提公因式法分解因式教学反思
- 格式:doc
- 大小:27.00 KB
- 文档页数:1
因式分解的教学反思范文(通用8篇)因式分解的优秀教学反思1一、本课的教学目的是:1、能够正确理解因式分解的概念,知道它与整式乘法的区分和联系。
2、通过学生的自主探究,发觉因式分解的根本方法,会用提公因式法把多项式进展因式分解。
教学重点是:因式分解的概念,用提公因式分解因式。
教学难点是:正确找出多项式中的公因式和公因式提出后另一个因式确实定。
教学过程为:在引入“因式分解”这一概念时是通过复习小学学问“因数分解”,接着让学生类比得到的。
此处的设计意图是类比方法的渗透。
因式分解与整式乘法的区分则通过把等号两边的式子相互转换位置而直观得出。
在学习提取公因式时首先让学生通过小组争论得到公因式的构造组成,并且引导学生得出提取公因式法这一因式分解的方法其实就是将被分解的多项式除以公因式得到余下的因式的计算过程。
此处的意图是充分让学生自主探究,合作学习。
而实际上,学生的学习心情还是调动起来了的。
通过小组争论学习,尽管语言的组织方面不够完善,但是均可以得出结论。
接着通过例题讲解,最终让学生自主完成练习题,教师当堂批改当堂讲评。
教学过程中,能做到准时向学生反应信息。
能走下讲台,做到课内批改大局部学生的练习,且对于个别学习本课新学问有困难的学生能单独予以辅导。
在批改正程中,发觉大局部学生都做错及存在的问题能充分利用多媒体向学生展现,或是立刻板演为全体学生讲解清晰。
上完本课,教学目的能够完成,教学重难点也能逐个突破。
二、缺乏之处:1、公因式与最大公因式的不同可以设置一两个题目引导学生理解。
2、供应因式法分解因式的依据是逆用乘法安排律。
课前应当对安排律适当复习。
3、公因式是多项式时的类型,应当分层设计,引导不同程度的学生用不同的方法把握它。
因式分解的优秀教学反思2因式分解是第九章的重难点,公式法是多项式因式中应用最广泛的方法之一,课本中主要介绍了平方差公式和完全平方公式,虽然应用的公式只有平方差公式和完全平方公式,但要敏捷应用于解题却不简单,所以我打算一个公式一节课。
1.2提公因式法一 学习目标1.经历探索、认识多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;2.会用提公因式法把多项式因式分解(多项式中的字母指数仅限于正整数)。
3.进一步理解因式分解的意义,培养直觉思维,感受整体代换的思想方法。
二 教学重点会用提公因式法把多项式因式分解(多项式中的字母指数仅限于正整数)三 教学难点理解因式分解的意义,培养直觉思维,感受整体代换的思想方法。
四 教学准备课件教学过程1 复习回顾什么是因式分解?把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解(或分解因式).2 想一想:因式分解与整式乘法有何关系?x2 + x一个多项式 因式分解因式分解与整式乘法互为逆运算.3 探究新知想一想以下几个多项式有什么共同的特征:(1) 2πR +2π (2) ma +mb (3)cx -cy +cz共同特征:各式中的每一项都含有一个相同的因数或因式多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
4 多项式中的公因式是如何确定的?例 : 找3x 2 – 6 x 3y 的公因式。
讨论公因式是3x 2过关秘密武器:正确找出多项式各项公因式的关键是:定系数:公因式的系数是各项整数系数的 最大公约数。
)1( x x定字母:取各项的相同的字母。
定指数:相同字母的指数取次数最低的,即相同字母最低次幂。
5合作探究用心观察,找出下列多项式的公因式2x2+6x32+6x3解:2x= 2x2· 1+ 2x2·3x=2x2 (1+3x)一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法。
例1:用提公因式法分解因式3x+x3解:练习1题例2:8a b -12ab c+ab解:原式=ab (8a2b-12b2c)×=ab(8a b-12b c+1)当多项式的某一项和公因式相同时,提公因式后剩余的项是1若对多项式6a-18ax进行分解因式,正确的选项()(A)6(a-3ax )(B)3a(1+3x)(C)3a(2-6x)(D)6a(1-3x)6 你今天这节课有什么收获呢?7 课堂小结多项式各项都含有的相同的因式叫做多项式的公因式。
4.2 提公因式法(1)●学习目标分析(一)知识与技能1.了解公因式的意义,能准确的确定一个多项式各项的公因式;2.初步会用提公因式法分解因式,进一步理解因式分解与整式乘法的关系.(二)方法与过程经历探索寻找多项式各项的公因式的过程,培养合作探究的意识,积累合作的经验,进一步培养学生认真、严谨的科学态度.(三)情感态度价值观积极参与数学活动,养成独立思考的习惯,提高数学合作交流意识水平,加强学生的直觉思维并渗透化归的思想方法,进一步深化学生逆向思维能力.●教学重点能观察出多项式的公因式,并能利用提公因式法分解因式.●教学难点正确识别多项式各项的公因式.●教学方法独立思考、合作交流探究.●教具准备:多媒体课件●探究活动设计本节教学共设计了两个探究活动:一是探究如何确定公因式;二是探究如何提取公因式分解因式。
探究方法与步骤:1、创设问题情境,引发学生独立思考。
2、学生小组合作交流,共同探究。
3、交流展示讨论结果,归纳总结探究结论。
●教学过程设计:第一环节:温故知新1.因式分解的概念:把一个多项式化为___________的形式, 这种变形叫做把这个多项式因式分解,也叫分解因式。
2.下面由左到右的变形,哪个是分解因式?(1) 5x(2x -1)= 10x 2-5x(2) 10x 2-5x = 5x(2x -1)整式乘法与分解因式之间的关系是什么?【设计意图】 因式分解的概念及整式乘法与分解因式之间的关系两个知识点与本节课的学习紧密相关。
提公因式法分解因式实质上是逆用整式乘法中的单项式乘多项式将一个多项式化为两个整式乘积的形式。
第2题中设计的的两个等式也旨在渗透这一点。
加上课件动态演示互逆变形过程,增强了直观性。
通过分析因式分解与整式乘法之间的互逆过程学习因式分解的方法,以提高学生对知识间联系的认识。
第二环节:创设情境、导入新课近年来,我国土地沙漠化问题严重. 3月12日植树节到来之际,,学校组织了 “我参与、我奉献、我快乐”植树活动,要求每行种树15棵,其中初一年级种树27行,初二年级种树35行,初三年级种树38行,问完成这次植树活动学校共需要多少棵树苗?师:解决这个问题,你能列出怎样的算式?哪种算式计算起来较为简便?生:列式:①15×27+15×35+15×38②15×(27+35+38)15×27+15×35+15×38=15×(27+35+38)=15×100=1500师:这种运算方法的根据是什么?生:根据是乘法对加法的分配律师:为什么能逆用分配律呢?这个式子的各项有什么特点?生:这个式子的各项有相同的因数。
21.2 解一元二次方程21.2.3 因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2ba-±(b2-4ac≥0).2. 什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b), a²±2ab+b²=(a±b) ².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m ,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究 因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0. 解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=± 50504949x =±+110049,=x 20.=x公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac= (-10)2-0=100,a acb b x 242-±-=()10102 4.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0 ”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1 解下列方程:(出示课件11)(1)x(x-2)+x-2=0; (2)5x 2-2x-14=x 2-2x+34. 师生共同解答如下: 解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12. 想一想 以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1 = 0. 因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0. 因式分解,得(3x-2)(2x+1)=0. 于是得3x-2=0或2x+1 = 0,x1=23,x2=12.⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:−x)2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2=3,x-1∴x1=1x2=1.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28.∴x-3=±.∴x1=3+,x2=3-.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x=−(−4)±√(−4)2−4×3×(−1)2×3=2±73.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0. ∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0. ∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0. ∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2) 5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2. 解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0 时,只得出一个根x=1,则被漏掉的一个根是()A.x=4 B.x=3C.x=2 D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3. 若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0 时,x2+3=0,原方程无解;②当y=4 时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。
《4.2.1 提公因式法》课后反思
课后,我与学生了解他们的预习情况,得知他们课前的确是比较认真预习了,那么,存在的问题有哪些呢?
本课的教材内容中,没有对公因式的确定方法进行归纳,他没有明确的指导因式分解必须到每一个多项式再没有公因式为止,因此学生也就误认为我只要能提出公因式则可。
也就是说,现在的教材和已往的教材相比,在这部分内容里,它不太容易自学了。
由于没有这些结论及方法的引导,因此学生在预习时就容易形成了“先入为主”的思维定势,这样课堂上我再来改变这种思维定势就必须花更大的力气了。
那么,要解决这个问题,我想教师必须加强对学生自学方法的指导,加强对学生阅读课本的方法指导,使学生逐渐学会自主分析例题。
在例题或方法的探讨上,教师有点依赖学生的自学,本课中学生自学时是可以了解因式分解的方法的,但在具体解答的过程中,往往不能分解彻底,这是后在学生在作业与检测中出现的最多的问题。
一直以来,学生都已经习惯了先教后学的教学方式,当突然间转变为先学后教时,他们的思维及学习方法却仍没转变过来。
况且以他们现在的年龄及思维特点,在学习中仍处于自主与模仿相长的阶段,还没有达到理性分析,这样,他们在自学时仍是浅层次的,很难达到教师所预测的效果。
《因式分解(提公因式法)》教学反思这是一节数学常规课,没有游戏和丰富的活动,在进行新课改的今天,这节课如何体现新课改的精神,就成了我思考的重点。
本节课主要内容是运用提公因式法进行因式分解,那么怎么实施教学呢?如果直接就给同学们讲把前面在整式的乘法中学习到的单项式与多项式的乘法反过来运用就形成了因式分解的提公因式法,然后就是反复的运用、反复的操练的话,尽管学生短时间里对这一内容掌握的比较好,但是学生对于知识的建构过程缺乏系统思考和逐步理解的过程,对于知识的生成获得缺少体验和感悟。
不利于学生对新知识的获得,不利于后续知识的学习,更不能激发学生对数学学习的兴趣。
现将本节课的教学进行反思如下:1.在导学案的学前准备设计了 ⑴用简便方法计算:41374163⨯+⨯= ⑵用整式乘法计算下列各式: ①、x(x+1)= ;②、m(a+b+c)= . ⑶讨论:15能被 整除,这让学生回顾旧知识“提公因数”,体会计算的简便,复习小学知识“因数分解”,为引入“因式分解”这一概念设下伏笔,渗透着数学中的类比思想。
2.可设计让学生体会学习因式分解的目的。
如设计①、当99=x 时,求x x +2的值?②、当99=x 时,求()1+x x 的值?让学生在小组中比较计算的结果、代数式x x +2与()1+x x 的关系,从计算的快捷性感受学习因式分解的必要性,由此提出因式分解的概念,一方面突出了多项式因式分解本质特征是一种式的恒等变形,另一方面也使学生进一步认识到因式分解与整式乘法的区别。
3.在探究提取公因式时,首先让学生通过小组学习例题,交流学习心得,讨论得到公因式的结构组成,并且引导学生得出提取公因式法这一因式分解的方法其实就是将被分解的多项式除以公因式得到余下的因式的计算过程。
此处的意图是充分让学生自主探索,合作学习。
而实际上,学生的学习情绪被充分调动起来了。
通过小组讨论学习,尽管语言的组织方面不够完善,但是均可以得出结论。
提公因式法分解因式教学反思反思一:提公因式法分分解因式在引入“因式分解解”这一概念时是通过复习小小学知识“因数分解”,接着着让学生类比得到的。
此处的的设计意图是类比方法的渗透透。
因式分解与整式乘法的的区别则通过把等号两边的式式子互相转换位置而直观得出出。
在学习提取公因式时首首先让学生通过小组讨论得到到公因式的结构组成,并且引引导学生得出提取公因式法这这一因式分解的方法其实就是是将被分解的多项式除以公因因式得到余下的因式的计算过过程。
此处的意图是充分让学学生自主探索,合作学习。
而而实际上,学生的学习情绪还还是调动起来了的。
通过小组组讨论学习,尽管语言的组织织方面不够完善,但是均可以以得出结论。
接着通过例题讲讲解,最后让学生自主完成练练习题,老师当堂讲评。
上完完本课,教学目的能够完成,,教学重难点也能逐个突破。
不足之处:本课的教学设设计引入的过程可以简化。
对对于因式分解的概念,学生可可通过自己的一系列练习实践践去体会到此概念的特点,故故不需在开头引入的地方多加加铺垫,浪费了一定的时间。
在设计的时候脚手架的搭建建层次也不够分明。
教学过过程中,能做到及时向学生反反馈信息。
能走下讲台,做到到课内批改大部分学生的练习习,且对于个别学习本课新知知识有困难的学生能单独予以以辅导。
在批改过程中,发现现大部分学生都做错及存在的的问题能充分利用多媒体向学学生展示,或是马上板演为全全体学生讲解清楚。
教学过程程中,教学基本功比较扎实。
反思二:提公因式法分解解因式教学反思这节课主要要是通过确定多项式各项的公公因式,然后提取公因式,将将一个多项式转化成几个整式式的积的形式。
教学这节课课时,我先由分解质因数引入入“分解因式”的概念,通过过比较发现分解因式与整式乘乘法互为逆运算;然后讨论如如何找一个多项式各项的公因因式,最后设计了典型的范例例使学生掌握“提公因式法分分解因式”。
一节课自始至至终学生积极性比较高,课堂堂效率也较理想。
4.2提公因式法(1)学习目标:1.了解公因式的定义,能确定多项式各项的公因式。
2.会用提公因式法把多项式因式分解。
教学重点:能确定多项式公因式,并用提公因式法把多项式因式分解。
教学难点:确定多项式的公因式。
教学过程:一、复习回顾,引入课题1.什么是因式分解?2.因式分解与整式乘法有什么关系?二、自主先学,感知设疑小组讨论自学的收获和困惑:1.什么是公因式?2.如何确定多项式各项的公因式?3.会用提公因式法把多项式因式分解吗?三、目标导学,情境引入(一)展示学习目标,让学生齐读。
学习目标:1.了解公因式的定义,能确定多项式各项的公因式。
2.会用提公因式法把多项式因式分解。
(二)情境引入多项式ab+bc各项都含有相同的因式吗?多项式3x2+x呢?多项式m b2+nb-b呢?尝试将这几个多项式分别写成几个因式的乘积,并与同伴交流。
这几个多项式的相同因式比较好找,学生容易找到,并逆用乘法分配律将他们写成几个因式的乘积的形式,让学生初步感受找公因式,并提公因式。
四、互助研学,探究解疑(一)探究活动一公因式的定义利用情境中提出的几个多项式让学生归纳出公因式的定义,并让学生齐读记忆。
培养学生的初步归纳能力。
一个多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
(二)议一议:确定公因式的方法?多项式2x2+6x3中各项的公因式是什么?让学生分组讨论,教师可以点拨学生从系数,字母,指数三方面去考虑。
学生讨论后提问并归纳出确定公因式的方法:系数:公因式的系数是多项式各项系数的最大公因数;字母:字母取多项式各项中都含有的相同的字母;指数:相同字母的指数取各项中最小的一个,即取字母最低次幂。
简单的说就是:1.定系数;2.定字母;3.定指数。
(三)即学即练1.多项式8x2y-14x2y+4x y3各项的公因式是()A. 8xyB. 2xyC. 4xyD. 2y2.下列多项式的各项中,公因式是5a2b的是()A.15a2b−20a2b2B.30a2b3-15a b4-10a3b2C.10a2b2-20a2b3+50a4b5D.5a2b4-10a3b3+15a4b2(四)探究活动二提公因式分解因式你能将多项式2x2+6x3因式分解吗?指名上台讲解。
提公因式法分解因式教学反思
实际操作—归纳方法—课堂练习—课堂小结—布置作业六部分,这个流程体现了知识发生、形成和发展的过程,让学生进一步发展观察、归纳类比、概括、逆向思考等水平,发展有条理思考及语言表达水平。
分解因式是一种变形,变形的结果应是整式的积的形式,分解因式与整式的乘法是互逆关系,即把分解因式看作是一个变形的过程,那么整式乘法又是分解因式的逆过程,这种互逆关系一方面体现二者之间的密切联系,另一方面又说明了二者之间的根本区别。
探索因式分解的方法,事实上是对整式乘法的再理解,所以,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给学生提供丰富有趣的问题情境,并给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程。
在提公因式方面,学生对公因式的理解不足,对提公因式的要求不清楚,造成了学生在做分解因式时出现了以下错误:(1)公因式找错;(2)公因式找不完整(如:漏掉公因式的系数(或系数不是取各项系数的最大公约数)、公因式中含有多项式时,漏掉系数或字母因数),导致因式分解不彻底。
因为在七年级上册教材中没有涉及添括号法则,所以学生在分解第一项系数是负数的多项式时,出现了很多符号错误;因式分解是一个重点,也是一个难点,以上存有问题在以后的教学中有待进一步加强。