初三数学教案-3.4圆周角(1)学案 精品
- 格式:doc
- 大小:72.22 KB
- 文档页数:4
•••••••••••••••••关于圆周角教案四篇关于圆周角教案四篇作为一名专为他人授业解惑的人民教师,就有可能用到教案,教案是实施教学的主要依据,有着至关重要的作用。
来参考自己需要的教案吧!下面是小编为大家收集的圆周角教案4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
圆周角教案篇1教学任务分析教学目标知识技能1.了解圆周角与圆心角的关系.2.掌握圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.数学思考1.通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.解决问题在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题情感态度引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.重点圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征.难点发现并论证圆周角定理.教学流程安排活动流程图活动内容和目的活动1 创设情景,提出问题活动2 探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系活动3 发现并证明圆周角定理活动4 圆周角定理应用活动5小结,布置作业从实例提出问题,给出圆周角的定义.通过实例观察、发现圆周角的特点,利用度量工具,探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系.探索圆心与圆周角的位置关系,利用分类讨论的数学思想证明圆周角定理.反馈练习,加深对圆周角定理的理解和应用.回顾梳理,从知识和能力方面总结本节课所学到的东西.教学过程设计问题与情境师生行为设计意图[活动1 ]问题演示课件或图片(教科书图24.1-11):(1)如图:同学甲站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位置,他们的视角(和)有什么关系?(2)如果同学丙、丁分别站在其他靠墙的位置和,他们的视角(和)和同学乙的视角相同吗?教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧()所对的圆心角()与圆周角()、同弧所对的圆周角(、、等)之间的大小关系.教师引导学生进行探究.本次活动中,教师应当重点关注:(1)问题的提出是否引起了学生的兴趣;(2)学生是否理解了示意图;(3)学生是否理解了圆周角的定义.(4)学生是否清楚了要研究的数学问题.从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法.引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.[活动2]问题(1)同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?(2)同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师再利用几何画板从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的`关系有无变化:(1)拖动圆周角的顶点使其在圆周上运动;(2)改变圆心角的度数;3.改变圆的半径大小.本次活动中,教师应当重点关注:(1)学生是否积极参与活动;(2)学生是否度量准确,观察、发现的结论是否正确.活动2的设计是为引导学生发现.让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论.激发学生的求知欲望,调动学生学习的积极性.教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系.[活动3]问题(1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?(2)当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?(3)另外两种情况如何证明,可否转化成第一种情况呢?教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.教师演示圆心与圆周角的三种位置关系.本次活动中,教师应当重点关注:(1)学生是否会与人合作,并能与他人交流思维的过程和结果.(2)学生能否发现圆心与圆周角的三种位置关系.学生是否积极参与活动.教师引导学生从特殊情况入手证明所发现的结论.学生写出已知、求证,完成证明.学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.教师讲评学生的证明,板书圆周角定理.本次活动中,教师应当重点关注:(1)学生是否会想到添加辅助线,将另外两种情况进行转化(2)学生添加辅助线的合理性.(3)学生是否会利用问题2的结论进行证明.数学教学是在教师的引导下,进行的再创造、再发现的教学.通过数学活动,教给学生一种科学研究的方法.学会发现问题,提出问题,分析问题,并能解决问题.活动3的安排是让学生对所发现的结论进行证明.培养学生严谨的治学态度.问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题.培养学生思维的深刻性.问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般.学会运用化归思想将问题转化.并启发培养学生创造性的解决问题[活动4]问题(1)半圆(或直径)所对的圆周角是多少度?(2)90°的圆周角所对的弦是什么?(3)在半径不等的圆中,相等的两个圆周角所对的弧相等吗?(4)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?(5)如图,点、、、在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?(6)如图, ⊙O的直径AB 为10cm,弦AC 为6cm, ∠ACB的平分线交⊙O于D, 求BC、AD、BD的长.学生独立思考,回答问题,教师讲评.对于问题(1),教师应重点关注学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数.对于问题(2),教师应重点关注学生是否能由90°的圆周角推出同弧所对的圆心角的度数是180°,从而得出所对的弦是直径.对于问题(3),教师应重点关注学生能否得出正确的结论,并能说明理由.教师提醒学生:在使用圆周角定理时一定要注意定理的条件.对于问题(4),教师应重点关注学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等.对于问题(5),教师应重点关注学生是否准确找出同弧上所对的圆周角.对于问题(6),教师应重点关注(1)学生是否能由已知条件得出直角三角形ABC、ABD;(2)学生能否将要求的线段放到三角形里求解.(3)学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD.活动4的设计是圆周角定理的应用.通过4个问题层层深入,考察学生对定理的理解和应用.问题1、2是定理的推论,也是定理在特殊条件下得出的结论.问题3的设计目的是通过举反例,让学生明确定理使用的条件.问题4是定理的引申,将本节课的内容与所学过的知识紧密的结合起来,使学生很好地进行知识的迁移.问题5、6是定理的应用.即时反馈有助于记忆,让学生在练习中加深对本节知识的理解.教师通过学生练习,及时发现问题,评价教学效果.[活动5]小结通过本节课的学习你有哪些收获?布置作业.(1)阅读作业:阅读教科书P90—93的内容.(2)教科书P94 习题24.1第2、3、4、5题.教师带领学生从知识、方法、数学思想等方面小结本节课所学内容.教师关注不同层次的学生对所学内容的理解和掌握.教师布置作业.通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.增加阅读作业目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解.课后巩固作业是对课堂所学知识的检验,是让学生巩固、提高、发展.圆周角教案篇2教学目标:(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.教学活动设计:(在教师指导下完成)(一)圆周角的概念1、复习提问:(1)什么是圆心角?答:顶点在圆心的角叫圆心角.(2)圆心角的度数定理是什么?答:圆心角的度数等于它所对弧的度数.(如右图)2、引题圆周角:如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角3、概念辨析:教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.(二)圆周角的定理1、提出圆周角的度数问题问题:圆周角的度数与什么有关系?经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.(在教师引导下完成)(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.提出必须用严格的数学方法去证明.证明:(圆心在圆周角上)(2)其它情况,圆周角与相应圆心角的关系:当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.证明:作出过C的直径(略)圆周角定理:一条弧所对的周角等于它所对圆心角的一半.说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)(三)定理的应用1、例题:如图OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC让学生自主分析、解得,教师规范推理过程.说明:①推理要严密;②符号“”应用要严格,教师要讲清.2、巩固练习:(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB 的度数?(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.(四)总结知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.思想方法:一种方法和一种思想:在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.(五)作业教材P100中习题A组6,7,8圆周角教案篇3教材依据圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。
圆周角教案(第1课时)国桐木中学李改明三维目标:(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;(3)渗透由特殊到一般”,由一般到特殊”的数学思想方法.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由一般到特殊”的数学思想方法和完全归纳法的数学思想.教学活动设计:(在教师指导下完成)学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交(一)圆周角的概念1、导问:什么是圆心角?答:顶点在圆心的角叫圆心角.2、引题圆周角:如果顶点不在圆心而在圆上,则得到如左图的新的角/ ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角3、概念辨析:1判断下列各图形中的是不是圆周角,并说明理由.(二)圆周角的定理A^B0C = 744 Z8AC 二3严ZBA'C = 37°1、提出圆周角的度数问题问题:圆周角的度数与什么有关系?经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系•引导学生在建立关系 时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.(在教师引导下完成)(1)当圆心在圆周角的一边上时, 圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在 圆周角上时,圆周角是圆心角的一半.迦 提出必须用严格的数学方法去证明.证明:(圆心在圆周角上) (2 )其它情况,圆周角与相应圆心角的关系:当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助 线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论, 得出这时圆周角仍然等于相应的圆心角的结论证明:作出过C 的直径(略)可以发现同弧所对的圆周角的度数没有变化并且它的度数恰 5 好等于这条弧所对等于它所对圆心角的一半说明:这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A 层学生渗透完全归纳法)2、巩固练习:(1 )如图,已知圆心角/ AOB=100 ° ,求圆周角/ ACB 、/ ADB 的度数?(2 ) 一条弦分圆为1 : 4两部分,求这弦所对的圆周角的度数?说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.(四)总结知识:(1)圆周角定义及其两个特征; 思想方法:一种方法和一种思想:在证明中,运用了 数学中的分类方法和 化归”思想.分类时应作到不重不漏;化归思 想是将复杂的问题转化成一系列的简单问题或已证问题.(五)作业:金3练(六)教学反思: 2 )圆周角定理的内容. OA-OC => ZC=ZEACZBOC=ZBAC+ZCB。
《圆周角(1)》教学案
3.3圆周角(第1课时)
学习目标:
1、掌握圆周角的概念.
2、体会圆周角与圆心角关系的探索过程,发现、验证圆周角与圆心角的关系.
3、能用圆周角与圆心角的关系解决有关问题。
重点:定义的理解、定理的运用.
难点:圆周角与圆心角关系的探索过程,发现、验证圆周角与圆心角的关系。
教学过程:
【温故知新】
1、什么叫圆心角?画图并标出。
2 圆心角的性质
3、观察与思考:图中的∠A、∠B与我
们前面所学的圆心角有什么区别?
【创设情境】
观察上面的三个题目:图中的∠A、∠B与我们前面所学的圆心角有什么区别?引出课题
【探索新知】
自主学习:
1、圆周角的特征?它和圆心角有什么区别?
2、练习、如图所示的角,哪些是圆周角.
自主探究
任意画一个⊙O,在圆上任意取三个点A、B、C,分别连接AB、AC、OB、OC。
(1) 在你所画的图中,哪个角是圆周角?哪个角是圆心角?
(2)圆心O与你画出的圆周角有什么位置关系?圆心O与圆周角还可能有哪几种位置关系?这体现了什么数学思想?
(3)分别量出上面三个图中圆周角∠BAC与圆心角∠BOC的度数,你有什么发现?
(4)你能证明这个发现吗?
证明结论。
课题:24.1.4 圆周角一、教学目标知识与技能:理解圆周角的概念.探索圆周角与同弧所对的圆心角之间的关系,并会用圆周角定理及推论进行有关计算和证明。
过程与方法:经历探索圆周角定理的过程,初步体会分类讨论的数学思想,渗透解决不确定的探索型问题的思想和方法,提高学生的发散思维能力。
情感态度价值观(德育渗透):使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神,培养学生的探索精神和解决问题的能力通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验。
二、教学重点、难点教学重点:圆周角定理及其推论的探究与应用.教学难点:圆周角定理的证明中由一般到特殊的数学思想方法以及圆周角定理及推论的应用.三、教法与学法教法:探究式教学讲授法、发现法学法:探究合作式学习四、课时安排:1课时五、教学策略:创设情境,引入新课合作交流探索新知六、教学过程创设情景,导入新课如图是一个圆柱形的海洋馆的横截面示意图,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物,同学甲站在圆心O的位置.同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?学生思考引入课题讲授新课二、思考探究,获取新知1.圆周角的定义探究1 观察下列各图,图(1)中∠APB的顶点P在圆心O的位置,此时∠APB叫做圆心角,这是我们上节所学的内容.图(2)中∠APB的顶点P在⊙O上,角的两边都与⊙O相交,这样的角叫圆周角.请同学们分析(3)、(4)、(5)、(6)是圆心角还是圆周角.【教学说明】设计这样的一个判断角的问题,是再次强调圆周角的定义,让学生深刻体会定义中的两个条件缺一不可.这样的一个判断角的问题,是再次强调圆周角的定义,让学生深刻体会定义中的两从而交流总结,找出规律,同时引导学生观察圆心与圆周角的位置关2.圆周角定理 探究2如图,(1)指出⊙O 中所有的圆心角与圆周角,并指出这些角所对的是哪一条弧?(2)量一量∠D 、∠C 、∠AOB 的度数,看看它们之间有什么样的关系?(3)改变动点C 在圆周上的位置,看看圆周角的度数有没有变化?你发现其中有规律吗?若有规律,请用语言叙述.为了进一步研究上面发现的结论,如图,在⊙O 上任取一个圆周角∠ACB ,将圆对折,使折痕经过圆心O 和∠ACB 的顶点C.由于点C 的位置的取法可能不同,这时折痕可能会: (1)在圆周角的一条边上; (2)在圆周角的内部; (3)在圆周角的外部.已知:在⊙O 中,AB 所对的圆周角是∠ACB ,圆心角是∠AOB ,求证:∠ACB=1/2∠AOB.个条件缺一不可。
3.4圆周角(1)教学目标:1、理解圆周叫得概念2、经历探索圆周角定理的过程3、掌握圆周角定理和它的推论4、会运用圆周角定理及其推论解决简单的几何问题教学重点:圆周角定理教学难点:圆周角定理的证明要分三种情况讨论,有一定难度。
教学设计:一、类比联想,引入新课2、提问:∠ACB是圆心角吗?(不是)教师指出:我们把这样的角叫做圆周角,你能模仿圆心角的定义给出圆周角的定义吗?板书:圆周角的定义:顶点在圆上,两边和圆相交的角叫做圆周角,练习:(1)练习:判别下列各图形中的角是不是圆周角,并说明理由。
(2)、找出图中所有的圆周角二、探索圆周角和圆心角的关系我们学习了与圆有关的两种典型的角–圆心角和圆周角,在同圆中同弧所对的圆周角和圆心角有什么关系呢?问题1:请同学们任意画一个圆,并选中一段弧,画出这条弧所对的圆心角和圆周角。
问题2、同弧所对的圆心角和圆周角各有几个?(圆心角一个,圆周角无数个)问题3、请你猜测同弧所对的圆周角和圆心角大小由什么关系?(∠BAC=∠BOC)问题4、你能证明你的结论?学生讨论并寻求证明思路,有困难时老师可以适当点拨。
分三类情况讨论、证明;第一种情况:圆心在∠BAC的一边上:∵OA=OC∴∠BAC=∠C∵∠BOC是△AOC的外角∴∠BOC=∠C+∠BAC=2∠BAC∴∠BAC=∠BOC第二种情况:当圆心O在∠BAC的外部时连结A0 并延长,交交⊙O于点D,利用(1)的结果,有∠BAD=∠BOD,∠DAC=∠DOC,∴∠BAD+∠DAC=(∠BOD+∠DOC)即∠BAC=∠BOC第三种情况:当圆心O在在∠BAC的内部时连结A0 并延长,交交⊙O于点D,利用(1)的结果,有∠BAD=∠BOD,∠DAC=∠DOC,∴∠DAC-∠DAB=(∠DOC-∠DOB)即∠BAC=∠BOC完成证明过程后,把命题改为定理即圆周角定理:同弧所对的圆周角等于圆心角的一半。
由于圆心角的度数等于它所对的弧的度数,因此:(板书)推论1:圆周角的度数等于它所对的弧的度数的一半通过定理得证明,要使学生明白,要不要分不同情况来证明,主要是看各种情况的证明方法是否相同,相同者不需分,不相同者必须对各种不同情况逐个加以证明,并且做到不重复,不遗漏。
《圆周角教案》word版一、教学目标1. 让学生理解圆周角的概念,掌握圆周角的性质。
2. 培养学生运用圆周角定理解决实际问题的能力。
3. 提高学生对圆的知识的认知,为学习圆的其他性质和定理打下基础。
二、教学重点与难点1. 教学重点:圆周角的概念,圆周角的性质。
2. 教学难点:圆周角定理的证明和应用。
三、教学方法1. 采用问题驱动法,引导学生探究圆周角的性质。
2. 运用直观演示法,让学生通过观察、操作、体验圆周角的特征。
3. 运用合作学习法,培养学生团队协作精神,提高解决问题的能力。
四、教学准备1. 教具:圆规、直尺、多媒体设备。
2. 学具:每人一套圆规、直尺、练习本。
五、教学过程1. 导入新课利用多媒体展示圆周角动画,引导学生观察圆周角的特点,引发学生思考。
2. 探究圆周角的性质(1)让学生用圆规和直尺画一个圆,并标出圆心O和任意一点A。
(2)让学生以点A为顶点,分别画出两条射线,使其分别与圆相交于点B和点C。
(3)引导学生观察∠AOB和∠AOC的关系,发现∠AOB=∠AOC。
(4)让学生总结圆周角的性质,得出结论:圆周角等于其所对圆弧的两倍。
3. 讲解圆周角定理讲解圆周角定理的证明过程,让学生理解圆周角定理的含义。
4. 课堂练习(1)让学生运用圆周角定理,解决实际问题。
(2)让学生独立完成练习题,巩固所学知识。
5. 总结与拓展总结本节课所学内容,强调圆周角的概念和性质。
拓展:引导学生思考圆周角在实际生活中的应用,如测量圆的直径等。
6. 布置作业让学生课后完成相关练习题,巩固所学知识。
六、教学评价1. 课堂问答:通过提问学生对圆周角的概念和性质的理解,检查学生掌握情况。
2. 练习完成情况:检查学生课堂练习和课后作业的完成质量,评估学生对圆周角定理的应用能力。
3. 小组讨论:观察学生在小组讨论中的参与程度,合作解决问题的情况,评价学生的团队协作能力和问题解决能力。
七、教学反思课后,教师应反思本节课的教学效果,包括学生的参与度、理解程度和掌握情况。
3.4圆周角(1)学案
一、温故而知新
1、请说出圆心角的定义
2、如图,已知O为圆心,∠AOB=80°,
①求AB弧的度数;
②延长AO交⊙O于点C,连结CB,求
∠C的度数。
③∠AOB与∠C具有怎样的大小关系?
二、新知探究
1、圆周角的定义
顶点在圆上,两边都和圆相交的角叫做圆周角
特征:
①角的顶点在圆上.
②角的两边都与圆相交
2、辨一辨
判断下列图形中的角是否是圆周角?并说明理由.
3、做一做
找出图中的所有圆周角
4、画一画
请画出弧AB所对的圆心角以及圆周角
O
B
C
A
A
B
C
D
5、量一量
量出上图同一个圆中弧AB所对的圆心角以及圆周角的度数
6、想一想
同一条弧所对的周角和圆心角存在怎样的大小关系?
命题:一条弧所对的圆周角等于它所对的圆心角的一半。
已知:∠BOA,∠BCA分别是同一条弧所对的圆周角和圆心角
求证:∠BCA=1
2
∠BOA
(1).首先考虑一种特殊情况:
当圆心(o)在圆周角(∠ACB)的一边(AC)上时
(2).当圆心(O)在圆周角(∠ACB)的内部时
(3).当圆心(O)在圆周角(∠ACB)的外部时
圆周角定理:
一条弧所对的圆周角等于它所对的圆心角的一半几何语言:∵∠BOA和∠BCA对AB
∴∠BCA=1
2
∠BOA
推论:圆周角的度数等于它所对弧的度数的一半。
C
7、练一练
(1.)求圆中角X 的度数
(2).如图,圆心角∠AOB=100°,则∠ACB=___。
(3)、半径为R 的圆中,有一弦分圆周成1:2两部分,则弦所对的圆周角的度数是 .
8、想一想
(1)半圆所对的圆周角多少度? (2)直径所对的圆周角多少度? (3)90°的圆周角的所对的弦是什么
推论2:半圆或直径所对的圆周角是直角, 90°的圆周角所对的弦是直径. 9、练一练
如图,已知AB 为⊙O 的直径,AC 为弦,OD//BC 交AC 于点D, AC=6cm ,则DC= cm .
B
A O
.
70° x
C
A
O .
X
120°
C
B
C 第(2)题 第(3)题
三、举一反三
变式1:已知:如图,四边形ABCD 的四个顶点在⊙O 上,∠A =100°,点E 在BC 的延长线上,求∠DCE 的度数。
变式2:如图, B 是弧AC 上的一点,∠AOC =n °, 求∠ABC 的度数 。
变式3:如图,在⊙O 中,∠AOC=150°,∠ACB=35°,求∠
BAC 的度数。
四、小结整理
1、一个概念
2、二个推论
3、一个定理
4、一个思想
五、课外作业:见作业本(1) 六、更上层楼
1、. 如图,P 为圆外一点,PA 交圆于点A,B ,PC 交圆于点C, D, BD =750,
AC =150,则∠P 等于多少度?
变式:如图,若弦AB 、CD 相交于圆内一点P ,BD =750, AC =150,则锐角∠P 等于多少度?
例1:已知:如图,四边形A B C D 的四个顶点在⊙O 上,
求证:∠B +∠D =180
B
D
A
E
O
C。