烟尘自动测试仪及相关配件,2台,型号:3012H-D,编号:XXXXXXXXD、XXXXXXXXD,检定证书编号:XXXX。
3.1.2电热恒温鼓风干燥箱,1台,型号:XXXX,编号:XXXX,检定证书编号:XXXX。
3.1.3电子天平(十万分之一),1台,型号:XXXX,编号:XXXX,检定证书编号:XXXX。
3.1.4低浓度称量恒温恒湿设备,1台,型号:XXXX,编号:XXXX,检定证书编号:XXXX。
3.1.5恒温恒湿箱,1台,型号:XXXX,编号:XXXX,检定证书编号:XXXX。
3.1.6温湿度计,1台,型号:XXXX,编号:XXXX,检定证书编号:XXXX。
3.2试剂和材料3.2.1丙酮干残留量≤10mg/L,ρ(CH3COCH3)=0.788g/mL。
3.2.2滤膜滤膜直径为(47±0.25)mm,应满足如下要求:3.2.2.1最大期望流速下,对于直径为0.3μm的标准粒子,滤膜的捕集效率应大于99.5%。
对于直径为0.6μm的标准粒子,滤膜的捕集效率应大于99.9%。
固定污染源废气低浓度颗粒物的测定重量法(征求意见稿)编制说明编制组2015年9月一、项目背景 (3)1.任务来源 (3)2.工作过程 (3)二、修订本标准的必要性分析 (3)1.固定污染源颗粒物污染的危害 (4)2.相关环保标准和环保工作的需要 (4)3.现行环境监测分析方法标准的实施情况和存在问题 (4)4.低浓度颗粒物测定技术的最新进展 (5)三、国内外相关分析方法研究 (5)1.主要国家、地区及国际组织相关分析方法研究 (5)2.国内相关分析方法研究 (7)四、标准制修订的基本原则和技术路线 (7)1.标准制修订的基本原则 (7)2.标准制修订的技术路线 (8)五、方法研究报告 (10)1.适用范围 (10)2.规范性引用文件 (11)3.术语和定义 (11)4.方法原理 (11)5.仪器和设备 (12)6.采样位置和采样点 (13)7.采样 (13)8.结果与表述 (14)9.质量控制措施 (14)六、方法验证 (16)1.实验内容 (16)2.质量控制措施 (16)3.验证实验室基本情况 (18)4.验证实验结论 (18)参考文献: (19)一、项目背景1.任务来源2015年6月,河北省环境保护厅向河北省环境监测中心站下达了起草《固定污染源低浓度颗粒物的测定重量法》方法标准的任务。
标准的制定由河北省环境监测中心站牵头,石家庄环境监测中心、秦皇岛市环境保护监测站、兴隆县环境监测站、河北省大名市环境监测站、唐山永正环境监测有限公司协作;青岛明华电子仪器有限公司、青岛崂山应用技术研究所、青岛容广电子科技有限公司提供支持。
2.工作过程按照河北省环境保护厅的要求,召集各参加单位,成立了标准编制小组,制定了详细的标准编制计划与任务分工,具体工作计划如下:(1)对国内外有关“低浓度颗粒物的测定重量法”的标准内容、包括测定原理、采样装置、采样程序、质量控制、结果计算及方法性能进行调研,对国内外固定污染源低浓度颗粒物采样设备的工作原理、测试方法、可行性及应用情况进行调研,对国内外相关分析方法进行研究比较,对国内固定污染源排放的相关法律、法规和政策进行分析研究,收集国内外关于低浓度颗粒物测定的文献资料,分类归纳。
固定污染源废气中颗粒物监测及质控技术作者:危勤涛来源:《科学与财富》2020年第18期摘要:对比固定污染源废气中颗粒物的几种监测分析方法,结合自身实际工作经验,从监测分析方法的选择、监测技术要点、监测主要环节的质控技术三个方面进行阐述,为环境监测人员从事固定污染源废气颗粒物的监测工作提供参考,提高监测质量。
关键词:固定污染源废气;颗粒物;技术要点;质控技术固定污染源废气中颗粒物是指燃料或其他物质在燃烧、合成、分解以及各种物料在机械处理中所产生的悬浮于排放气体中的固体和液体颗粒状物质。
我国针对固定污染源中颗粒物的测定方法主要有《锅炉烟尘测试方法》(GB 5468-91)、《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)、《固定污染源废气低浓度颗粒物的测定重量法》(HJ; 836-2017)三种方法。
其中GB 5468-91于1991年9月14日颁布,于1992年8月1日实施;GB/T 16157-1996于1996年3月6日颁布并实施,生态环境部于2017年12月29日发布修改单并于2018年1月8日实施;HJ 836-2017于2017年12月29日颁布,于2018年3月1日实施。
本文主要对固定污染源废气中颗粒物监测时监测方法的选择、监测技术要点、颗粒物监测主要环节的质控技术进行探讨。
一、监测方法的选择GB/T 16157-1996修改单规定“颗粒物浓度小于等于20mg/m3时,适用HJ 836;浓度大于20mg/m3且不超过50mg/m3时,本标准与HJ 836同时适用。
采用本标准测定浓度小于等于20mg/m3时,测定结果表述为‘<20mg/m3’。
”HJ 836-2017 适用于低浓度颗粒物的测定,“当测定结果大于50mg/m3时,表述为“>50mg/m3”。
当采样体积为1 m3时,方法的检出限为1.0 mg/m3。
在实际监测工作中,首先要根据《固定污染源废气监测技术规范》(HJ/T 397-2007)要求收集相关技术资料,了解产生废气的生产工艺过程、生产设施的性能及颗粒物排放浓度大致范围,同时也要了解颗粒物执行的排放标准以及是否需要进行折算等信息。
[键入文字]关于固定污染源低浓度颗粒物测定方法标准你应该知道的几件事北极星环保网讯:为什幺要针对低浓度颗粒物测定制定一个新标准?目前,许多地方已根据政府工作报告中提出的&ldquo;推进燃煤电厂低浓度排放改造&rdquo;要求,确定了相关规定,明确颗粒物排放不得高于10 mg/m3,某些省份规定不得高于5 mg/m3。
我国现阶段颗粒物监测方法采用GB/T16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》,在颗粒物浓度较低、烟气湿度较大的情况下,此方法易造成监测结果不准确,主要原因是:(1)沉积在采样嘴及采样管前段的颗粒物无法回收,导致结果偏低;(2)在湿烟气情况下长时间采样容易造成滤筒纤维损失或破损,产生的误差降低颗粒物采样准确度。
为解决这些问题,满足现行污染源排放的监测需求,总站制定了《固定污染源废气低浓度颗粒物测定重量法》标准。
低浓度颗粒物方法标准的技术路线是什幺?标准的技术路线为&ldquo;烟道内过滤-恒温恒湿平衡-整体称重&rdquo;。
烟道内过滤,就是在烟道或烟囱内对颗粒物进行等速采样,并将颗粒物截留在位于烟道或烟囱内的过滤介质上的方法。
目前国际上主要有烟道内过滤和烟道外过滤两种方式,和烟道内过滤比,烟道外过滤存在仪器结构复杂,方法检出限高,现场工作量较大的缺点。
恒温恒湿平衡,就是样品在采样前后要在温度20&plusmn;1℃、湿度50&plusmn;5% RH 的状况下稳定后称量,和以往的冷却干燥称量方式相比,恒温恒湿平衡可以有效减少称量波动,提高称量的稳定性。
整体称重,就是将滤膜封装在金属采样头内采样,并将采样头整体在采样前后进行称量的方式。
这种方式能有效避免滤膜破损,并保证沉积在采样嘴及采样管前段的样1。
DB 32/T XXXX—2022 固定污染源废气颗粒物的测定便携式振荡天平法1 范围本文件规定了利用便携式振荡天平测定固定污染源废气中颗粒物的方法。
本文件适用于燃煤、燃气、燃生物质锅炉以及水泥窑炉、水泥磨机、钢铁烧结废气中颗粒物的测定。
本文件适用于水分含量低于20%,浓度不大于100 mg/m3的废气中颗粒物的测定。
当颗粒物测定结果大于100 mg/m3时表达为“>100 mg/m3”。
当采样体积为66.6 L时,本文件的方法检出限为0.4 mg/m3。
2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T 48—1999 烟尘采样器技术条件HJ/T 373 固定污染源监测质量保证与质量控制技术规范(试行)HJ/T 397—2007 固定源废气监测技术规范HJ 656—2013 环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范3 术语和定义下列术语和定义适用于本文件。
3.1振荡天平tapered element oscillating microbalance(TEOM)通过质量传感器中锥形振荡管测量前后的振荡频率变化,得出待测物质质量的测量装置。
3.2标准状态下干废气dry waste gas of standard condition温度为273.15 K,压力为101325 Pa条件下不含水分的废气。
注:除非另有说明,本文件所指体积和浓度均为标准状态下干废气体积和浓度。
3.3最小质量增量minimum mass of increment振荡天平频率计数电路能准确测量的振荡管频率最小变化量所对应的质量增量。
DB 32/T XXXX—20224 方法原理本文件采用烟道外过滤的方法,将采样管由采样孔插入烟道中,利用等速采样原理抽取一定量含颗粒物的废气,根据振荡天平现场测量采样滤膜上所捕集到的颗粒物质量和同时抽取的废气体积,计算出废气中颗粒物浓度。
HJ8362017固定污染源废气低浓度颗粒物的测定重量法一、概述HJ8362017标准是针对固定污染源废气中低浓度颗粒物的测定方法,采用重量法进行测量。
本方法适用于环境监测、污染源排放监测等领域,旨在为我国大气污染防治提供技术支持。
二、原理重量法测定低浓度颗粒物的原理是将一定体积的废气通过采样器收集在已知质量的滤膜上,经过一定时间的采样,取出滤膜,将其烘干、称重,计算颗粒物的质量浓度。
该方法简单、可靠,具有较高的准确性和精密度。
三、仪器与试剂1. 仪器:采样器、滤膜(符合HJ8362017标准要求)、天平(感量0.01mg)、烘箱、镊子、剪刀等。
2. 试剂:无水乙醇、去离子水等。
四、采样与操作步骤1. 采样前准备:确保采样器运行正常,滤膜无破损、无污染。
2. 安装滤膜:将滤膜放入采样器的采样头内,确保滤膜平整、无皱褶。
3. 设定采样参数:根据污染源排放特点,设定采样流量、采样时间等参数。
4. 开始采样:启动采样器,按照设定参数进行采样。
5. 采样结束:到达设定采样时间后,关闭采样器,取出滤膜。
6. 滤膜处理:将采样后的滤膜放入烘箱中,以105±5℃的温度烘干2小时。
7. 称重:将烘干后的滤膜放入天平称重,记录质量。
五、结果计算与表示1. 计算颗粒物质量浓度:根据采样体积、滤膜质量差,计算颗粒物的质量浓度。
2. 结果表示:颗粒物质量浓度以毫克/立方米(mg/m³)表示,保留三位有效数字。
六、注意事项1. 采样过程中,确保采样器运行稳定,避免滤膜破损。
2. 滤膜在运输、储存过程中,避免受潮、污染。
3. 烘干滤膜时,温度、时间需严格控制,以保证测量准确性。
4. 称重前,确保天平校准,避免称重误差。
5. 在实际操作过程中,严格遵循HJ8362017标准,确保监测数据准确可靠。
七、质量控制与保证1. 人员培训:参与采样和实验室分析的人员应接受专业培训,熟悉HJ8362017标准的要求和操作流程。
固定污染源监测中颗粒物的测定,你知道多少?
目前,在国内固定污染源监测中,主要有三种测量低浓度颗粒物的方法,即重量法,微振
荡平衡法和β射线法。
这三种在污染源监测中的原理和用途是不同的,我们必须仔细选择。
颗粒物是中国控制的主要污染物之一,它是大多数固定污染源监测都必须测量的污染因
子。
颗粒物是指在燃烧,合成,分解以及机械加工中的各种物质过程中所产生的气体中的固体和液体颗粒物。
颗粒物的产生分为自然和人为两种不同的来源。
人为来源主要来自
燃煤,机动车排放以及一些工业生产过程。
随着环境管理的日益严格和环境污染控制技术的不断完善,特别是全国空气污染源监测已全面启动。
针对脱硫后管道中颗粒物浓度低,温度低,湿度高的“两低一高”情况,环保部发布并实施了《固定污染源低浓度颗粒物测量方法》。
2017年。
现阶段,污染源监测中的颗粒物的监测和分析方法包括《固定污染源尾气中颗粒物的含量测定和取样法》,《锅炉烟尘试验法》和《低浓度重量法》。
河北省等省市发布了有关便携式颗粒物监测方法标准《固定污染源颗粒物β射线法的测定》,山东省生态环境厅还制定了地方环境标准《测定来自固定污染源的颗粒物的β射线方法的测定》,现已发布征求意见稿。
β射线吸收法已被广泛用于环境空气中PM10的监测,污染源监测的技术已经越来越成熟。
下面给大家介绍一下重量法、微量振荡天平法和β射线法
的原理及比较
1重量法
目前,在污染源监测领域内,中国大气颗粒物的测定主要采用重量法。
原理是使用具有一定切割特性的采样器以恒定速度提取固定体积的空气,以便将环境空气和PM10捕集在质
量已知的过滤器上。
根据采样前后的过滤器质量和采样量,用PM10计算浓度。
必须注意,分母的体积单位为ug / m3的被测颗粒物,其体积应为标准条件下的体积(0°C),并且应将所测温度和压力下的体积换算为标准状况下的体积。
环境空气监测的采样环境和采样频率应按要求执行。
2微量振荡天平法
微量振荡天平法在质量传感器中使用了一个振荡的空心锥形管,并且在其振荡端安装了可更换的滤膜。
振荡频率取决于锥形管的特性及其质量。
当采样气流通过滤膜,并且颗粒物质沉积在滤膜上时,滤膜质量的变化引起振荡频率的变化。
通过改变振荡频率来计算沉积在滤膜上的颗粒物的质量,然后根据流量,环境温度和空气压力来计算此期间颗粒物标记的质量浓度。
微振动平衡颗粒物监测仪由PM10采样头,切割器,过滤器动态测量系统,采样泵和仪器主机组成。
流速为1m3 / h的环境空气样品通过PM10采样头和切割机后,便成为符合技术要求的颗粒状采样气体。
然后,样品进入配备有过滤器动态测量系统(FDMS)的微振荡平衡监视器的主体。
用于测量主机中样品质量的微振荡平衡传感器的主要组件是一个空心圆锥体,一端固定,另一端装有过滤器。
在异形管中,样品气体流经滤膜,颗粒物被收集在滤膜上。
在工作时,中空锥形管处于往复振荡的状态。
其振荡频率将随着收集在滤膜上的颗粒物的质量变化而变化。
该仪器将准确地测量频率的变化,以获得所收集的颗粒物质量,然后根据所收集的样品的体积来计算样品的浓度。
3 Beta射线法/β射线
Beta射线法是污染源监测中非常重要的一个方法。
Beta射线仪使用Beta衰减原理。
环境空气被采样泵吸入采样管,通过滤膜排出,颗粒物沉积在滤膜上。
当β射线与沉积的颗粒物一起通过滤膜时,β射线的能量衰减,可以通过测量衰减量来计算颗粒物的浓度。
Beta射线颗粒监测仪由PM10采样头,切割器,样品动态加热系统,采样泵和仪器主机组成。
流速为1m3 / h的环境空气样品通过PM10采样头和切割机,成为符合技术要求的颗粒状采样气体。
在样品动态加热系统中,样品气体的相对湿度被调整为小于35%。
样品进入仪器主体后,颗粒物被收集在可以自动更换的滤膜上。
β射线源和β射线检测器设置在仪器滤膜的两侧。
随着样品的收集,越来越多的颗粒被收集在滤膜上,并且颗粒的质量也增加了。
此时,由β射线检测器检测到的β射线的强度将相应地减弱。
由于Beta射线检测器的输出信号可以直接反映颗粒物的质量变化,因此该仪器对Beta射线检测器的颗粒物质量值进行分析,并合并同期收集的样品体积,最终获得颗粒。
采样期间的浓度。
配备膜动态测量系统后,该仪器可以准确地测量在此过程中挥发的颗粒,从而可以有效补偿最终报告数据,该数据接近于真实值。