高考数学(文)高分计划一轮狂刷练:第7章立体几何 7-1a Word版含解析
- 格式:doc
- 大小:484.50 KB
- 文档页数:15
第七章 立体几何第33讲 空间几何体的表面积与体积链教材·夯基固本 激活思维 1.B【解析】设圆柱的直径为2R ,则高为2R ,由题意得4R 2=8,所以R =2,则圆柱表面积为π×(2)2×2+2×2π×22=12π.故选B. 2.B【解析】设底面半径为r cm ,因为S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,所以r 2=4,所以r =2.3. A 【解析】 底面边长为2,高为1的正三棱柱的体积是V =Sh =12×2×2sin60°×1=3.4. C 【解析】 由题意,正方体的对角线就是球的直径,所以2R =3×23=6,所以R =3,S =4πR 2=36π.5.C【解析】设正四棱锥的高为h ,底面边长为a ,侧面三角形底边上的高为h ′,则依题意有⎩⎪⎨⎪⎧h2=12ah ′,h2=h ′2-⎝ ⎛⎭⎪⎪⎫a 22,因此有h ′2-⎝ ⎛⎭⎪⎪⎫a 22=12ah ′,4⎝ ⎛⎭⎪⎪⎫h ′a 2-2⎝ ⎛⎭⎪⎪⎫h ′a -1=0,解得h ′a =5+14(负值舍去).知识聚焦1. (1) 平行且相等 全等 多边形 公共点 平行于底面 相似 (2) 任一边任一直角边 垂直于底边的腰 直径2. 2πrl πrl π(r 1+r 2)l3. Sh 4πR 2研题型·融会贯通 分类解析【答案】 C【解析】 对于A ,通过圆台侧面上一点只能做出1条母线,故A 错误;对于B ,直角三角形绕其直角边所在直线旋转一周得到的几何体是圆锥,绕其斜边旋转一周,得到的是两个圆锥的组合体,故B 错误;对于C ,由圆柱的定义得圆柱的上底面、下底面互相平行,故C 正确; 对于D ,五棱锥有十条棱,故D 错误.(1) 【答案】 D 【解析】因为在梯形ABCD 中,∠ABC =π2,AD∥BC ,BC =2AD =2AB =2,所以将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB =1,高为BC =2的圆柱减去一个底面半径为AB =1,高为BC -AD =2-1=1的圆锥的组合体,所以该几何体的表面积S =π×12+2π×1×2+π×1×12+12=(5+2)π.(2) 【答案】 B【解析】 由题知三棱锥P -ABC 的四个顶点都在球O 上, 故该球为三棱锥P -ABC 的外接球. 在△ABC 中,BC =3,∠BAC =60°, 根据三角形的外接圆半径公式r =a2sin A ,可得△ABC 的外接圆半径r =12·332=3,设点P 在平面ABC 内的射影为D ,则AD =r =3.又球心O 在PD 上,在Rt△PAD 中,PA 2=PD 2+AD 2,则PD =3.设三棱锥P -ABC 外接球半径为R ,如图,在Rt △ODA 中,OA 2=OD 2+AD 2,即(3-R )2+(3)2=R 2,解得R =2.根据球体的表面积公式S =4πR 2,可得球O 的表面积为S =4π×22=16π.(例2(2))(1) 【答案】 12【解析】设正六棱锥的高为h ,侧面的斜高为h ′.由题意,得13×6×12×2×3×h =23,所以h =1,所以斜高h ′=12+(3)2=2, 所以S 侧=6×12×2×2=12.(2) 【答案】 C 【解析】 如图所示,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大,设球O 的半径为R ,此时V O -ABC =V C -AOB =13×12×R 2×R =16R 3=36,故R =6,则球O 的表面积为4πR 2=144π.(变式)【答案】 43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为2×13×1×(2)2=43.(1) 【答案】 C 【解析】过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3.(变式(1))(2) 【答案】 61π 【解析】由圆台的下底面半径为5,知下底面在外接球的大圆上,如图所示,设球的球心为O ,圆台上底面的圆心为O ′,则圆台的高OO ′=OQ2-O ′Q2=52-42=3,所以圆台的体积V =13π×3×(52+5×4+42)=61π.(变式(2))【答案】 C【解析】 因为正方体的内切球的体积与“牟合方盖”的体积之比应为π∶4,“牟合方盖”的体积为18,所以正方体的内切球的体积V 球=π4×18=92π,设正方体内切球半径为r ,则43πr 3=92π, 解得r =32,所以正方体的棱长为2r =3.【答案】 C【解析】 如图所示,过球心O 作平面ABC 的垂线, 则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝ ⎛⎭⎪⎪⎫522+62=132.(变式)课堂评价 1.3π【解析】 设圆锥的底面半径为r ,母线为l ,高为h ,则由题意可得l =2r .因为S 侧=πrl =2πr 2=6π,所以r =3,l =23,则h =l2-r2=12-3=3,所以圆锥的体积为V =13πr 2h =13π×3×3=3π.2.29π【解析】根据题意可知三棱锥P -ABC 可看作长方体的一个角,如图,该长方体的外接球就是经过P ,A ,B ,C 四点的球.因为PA =2 m ,PB =3 m ,PC =4 m ,所以长方体的体对角线的长为PA2+PB2+PC2=29 m ,即外接球的直径2R =29m ,可得R =292m ,因此外接球的表面积为S =4πR 2=4π×⎝ ⎛⎭⎪⎪⎫2922=29π(m 2).(第2题)(第3题)3.3【解析】如图,将直三棱柱ABC-A1B1C1沿BB1展开,则AM+MC1最小等价于在矩形ACC1A1中求AM+MC1的最小值.当A,M,C1三点共线时,AM+MC1最小.又AB=1,BC=2,AB∶BC=1∶2,所以AM=2,MC1=22.又在原三棱柱中,AC1=9+5=14,所以cos∠AMC1=AM2+C1M2-AC212AM·C1M=2+8-142×2×22=-12,故sin∠AMC1=32,△AMC1的面积为S=12×2×22×32=3.4. 10 【解析】因为长方体ABCD-A1B1C1D1的体积为120,所以AB·BC·CC1=120,因为E为CC1的中点,所以CE=12CC1,由长方体的性质知CC1⊥底面ABCD,所以CE是三棱锥E-BCD的底面BCD上的高,所以三棱锥E-BCD的体积V=13·12AB·BC·CE=13·12AB·BC·12CC1=112×120=10.第34讲空间点、线、面之间的位置关系链教材·夯基固本激活思维1. C 【解析】点A在平面α外,故A∉α;直线l在平面α内,故l⊂α.2. C 【解析】此时三个平面两两相交,且有三条平行的交线.3. C 【解析】根据平面的特征,绝对的平,无限延展,不计大小和厚薄,即可知,①对,②错;再根据点线面的关系可知,③④正确.4. C 【解析】如图,因为M,N分别是长方形A1B1C1D1与长方形BCC1B1的中心,所以M,N分别是A1 C1,BC1的中点,所以直线MN与直线A1B平行,所以A错误;因为直线MN经过平面BB1D1D内一点M,且点M不在直线DD1上,所以直线MN与直线DD1是异面直线,所以B错误;因为直线MN经过平面ABC1内一点N,且点N不在直线AC1上,所以直线MN与直线AC1是异面直线,所以C正确;因为直线MN经过平面A1CC1内一点M,且点M不在直线A1C上,所以直线MN与直线A1C是异面直线,所以D错误.(第4题)5. C 【解析】连接BD,BC1,因为AB=D1C1,AB∥D1C1,所以四边形ABC1D1为平行四边形,所以AD1∥BC1,所以∠BC1D为异面直线AD1与DC1所成的角.在正方体ABCD-A1B1C1D1中,BD=BC1=DC1,所以△BC1D为等边三角形,所以∠BC1D=60°,所以异面直线AD1与DC1所成的角的大小为60°.知识聚焦1. 两点所有的点经过这个公共点的一条直线有且只有一个平面2. 在同一平面内异面直线3. (1) 平行(2) 平行相同4. (3) 互相垂直研题型·融会贯通分类解析【解答】 (1) 因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体AC1中,B1D1∥BD,所以EF∥BD,所以EF,BD确定一个平面,即D,B,F,E四点共面.(2) 在正方体AC1中,设A1ACC1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β,则Q是α与β的公共点,所以α∩β=PQ.又A1C∩β=R,所以R∈A1C.所以R∈α,且R∈β,则R∈PQ,故P,Q,R三点共线.【解答】(1) 因为PQ⊂平面PQR,M∈直线PQ,所以M∈平面PQR.因为RQ ⊂平面PQR,N∈直线RQ,所以N∈平面PQR,所以直线MN⊂平面PQR.(2) 因为M∈直线CB,CB⊂平面BCD,所以M∈平面BCD.由(1)知M∈平面PQR,所以M在平面PQR与平面BCD的交线上,同理,可知N,K也在平面PQR与平面BCD的交线上,所以M,N,K三点共线,所以点K在直线MN上.【解答】(1) 不是异面直线,理由:连接MN,A1C1,AC,如图,因为M,N分别是A1B1,B1C1的中点,所以MN∥A1C1.又因为A1A綊D1D,D1D綊C1C,所以A1A綊C1C,所以四边形A1ACC1为平行四边形,所以A1C1∥AC,故MN∥A1C1∥AC,所以A,M,N,C在同一个平面内,故AM和CN不是异面直线.(例2)(2)是异面直线,证明如下:显然D1B与CC1不平行,假设D1B与CC1在同一个平面CC1D1内,则B∈平面CC1D1,C∈平面CC1D1,所以BC⊂平面CC1D1,这显然是不正确的,所以假设不成立,故D1B与CC1是异面直线.【解答】 (1) 由题意易知PQ∥DE,MN∥DE,所以PQ∥MN,所以M,N,P,Q四点共面.(2) 由条件知AD=1,DC=1,BC=2,(例3)如图,延长ED至R,使DR=ED,则ER=BC,ER∥BC,故四边形ERCB为平行四边形,所以RC∥EB,又AC∥QM.所以∠ACR为异面直线BE与QM所成的角(或补角).因为DA=DC=DR,且三线两两互相垂直,由勾股定理得AC=AR=RC=2.因为△ACR为正三角形,所以∠ACR=60°.所以异面直线BE 与MQ 所成的角为60°. 【题组强化】 1. C【解析】 如图,取CD 的中点M ,CF 的中点N ,连接MN ,则MN ∥DF .延长BC 到点P ,使CP =12BC ,连接MP ,NP ,则MP ∥AC .(第1题)令AB =2,则MP =MN =2,又△BCF 是等边三角形,NC =PC =1,在△NCP 中,由余弦定理可得NP 2=CP 2+CN 2-2·CP ·CN ·cos ∠PCN =1+1-2×1×1×⎝ ⎛⎭⎪⎪⎫-12=3,所以NP =3,又异面直线AC 和DF 所成角为∠NMP ,在△NMP 中,由余弦定理得cos ∠NMP =2+2-32×2×2=14.2. D 【解析】 如图,取CD 的中点G ,连接EG ,FG ,则FG ∥BC ,EG ∥AD ,则∠EGF 为异面直线AD 与BC 所成的角(或补角),因为FG =12BC =2,EG =12AD =3,所以由余弦定理得cos ∠EGF =4+9-22×2×3=1112,故异面直线AD 与BC 所成角的余弦值为1112.(第2题)3.C【解析】如图,设AC ∩BD =O ,连接OE ,易知OE 是△SAC 的中位线,故EO∥SA ,则∠BEO 为异面直线BE 与SA 所成的角.设SA =AB =2a ,则OE =12SA =a ,BE =32SA =3a ,OB =22SA =2a ,在△EOB 中,由余弦定理可得cos ∠BEO =a2+3a2-2a223a2=33.(第3题)4. 2 【解析】 如图,设AB 的中点为E ,连接EN ,则EN ∥AC 且EN =12AC ,所以∠MNE 或其补角即为异面直线MN 与AC 所成的角.连接ME ,在Rt △MEN 中,tan ∠MNE =MENE=2.所以异面直线MN 与AC 所成角的正切值为2.(第4题)【答案】 A 【解析】如图所示,在正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD -A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.如图所示,取棱AB ,BB 1,B 1C 1,C 1D 1,D 1D ,DA 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN =6×12×22×22×sin60°=334.故选A.(例4)【答案】 26【解析】由题知,过BD1的截面可能是矩形,可能是平行四边形.(1) 当截面为矩形,即截面为ABC1D1,A1BCD1,BB1D1D时,由正方体的对称性可知S矩形ABC1D1=S矩形A1BCD1=S矩形BB1D1D=42.(2) 当截面为平行四边形时,如图所示,过点E作EM⊥BD1于M,S▱BED1F=BD1·EM,又因为BD1=23,所以S▱BED1F=EM·23,过点M作MN∥D1D交BD于N,连接AN,当AN⊥BD时,AN最小,此时,EM的值最小,且EM=2,故四边形BED1F面积的最小值为S▱BED1F=2×23=26,又因为42>26,所以过BD1的截面面积S的最小值为26.(变式)课堂评价1. D 【解析】因为一条直线与两条异面直线中的一条平行,所以它与另一条异面直线可能异面也可能相交.2. B 【解析】当两个平面相互平行时,把空间分成3部分.当两个平面相交时,把空间分成4部分.所以不重合的两个平面可以把空间分成3或4部分.3. BD 【解析】对于A,两两相交的三条直线,若相交于同一点,则不一定共面,故A不正确;对于B,平行四边形两组对边分别平行,则平行四边形是平面图形,故B正确;对于C,若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补,故C不正确;对于D,由公理可得,若A∈α,A∈β,α∩β=l,则A∈l,故D正确.4. ABC 【解析】如图,过点A作AM⊥BF于点M,过点C作CN⊥DE于点N.在翻折过程中,AF是以F为顶点,AM为底面半径的圆锥的母线,同理AB,E C,DC边均可看作圆锥的母线.对于A,点A和点C的轨迹为圆周,所在平面平行,显然无公共点,故A正确;对于B,AF,EC分别可看成圆锥的母线,只需看以F为顶点、AM为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B正确;对于C,同理B,故C正确;对于D,能否使直线AB与CD所成的角为90°,只需看以B为顶点、AM为底面半径的圆锥轴截面的顶角是否大于等于90°即可,可知D不成立.故选ABC.(第4题)5. 【解答】(1) 因为DD1⊥平面ABCD,所以斜线BD1在平面ABCD内的射影是BD.又直线BD1和直线AC不同在任何一个平面内,所以直线BD1和直线AC是异面直线.(2) 连接BD.因为DD1⊥平面ABCD,AC⊂平面ABCD,所以DD1⊥AC.又因为AC⊥BD,BD∩DD1=D,所以AC⊥平面BDD1.因为BD1⊂平面BDD1,所以AC⊥BD1,故直线BD1和直线AC所成的角是90°.第35讲直线、平面平行的判定与性质链教材·夯基固本激活思维1. D 【解析】与一个平面平行的两条直线可以平行,相交,也可以异面.2. D 【解析】依题意,直线a必与平面α内的某直线平行,又a∥b,因此直线b与平面α的位置关系是平行或直线b在平面α内.3. BD 【解析】因为直线a∥平面α,直线a与平面α无公共点,所以直线a和平面α内的任意一条直线都不相交,与无数条直线平行.4. 平面ABCDEF、平面CC1D1D【解析】在正六棱柱中,易知A1F1∥AF,AF⊂平面ABCDEF,且A1F1⊄平面ABCDEF,所以A1F1∥平面ABCDEF.同理,A1F1∥C1D1,C1D1⊂平面CC1D1D,且A1F1⊄平面CC1D1D,所以A1F1∥平面CC1D1D.其他各面与A1F1均不满足直线与平面平行的条件.5. ①③【解析】直线l在平面α外⇔l∥α或直线l与平面α仅有一个交点.知识聚焦1. 直线a与平面α平行直线a与平面α相交直线a在平面α内研题型·融会贯通分类解析【答案】 D【解析】对于A,若a⊥c,b⊥c,则a与b可能平行、异面、相交,故A是假命题;对于B,设α∩β=m,若a,b均与m平行,则a∥b,故B是假命题;对于C,a,b可能平行、异面、相交,故C是假命题;对于D,若α∥β,a⊂α,则a与β没有公共点,故a∥β,故D是真命题.【答案】 C【解析】对于A,两条直线可能平行也可能异面或相交;对于B,如图,在正方体ABCD-A1B1CD1中,平面ABB1A1和平面BCC1B1与B1D1所成的角相等,但这两个平面垂直;对于D,1两平面也可能相交.C正确.(变式)【解答】因为在直三棱柱ABC-A1B1C1中,点D,E分别是边BC,B1C1的中点,所以EC1綊BD,所以四边形BDC1E是平行四边形,所以BE∥C1D.因为BE⊄平面AC1D,C1D⊂平面AC1D,所以BE∥平面AC1D.【解答】如图,连接BD,令AC∩BD=O,连接EO.因为在△BPD中,BO=OD,PE=ED,所以OE∥BP.又因为BP⊄平面ACE,OE⊂平面ACE,所以BP∥平面ACE.(变式)【解答】 因为BC ∥平面GEFH ,BC ⊂平面ABCD ,平面GEFH ∩平面ABCD =EF ,所以BC ∥EF .同理可得,BC ∥GH ,所以GH ∥EF .【解答】 因为AB ∥平面MNPQ ,平面ABC ∩平面MNPQ =MN ,且 AB ⊂平面ABC ,所以由线面平行的性质定理,知 AB ∥MN .同理可得PQ ∥AB ,故MN ∥PQ .同理可得MQ ∥NP ,所以截面四边形 MNPQ 为平行四边形.【解答】 (1) 在正方形AA 1B 1B 中,因为AE =B 1G =1,所以BG =A 1E =2,所以BG 綊A 1E ,所以四边形A 1GBE 是平行四边形,所以A 1G ∥BE .又C 1F 綊B 1G ,所以四边形C 1FGB 1是平行四边形,所以FG 綊C 1B 1綊D 1A 1,所以四边形A 1GFD 1是平行四边形,所以A 1G 綊D 1F ,所以D 1F 綊EB ,故E ,B ,F ,D 1四点共面.(2) 因为H 是B 1C 1的中点,所以B 1H =32. 又B 1G =1,所以B1G B1H =23. 又FC BC =23,且∠FCB =∠GB 1H =90°,所以△B 1HG ∽△CBF , 所以∠B 1GH =∠CFB =∠FBG ,所以HG ∥FB .因为GH ⊄平面FBED 1,FB ⊂平面FBED 1,所以GH ∥平面BED 1F .由(1)知A 1G ∥BE ,A 1G ⊄平面FBED 1,BE ⊂平面FBED 1,所以A 1G ∥平面BED 1F .又HG ∩A 1G =G ,所以平面A 1GH ∥平面BED 1F .【解答】 因为PM ∶MA =BN ∶ND =PQ ∶QD ,所以MQ ∥AD ,NQ ∥BP .又BP ⊂平面PBC ,NQ ⊄平面PBC ,所以NQ∥平面PBC.又因为四边形ABCD为平行四边形,所以BC∥AD,所以MQ∥BC.又BC⊂平面PBC,MQ⊄平面PBC,所以MQ∥平面PBC.又MQ∩NQ=Q,所以平面MNQ∥平面PBC.课堂评价1. D2. A3. B 【解析】因为平面SBC∩平面ABC=BC,EF⊂平面SBC,又EF∥平面ABC,所以EF∥BC.4. ABC 【解析】由题意知,OM是△BPD的中位线,所以OM∥PD,故A正确;因为PD⊂平面PCD,OM⊄平面PCD,所以OM∥平面PCD,故B正确;同理可得OM∥平面PDA,故C正确;因为OM与平面PBA相交,故D不正确.第36讲直线、平面垂直的判定与性质链教材·夯基固本激活思维1. B 【解析】设a,b为异面直线,a∥平面α,b∥平面α,直线l⊥a,l⊥b.过a作平面β∩平面α=a′,则a∥a′,所以l⊥a′.同理过b作平面γ∩α=b′,则l⊥b′.因为a,b异面,所以a′与b′相交,所以l⊥α.2. A 【解析】由l⊥α且m∥α能推出m⊥l,充分性成立;若l⊥α且m⊥l,则m∥α或者m⊂α,必要性不成立,因此“m∥α”是“m⊥l”的充分不必要条件,故选A.3. A 【解析】因为DD1⊥平面ABCD,所以AC⊥DD1.又因为AC⊥BD,DD1∩BD=D,所以AC⊥平面BDD1B1.因为OM⊂平面BDD1B1,所以OM⊥AC.设正方体的棱长为2,则OM=1+2=3,MN=1+1=2,ON=1+4=5,所以OM2+MN2=ON2,所以OM⊥MN.故选A.4. AC 【解析】由题意知PA⊥平面ABC,因为BC⊂平面ABC,所以PA⊥BC,故A正确;因为AC⊥BC,PA⊥BC,且PA∩AC=A,PA,AC⊂平面PAC,所以BC⊥平面PAC,故C正确;若AC⊥PB,因为AC⊥BC,故可得AC⊥平面PBC,则AC⊥PC,与题目矛盾,故B错误;由BC⊥平面PAC可得,BC⊥PC,则△PBC为直角三角形,若PC ⊥PB ,则BC ,PB 重合,与已知矛盾,故D 错误.5. (1) 外 (2) 垂【解析】 (1) 如图(1),连接OA ,OB ,OC ,OP ,在Rt △POA ,Rt △POB 和Rt △POC 中,PA =PC =PB ,所以OA =OB =OC ,即O 为△ABC 的外心.(2)如图(2),延长AO ,BO ,CO 分别交BC ,AC ,AB 于点H ,D ,G .因为PC ⊥PA ,PB ⊥PC ,PA ∩PB =P ,所以PC ⊥平面PAB ,又AB ⊂平面PAB ,所以PC ⊥AB ,又AB ⊥PO ,PO ∩PC =P ,所以AB ⊥平面PGC .又CG ⊂平面PGC ,所以AB ⊥CG ,即CG 为△ABC 边AB 的高.同理可证BD ,AH 为△ABC 底边上的高,即O 为△ABC 的垂心.(第5题(1))(第5题(2))知识聚焦1. (1) 任意一条直线 (2) 两条相交直线都垂直2. (1) 射影 锐角 直角 (2) ⎣⎢⎢⎡⎦⎥⎥⎤0,π2 3. (1) 两个半平面 (2) 垂直于棱 (4) 直二面角研题型·融会贯通分类解析【答案】 B【解析】 如图,连接AC 1,因为∠BAC =90°,所以AC ⊥AB ,因为BC 1⊥AC ,BC 1∩AB =B ,所以AC ⊥平面ABC 1. 又AC 在平面ABC 内,所以根据面面垂直的判定定理,知平面ABC ⊥平面ABC 1, 则根据面面垂直的性质定理知,在平面ABC 1内一点C 1向平面ABC 作垂线,垂足必落在交线AB 上.故选B.(例1)【答案】 C【解析】因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l.【解答】因为AB=AC,D是BC的中点,所以AD⊥BC. 在直三棱柱ABC-A1B1C1中,因为BB1⊥底面ABC,AD⊂底面ABC,所以AD⊥B1B.因为BC∩B1B=B,BC,B1B⊂平面B1BCC1,所以AD⊥平面B1BCC1.因为B1F⊂平面B1BCC1,所以AD⊥B1F.方法一:在矩形B1BCC1中,因为C1F=CD=1,B1C1=CF=2,所以Rt△DCF≌Rt△FC1B1,所以∠CFD=∠C1B1F,所以∠B1FD=90°,即B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.方法二:在Rt△B1BD中,BD=CD=1,BB1=3,所以B1D=BD2+BB21=10.在Rt△B1C1F中,B1C1=2,C1F=1,所以B1F=B1C21+C1F2=5.在Rt△DCF中,CF=2,CD=1,所以DF=CD2+CF2=5.显然DF2+B1F2=B1D2,所以∠B1FD=90°,所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.【解答】在矩形CDEF中,CD⊥DE.因为∠ADC=90°,所以CD⊥AD.因为DE∩AD=D,DE,AD⊂平面ADE,所以CD⊥平面ADE. 因为DM⊂平面ADE,所以CD⊥DM.又因为AB∥CD,所以AB⊥DM.因为AD=DE,M为AE的中点,所以AE⊥DM.又因为AB∩AE=A,AB,AE⊂平面ABE,所以MD⊥平面ABE.因为BE⊂平面ABE,所以BE⊥MD.【解答】 (1) 因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC.因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2) 因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,AB∥EF,所以AB⊥AF.又AB⊥AD,点E在棱PC上(异于点C),所以点F异于点D,所以AF∩AD=A.又AF,AD⊂平面PAD,所以AB⊥平面PAD.又AB⊂平面ABCD,所以平面PAD⊥平面ABCD.【解答】 (1) 因为PA=PC,O是AC的中点,所以PO⊥AC. 在Rt△PAO中,因为PA=5,OA=3,所以由勾股定理得PO=4.因为AB=BC,O是AC的中点,所以BO⊥AC.在Rt△BAO中,因为AB=5,OA=3,所以由勾股定理得BO=4.因为PO=4,BO=4,PB=42,所以PO2+BO2=PB2,所以PO⊥BO.因为BO∩AC=O,所以PO⊥平面ABC.因为PO⊂平面PAC,所以平面PAC⊥平面ABC.(2) 由(1)可知平面PAC⊥平面ABC.因为平面ABC∩平面PAC=AC,BO⊥AC,BO⊂平面ABC,所以BO⊥平面PAC,所以V POBQ=V BPOQ=13S△PQO·BO=13×12S△PAO×4=13×14×3×4×4=4.所以四面体POBQ的体积为4.【解答】(1) 因为AB⊥AD,AB⊥BC,且A,B,C,D四点共面,所以AD ∥BC.因为BC⊄平面PAD,AD⊂平面PAD,所以BC∥平面PAD.(2) 如图,过点D作DH⊥PA于点H,因为△PAD是锐角三角形,所以H与A不重合.因为平面PAD⊥平面PAB,平面PAD∩平面PAB=PA,DH⊂平面PAD,所以DH⊥平面PAB,因为AB⊂平面PAB,所以DH⊥AB.因为AB⊥AD,AD∩DH=D,AD,DH⊂平面PAD,所以AB⊥平面PAD.因为AB⊂平面ABCD,所以平面PAD⊥平面ABCD.(变式2)课堂评价1. ③⑤②⑤2. AC 【解析】如图,连接AC,BD相交于点O,连接EM,EN,SO.由正四棱锥的性质可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC,可得AC⊥平面SBD,利用三角形的中位线结合面面平行判定定理得平面EMN∥平面SBD,进而得到AC⊥平面EMN,故A正确;由异面直线的定义可知不可能EP∥BD;由A易得C正确;由A同理可得EM⊥平面SAC,故D错误.3. [2,3] 【解析】因为CD⊥平面B1C1CB,EF⊂平面B1C1CB,所以CD⊥EF.连接BC1,B1C,则EF∥BC1,BC1⊥B1C,所以EF⊥B1C,因为CD∩B1C=C,所以EF⊥平面A1B1CD.当点P在线段CD上时,总有A1P⊥EF,所以A1P的最大值为A1C=3,A1P的最小值为A1D=2,故线段A1P长度的取值范围是[2,3].4. 【解答】 (1) 如图,连接BD,交AC于点O,连接OF.因为四边形ABCD是矩形,O是矩形ABCD对角线的交点,所以O为BD的中点.又因为F是BE的中点,所以在△BED中,OF∥DE.因为OF⊂平面ACF,DE⊄平面ACF,所以DE∥平面ACF.(2) 因为四边形ABCD是矩形,所以AB⊥BC.又因为平面ABCD⊥平面BCE,且平面ABCD∩平面BCE=BC,AB⊂平面ABCD ,所以AB ⊥平面BCE .因为CF ⊂平面BCE ,所以AB ⊥CF .在△BCE 中,因为CE =CB ,F 是BE 的中点,所以CF ⊥BE .因为AB ⊂平面ABE ,BE ⊂平面ABE ,AB ∩BE =B ,所以CF ⊥平面ABE .又CF ⊂平面AFC ,所以平面AFC ⊥平面ABE .(第4题)第37讲 综合法求角与距离链教材·夯基固本激活思维1. B 【解析】 如图,取AD 的中点F ,连接EF ,CF .因为E 为AB 的中点,所以EF ∥DB ,则∠CEF 为异面直线BD 与CE 所成的角.在正四面体ABCD 中,因为E ,F 分别为AB ,AD 的中点,所以CE =CF .设正四面体的棱长为2a ,则EF =a ,CE =CF =(2a )2-a 2=3a .在△CEF 中,由余弦定理得cos ∠CEF =CE2+EF2-CF22CE ·EF =a22×3a2=36.(第1题)2. A 【解析】 如图,连接A 1C 1,则∠AC 1A 1为AC 1与平面A 1B 1C 1D 1所成的角.因为AB =BC =2,所以A 1C 1=AC =22,又AA1=1,所以AC 1=3,所以sin ∠AC 1A 1=AA1AC1=13.故选A.(第2题)3. 233【解析】设棱长为a,BC的中点为E,连接A1E,AE,在正三棱柱ABC-A1B1C1中,由各棱长都相等,可得A1E⊥BC,AE⊥BC,故二面角A1-BC-A的平面角为∠A1EA.在Rt△AA1E中,AE=32a,所以tan ∠A1EA=AA1AE=a32a=233,即二面角A1-BC-A的平面角的正切值为233.(第3题)4. 8 【解析】由体积公式V=13Sh,得96=13×36h,所以h=8,即点P到平面ABCD的距离是8.5.33【解析】由题意知点S在平面ABC内的射影为AB的中点H,所以SH⊥平面ABC.因为SH=3,CH=1,在平面SHC内作SC的垂直平分线MO,交SH于点O,则O为三棱锥S-ABC的外接球球心.因为SC=2,所以SM=1,∠OSM=30°,所以SO=233,OH=33,即为O到平面ABC的距离.知识聚焦1. 锐角2. 垂直研题型·融会贯通分类解析【答案】 D【解析】因为PA⊥底面ABC,所以PA⊥AB,PA⊥AC,即∠PAB=∠PAC=90°,又因为AB=AC=1,PA=2,所以△PAB≌△PAC,所以PB=PC.如图,取BC的中点D,连接AD,PD,所以PD⊥BC,AD⊥BC.又因为PD∩AD=D,所以点BC⊥平面PAD.因为BC⊂平面PBC,所以平面PAD⊥平面PBC.过点A作AO⊥PD于点O,易得AO⊥平面PBC,所以∠APD就是直线PA与平面PBC所成的角. 在Rt△PAD中,AD=12,PA=2,则PD=PA2+AD2=32,则sin ∠APD=ADPD=13.故选D.(例1)【答案】 A【解析】因为平面ABD⊥底面BCD,AB=AD,取DB的中点O,连接AO,CO,则AO⊥BD,AO⊥平面BCD,所以∠ACO就是直线AC与底面BCD所成的角.因为BC⊥CD,BC=6,BD=43,所以CO=23.在Rt△ADO中,OA=AD2-OD2=2.在Rt△AOC中,tan ∠ACO=AOOC=33,故直线AC与底面BCD所成角的大小为30°.故选A.(变式)【答案】1 3【解析】如图,过点S作SO⊥底面ABC,点O为垂足,连接OA,OB,OC,则OA=OB=OC,点O为等边三角形ABC 的中心.延长AO交BC于点D,连接SD.(例2)则AD⊥BC,BC⊥SD,所以∠ODS为侧面SBC与底面ABC所成二面角的平面角.因为正三棱锥S-ABC的所有棱长均为2,所以SD=3,OD=13AD=33.在Rt△SOD中,cos ∠ODS=ODSD=13.【答案】π3【解析】在△BDC中,BC=3,CD=2,∠BCD=π2,则BD=13.在△ABC中,AB=1,BC=3,∠ABC=π2,则AC=10.又AD=23,在△ABD中,BD2=AB2+AD2,则∠BAD=π2.过点B作BE∥CD,使BE=CD,连接AE,DE,则四边形BEDC为矩形,BE=2.因为BC⊥AB,BC⊥BE,则BC⊥平面ABE,DE∥BC,则DE⊥平面ABE,则DE⊥AE,AE=AD2-DE2=3,在△ABE中,AE2+AB2=BE2,则∠BAE=π2,∠AEB=π6,∠ABE=π3,由于AB⊥BC,EB⊥BC,则∠ABE为二面角A-BC-D的平面角,且∠ABE=π3.【答案】 B【解析】过点B作BE∥AC,且BE=AC.因为AC⊥AB,所以BE⊥AB.因为BD⊥AB,BD∩BE=B,所以∠DBE是二面角α-l-β的平面角,且AB⊥平面DBE,所以AB⊥DE ,所以CE ⊥DE .因为AB =4,CD =8,所以DE =CD2-CE2=82-42=43,所以cos ∠DBE =BE2+BD2-DE22BE ·BD =36+36-482×6×6=13.故选B.【解答】 (1) 如图(1),取BD 的中点O ,连接OM ,OE .(例3(1))因为O ,M 分别为BD ,BC 的中点,所以OM ∥CD ,且OM =12CD .因为四边形ABCD 为菱形,所以CD ∥AB ,又EF∥AB ,所以CD∥EF ,又AB =CD =2EF ,所以EF =12CD ,所以OM∥EF ,且OM =EF ,所以四边形OMFE 为平行四边形,所以MF ∥OE .又OE ⊂平面BDE ,MF ⊄平面BDE ,所以MF ∥平面BDE .(2) 由(1)得FM ∥平面BDE ,所以点F 到平面BDE 的距离等于点M 到平面BDE 的距离. 如图(2),取AD 的中点H ,连接EH ,BH .(例3(2))因为EA =ED ,四边形ABCD 为菱形,且∠DAB =60°,所以EH ⊥AD ,BH ⊥AD .因为平面ADE ⊥平面ABCD ,平面ADE ∩平面ABCD =AD ,EH ⊂平面ADE ,所以EH ⊥平面ABCD ,所以EH ⊥BH ,易得EH =BH =3,所以BE =6,所以S △BDE =12×6×22-⎝ ⎛⎭⎪⎪⎫622=152.设点F 到平面BDE 的距离为h ,连接DM ,则S △BDM =12S △BCD =12×34×4=32,连接EM ,由V E -BDM =V M -BDE ,得13×3×32=13×h ×152,解得h =155,即点F 到平面BDE 的距离为155.【解答】(1)如图,连接AF ,则AF =2,又DF =2,AD =2,所以DF 2+AF 2=AD 2,所以DF ⊥AF .因为PA ⊥平面ABCD ,所以DF ⊥PA ,又PA ∩AF =A ,所以DF ⊥平面PAF .又PF ⊂平面PAF ,所以DF ⊥PF .(变式)(2) 如图,连接EP ,ED ,EF .因为S △EFD =S 矩形ABCD -S △BEF -S △ADE -S △CDF =2-54=34,所以V P -EFD =13S △EFD ·PA =13×34×1=14.设点E 到平面PFD 的距离为h , 则由V E -PFD =V P -EFD ,得13S△PFD ·h =13·62·h =14,解得h =64,即点E 到平面PFD 的距离为64. 课堂评价 1.D【解析】如图,连接BC 1,A 1C 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.(第1题)由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45,即异面直线A 1B 与AD 1所成角的余弦值为45.2.55【解析】连接EB ,由BB 1⊥平面ABCD ,知∠FEB 即为直线EF 与平面ABCD 所成的角.在Rt △FBE 中,BF =1,BE =5,则tan ∠FEB =BFBE =55.3. 60°【解析】 如图,取AB 的中点O ,连接VO ,CO .在三棱锥V -ABC 中,VA =VB =AC =BC =2,AB=23,VC =1,所以VO⊥AB ,CO⊥AB ,所以∠VOC 是二面角V -AB -C 的平面角,VO =VA2-⎝ ⎛⎭⎪⎪⎫AB 22=4-3=1,CO =BC2-⎝ ⎛⎭⎪⎪⎫AB 22=4-3=1,所以cos ∠VOC =VO2+CO2-VC22VO ·CO=1+1-12×1×1=12,所以∠VOC =60°,所以二面角V -AB -C 的平面角的度数为60°.(第3题)4.217【解析】 如图,取AB 的中点E ,连接CE ,C 1E ,过点C 作CF ⊥C 1E ,垂足为F .在正三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,则AB ⊥CC 1. 因为△ABC 是等边三角形,所以AB ⊥CE , 又CE ∩CC 1=C ,所以AB ⊥平面CC 1E .因为CF ⊂平面CC 1E ,所以CF ⊥AB ,因为C 1E ∩AB =E ,所以CF ⊥平面ABC 1,则CF 的长即为所求. 在Rt △CEC 1中,CC 1=1,CE =32AB =32,所以C 1E =CC21+CE2=72,由等面积法,得CF =CC1×CE C1E =217.(第4题)第38讲 空间直角坐标系与空间向量链教材·夯基固本 激活思维 1.D【解析】因为向量OA→,OB →,OC →不能构成空间的一个基底,所以向量OA→,OB→,OC→共面,因此O ,A ,B ,C 四点共面,故选D.2. C 【解析】 AE →=AA 1+A 1E =AA 1+12A 1C 1=AA 1+12(AB →+AD →),故x =12,y =12.3. 2 【解析】 |EF→|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →) =12+22+12+2(1×2×cos 120°+0+2×1×cos 120°) =2,所以|EF→|=2,所以EF 的长为2.4. 18 【解析】 因为P ,A ,B ,C 四点共面,所以34+18+t =1,所以t =18. 5. α⊥β α∥β 【解析】 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β.当v =(4,-4,-10)时,v =-2u ⇒α∥β.知识聚焦2. (1) ①〈a ,b 〉 [0,π] 互相垂直 ②|a ||b |cos 〈a ,b 〉 a·b |a ||b |cos 〈a ,b 〉 (2) λ(a ·b ) b ·a3. a 1b 1+a 2b 2+a 3b 3 a 1=λb 1,a 2=λb 2,a 3=λb 3 a 1b 1+a 2b 2+a 3b 3=0研题型·融会贯通 分类解析【解答】 ①因为P 是C 1D 1的中点,所以AP→=AA1→+A1D1→+D1P →=a +AD →+12D1C1→=a +c +12AB →=a +12b +c . ②因为N 是BC 的中点,所以A1N →=A1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c .③因为M 是AA 1的中点,所以MP →=MA →+AP →=12A1A →+AP →=-12a +⎝ ⎛⎭⎪⎪⎫a +12b +c =12a +12b +c . 又NC1→=NC →+CC1→=12BC →+AA1→=12AD →+AA1→=a +12c ,所以MP →+NC1→=⎝ ⎛⎭⎪⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎪⎫a +12c =32a +12b +32c . (1) 【答案】 -3 【解析】因为AB→=(3,-1,1),AC →=(m +1,n -2,-2),且A ,B ,C 三点共线,所以存在实数λ,使得AC→=λAB→,即(m +1,n -2,-2)=λ(3,-1,1)=(3λ,-λ,λ),所以⎩⎪⎨⎪⎧m +1=3λ,n -2=-λ,-2=λ,解得⎩⎪⎨⎪⎧λ=-2,m =-7,n =4.所以m +n =-3.(2) 【解答】 ①由题知OA→+OB →+OC →=3OM →,所以OA →-OM →=(OM →-OB→)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,所以MA →,MB →,MC →共面. ②由①知MA→,MB→,MC→共面且过同一点M ,所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内.【解答】 因为AM→=k AC1→,BN →=k BC →,所以MN →=MA →+AB →+BN →=k C1A →+AB→+k BC →=k (C1A →+BC →)+AB →=k (C1A →+B1C1→)+AB →=k B1A →+AB →=AB →-k AB1→=AB →-k (AA1→+AB →)=(1-k )AB →-k AA1→,所以由共面向量定理知向量MN →与向量AB →,AA1→共面.【解答】 (1) 设AB→=a ,AC →=b ,AD →=c ,由题意知EG →=12(AC →+AD →-AB →)=12(b +c -a ),所以EG →·AB →=12(a ·b +a ·c -a 2)=12⎝ ⎛⎭⎪⎪⎫1×1×12+1×1×12-1=0. 故EG→⊥AB →,即EG ⊥AB . (2) 由题意知EG →=-12a +12b +12c ,得|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22,即EG 的长为22.(3) 因为AG →=12(AC →+AD →)=12b +12c ,CE →=CA →+AE →=-b +12a ,所以cos 〈AG→,CE →〉=AG →·CE →|AG→||CE →|=⎝ ⎛⎭⎪⎪⎫12b +12c ·⎝ ⎛⎭⎪⎪⎫-b +12a ⎝ ⎛⎭⎪⎪⎫12b +12c 2·⎝ ⎛⎭⎪⎪⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝ ⎛⎦⎥⎥⎤0,π2, 所以异面直线AG 与CE 所成角的余弦值为23.。
2025年新人教版高考数学一轮复习讲义第七章必刷大题14 空间向量与立体几何(1)求证:AM⊥平面PBD;由题意知,AB,AD,AP两两垂直,以A为坐标原点,AB,AD,AP所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,如图,设平面PBD的法向量为n=(x,y,z),=2OM.如图,连接AC交BD于点E,则E是AC的中点,连接PE,∵AM∩平面PBD=O,∴O∈AM且O∈平面PBD,∵AM⊂平面P AC,∴O∈平面P AC,又平面PBD∩平面P AC=PE,∴O∈PE,∴AM,PE的交点就是O,连接EM,∵M是PC的中点,∴P A∥EM,P A=2EM,∴△P AO∽△EMO,∴AO=2OM.2.(2023·长沙模拟)斜三棱柱ABC-AB1C1的各棱长都为2,点A1在下底面ABC上的投影为AB的中点O.(1)在棱BB1(含端点)上是否存在一点D,使A1D⊥AC1若存在,求出BD的长;若不存在,请说明理由;因为AC=BC,O为AB的中点,所以OC⊥AB,由题意知A1O⊥平面ABC,以点O为原点,OA,OC,OA1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,(2)求点A1到平面BCC1B1的距离.设平面BCC1B1的法向量为n=(x,y,z),3.(2024·丹东模拟)如图,平行六面体ABCD-A1B1C1D1的所有棱长都相等,平面CDD1C1⊥平面ABCD,AD⊥DC,二面角D1-AD-C的大小为120°,E为棱C1D1的中点.(1)证明:CD⊥AE;因为平面CDD1C1⊥平面ABCD,且平面CDD1C1∩平面ABCD=DC,AD⊥DC,AD⊂平面ABCD,所以AD⊥平面CDD1C1,又D1D⊂平面CDD1C1,所以AD⊥D1D,则∠D1DC是二面角D1-AD-C的平面角,故∠D1DC =120°.连接DE(图略),因为E为棱C1D1的中点,则DE⊥C1D1,又C1D1∥CD,从而DE⊥CD.又AD⊥CD,DE∩AD=D,DE,AD⊂平面AED,所以CD⊥平面AED,又AE⊂平面AED,因此CD⊥AE.DF所成角的余弦值.方法一 如图,连接DE,连接AC交BD于点O,连接CE交DF于点G,连接OG.设AB=2,因为AE∥平面BDF,AE⊂平面AEC,平面AEC∩平面BDF=OG,所以AE∥OG,因为O为AC的中点,所以G为CE的中点,且直线OG与DF所成的角等于直线AE与DF所成的角.方法二 如图,连接DE,CE,取DC中点为G,连接EG交DF于点H,则EG=DD1=2.连接AG交BD于点I,连接HI,因为AE∥平面BDF,AE⊂平面AGE,平面AGE∩平面BDF=IH,所以AE∥IH.HI与DH所成角等于直线AE与DF所成角.因为AE∥平面BDF,所以存在唯一的λ,μ∈R,所以直线AE与DF所成角的余弦值为4.(2023·成都模拟)如图所示,直角梯形ABDE和三角形ABC所在平面互相垂直,DB⊥AB,ED∥AB,AB=2DE=2BD=2,AC=BC,异面直线DE 与AC所成角为45°,点F,G分别为CE,BC的中点,点H是线段EG上靠近点G的三等分点.(1)求证:A,B,F,H四点共面;如图,取AB的中点O,连接OC,OE,因为AC=BC,故∠BAC为锐角,又ED∥AB,故∠BAC即为异面直线DE与AC所成角,则∠BAC=45°,则∠ACB=90°,即AC⊥CB,因为直角梯形ABDE和三角形ABC所在平面互相垂直,DB⊥AB,平面ABDE∩平面ABC=AB,DB⊂平面ABDE,故DB⊥平面ABC,又DE=OB,DE∥OB,即四边形OBDE为平行四边形,故EO∥DB,所以EO⊥平面ABC,(2)求平面HCD与平面BCD夹角的余弦值.DB∩BC=B,DB,BC⊂平面BCD,设平面HCD的法向量为m=(x,y,z),设平面HCD与平面BCD的夹角为θ,5.(2023·长沙模拟)如图,在三棱台ABC-A1B1C1中,AB⊥BC,AC⊥BB1,平面ABB1A1⊥平面ABC,AB=6,BC=4,BB1=2,AC1与A1C相交于点D,,且DE∥平面BCC1B1.(1)求三棱锥C-A1B1C1的体积;∵平面ABB1A1⊥平面ABC,且平面ABB1A1∩平面ABC=AB,AB⊥BC,BC⊂平面ABC,∴BC⊥平面ABB1A1,∵BB1⊂平面ABB1A1,∴BC⊥BB1,又AC⊥BB1,BC∩AC=C,BC,AC⊂平面ABC,∴BB1⊥平面ABC,连接C1B,如图,∵DE∥平面BCC1B1,DE⊂平面ABC1,平面ABC1∩平面BCC1B1=C1B,∴DE∥C1B,则A(6,0,0),C(0,4,0),B1(0,0,2),A1(3,0,2),C1(0,2,2),设平面A1B1C的法向量为n=(x,y,z),则n=(0,1,2),(1)证明:平面PCD∥平面QAB;因为四边形ABCD为正方形,所以AB⊥AD,又PD⊥AB,AD∩PD=D,AD,PD⊂平面P AD,所以AB⊥平面P AD,因为P A⊂平面P AD,所以P A⊥AB,又AD⊥AB,所以∠P AD为二面角P-AB-C的平面角,即∠P AD=30°,又平面P AD∥平面QBC,AB∥CD,所以CD⊥平面QBC,因为QC⊂平面QBC,所以QC⊥CD,又CB⊥CD,所以∠QCB为二面角Q-CD-A 的平面角,即∠QCB=30°,建立如图所示的空间直角坐标系,因为PC⊄平面QAB,AQ⊂平面QAB,所以PC∥平面QAB,又AB∥CD,CD⊄平面QAB,AB⊂平面QAB,所以CD∥平面QAB,因为PC∩CD=C,PC,CD⊂平面PCD,所以平面PCD∥平面QAB.设SG与平面ABCD所成角为θ,化简得84m 2+52m -11=0,即(6m-1)(14m+11)=0,本课结束。
第七章立体几何第一节空间几何体的结构特征及三视图与直观图1.简单几何体(1)多面体的结构特征2.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.[小题体验]1.若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为( )A.2,2 3 B.22,2C.4,2 D.2,4解析:选D 由三视图可知,正三棱柱的高为2,底面正三角形的高为23,故底面边长为4,故选D.2.(教材习题改编)如图,长方体ABCDA′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是______.答案:五棱柱三棱柱1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.[小题纠偏]1.如图,能推断这个几何体可能是三棱台的是( )A.A1B1=2,AB=3,B1C1=3,BC=4B .A 1B 1=1, AB =2,B 1C 1=32,BC =3,A 1C 1=2,AC =3C .A 1B 1=1,AB =2,B 1C 1=32,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C 根据棱台是由棱锥截成的,可知A 1B 1AB =B 1C 1BC =A 1C 1AC,故A ,B 不正确,C 正确;D 项中满足这个条件的是一个三棱柱,不是三棱台,故D 不正确.2.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是( )解析:选B 俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B. 3.(教材习题改编)利用斜二测画法得到的 ①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形; ③等腰梯形的直观图可以是平行四边形; ④菱形的直观图一定是菱形. 以上结论正确的个数是________.解析:由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案:1考点一 空间几何体的结构特征基础送分型考点——自主练透[题组练透]1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A .圆柱 B .圆锥C .球体D .圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体. 2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选B ①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCDA1B1C1D1中的三棱锥C1ABC,四个面都是直角三角形.答案:②③④[谨记通法]解决与空间几何体结构特征有关问题的3个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型;(3)通过反例对结构特征进行辨析.考点二空间几何体的三视图重点保分型考点——师生共研[典例引领]1.(2018·东北四市联考)如图,在正方体ABCDA1B1C1D1中,P是线段CD的中点,则三棱锥PA1B1A的侧视图为( )解析:选D 如图,画出原正方体的侧视图,显然对于三棱锥PA1B1A,B(C)点均消失了,其余各点均在,从而其侧视图为D.2.(2018·杭州模拟)已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,那么该三棱锥的侧视图可能为( )解析:选B 由正视图可看出长为2的侧棱垂直于底面,侧视图为直角三角形,直角边长为2,另一直角边为底边三角形的高 3.故侧视图可能为B.[由题悟法]1.已知几何体,识别三视图的技巧已知几何体画三视图时,可先找出各个顶点在投影面上的投影,然后再确定线在投影面上的实虚.2.已知三视图,判断几何体的技巧(1)对柱、锥、台、球的三视图要熟悉.(2)明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.(3)遵循“长对正、高平齐、宽相等”的原则.[提醒] 对于简单组合体的三视图,应注意它们的交线的位置,区分好实线和虚线的不同.[即时应用]1.(2018·沈阳教学质量监测)“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )解析:选B 根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B ,故选B.2.一个几何体的三视图如图所示,则该几何体的直观图可以是( )解析:选D 由俯视图是圆环可排除A 、B 、C ,进一步将已知三视图还原为几何体,可得选项D.考点三 空间几何体的直观图重点保分型考点——师生共研[典例引领](2018·杭州模拟)在等腰梯形ABCD 中,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.解析:画出等腰梯形ABCD 的实际图形及直观图A ′B ′C ′D ′如图所示,因为OE =22-12=1,所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为S ′=12×(1+3)×24=22.答案:22[由题悟法]原图与直观图中的“三变”与“三不变”(1)“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度改变减半图形改变(2)“三不变”⎩⎪⎨⎪⎧平行性不变与x 轴平行的线段长度不变相对位置不变[即时应用]如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形解析:选C 如图,在原图形OABC 中,应有OD =2O ′D ′=2×22=4 2 cm ,CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=22+22=6 cm ,∴OA =OC ,故四边形OABC 是菱形.一抓基础,多练小题做到眼疾手快1.某几何体的正视图和侧视图完全相同,均如图所示,则该几何体的俯视图一定不可能是( )解析:选D 几何体的正视图和侧视图完全一样,则几何体从正面看和侧面看的长度相等,只有等边三角形不可能.2.下列说法正确的是( )A.棱柱的两个底面是全等的正多边形B.平行于棱柱侧棱的截面是矩形C.{直棱柱}⊆{正棱柱}D.{正四面体}⊆{正三棱锥}解析:选D 因为选项A中两个底面全等,但不一定是正多边形;选项B中一般的棱柱不能保证侧棱与底面垂直,即截面是平行四边形,但不一定是矩形;选项C中{正棱柱}⊆{直棱柱},故A、B、C都错;选项D中,正四面体是各条棱均相等的正三棱锥,故正确.3.某几何体的三视图如图所示,那么这个几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台解析:选A 因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故该几何体为三棱锥.4.在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在直角坐标系xOy中,四边形ABCO的形状为________,面积为________cm2.解析:由斜二测画法的特点知该平面图形是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形85.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图,ABCDA1B1C1D1,如图,当选择的4个点是B1,B,C,C1时,可知①正确;当选择的4个点是B,A,B1,C时,可知②正确;易知③不正确.答案:①②二保高考,全练题型做到高考达标1.(2018·台州模拟)一个简单几何体的正视图、俯视图如图所示,则其侧视图不可能为( )A.正方形B.圆C.等腰三角形D.直角梯形解析:选D 该几何体是一个长方体时,其中一个侧面为正方形,A可能;该几何体是一个横放的圆柱时,B可能;该几何体是横放的三棱柱时,C可能,只有D不可能.2.如图所示是水平放置三角形的直观图,点D是△ABC的BC边中点,AB,BC分别与y′轴、x′轴平行,则三条线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选B 由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.3.(2018·沈阳教学质量监测)如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为( )A.三棱台B.三棱柱C.四棱柱D.四棱锥解析:选B 根据三视图的法则:长对正,高平齐,宽相等,可得几何体如图所示,这是一个三棱柱.4.(2018·温州第八高中质检)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是边长为2的正方形,该三棱柱的侧视图面积为( )A.4 B.2 3C.2 2 D. 3解析:选B 由题可得,该几何体的侧视图是一个长方形,其底边长是底面正三角形的高3,高为2,所以侧视图的面积为S=2 3.5.已知四棱锥PABCD的三视图如图所示,则四棱锥PABCD的四个侧面中面积最大的是( )A .3B .2 5C .6D .8解析:选C 四棱锥如图所示,取AD 的中点N ,BC 的中点M ,连接PM ,PN ,则PM =3,PN =5,S △PAD =12×4×5=25,S △PAB =S △PDC =12×2×3=3, S △PBC =12×4×3=6.所以四个侧面中面积最大的是6.6.(2018·台州模拟)如图所示,在正方体ABCD A1B 1C 1D 1中,点E 为棱BB 1的中点,若用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的侧视图为( )解析:选C 取DD 1的中点F ,连接AF ,FC 1,则过点A ,E ,C 1的平面即为面AEC 1F ,所以剩余几何体的侧视图为选项C.7.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④8.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12 cm ,BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:139.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________. 解析:如图,图①、图②所示的分别是实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32, C ′D ′=O ′C ′sin 45°=32×22=64. 所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:6410.已知正三棱锥V ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积. 解:(1)直观图如图所示.(2)根据三视图间的关系可得BC =23,∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=23,∴S △VBC =12×23×23=6.三上台阶,自主选做志在冲刺名校1.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A .8B .7C .6D .5解析:选C 画出直观图,共六块.2.(2018·湖南东部六校联考)某三棱锥的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是( )A .4 3B .8 3C .47D .8解析:选C 设该三棱锥为P ABC ,其中PA ⊥平面ABC ,PA =4,则由三视图可知△ABC 是边长为4的等边三角形,故PB =PC =42,所以S △ABC =12×4×23=43,S △PAB =S △PAC =12×4×4=8,S △PBC =12×4×22-22=47,故四个面中面积最大的为S △PBC =47,选C.3.如图,在四棱锥P ABCD 中,底面为正方形,PC 与底面ABCD 垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=6 2.由正视图可知AD=6,且AD⊥PD,所以在Rt△APD中,PA =PD2+AD2=22+62=6 3 cm.第二节空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式2.空间几何体的表面积与体积公式[小题体验]1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得:l =22+32=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(教材习题改编)某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知,该几何体是一个直三棱柱,其底面为侧视图,该侧视图是底边为2,高为3的三角形,正视图的长为三棱柱的高,故h =3,所以该几何体的体积V =S ·h =⎝ ⎛⎭⎪⎫12×2×3×3=3 3. 答案:3 33.若球O 的表面积为4π,则该球的体积为________.解析:由题可得,设该球的半径为r ,则其表面积为S =4πr 2=4π,解得r =1.所以其体积为V =43πr 3=43π.答案:43π1.求组合体的表面积时,组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.易混侧面积与表面积的概念. [小题纠偏]1.(教材习题改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱体积之比为________,球的表面积与圆柱的侧面积之比为________.答案:2∶3 1∶12.若某几何体的三视图如图所示,则此几何体的表面积是________.解析:由三视图可知,该几何体由一个正四棱柱和一个棱台组成,其表面积S =3×4×2+2×2×2+4×22×2+4×6+12×(2+6)×2×2=72+16 2.答案:72+16 2考点一 空间几何体的表面积基础送分型考点——自主练透[题组练透]1.某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选 B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.2.(2018·浙江新高考联盟高三期初联考)如图是某四棱锥的三视图,则该几何体的表面积等于( )A .34+6 5B .44+12 5C .34+6 3D .32+6 5解析:选A 由三视图知几何体底面是一个长为6,宽为2的矩形,高为4的四棱锥,所以该几何体的表面积为12×6×25+12×6×4+2×12×2×5+6×2=34+65,故选A.3.如图,网格纸上小正方形的边长为1,粗线是一个棱锥的三视图,则该棱锥的表面积为( )A .6+42+2 3B .8+4 2C .6+6 2D .6+22+4 3解析:选A 由三视图可知该棱锥为如图所示的四棱锥P ABCD ,S △PAB=S △PAD =S △PDC =12×2×2=2,S △PBC =12×22×22×sin 60°=23,S 四边形ABCD =22×2=42,故该棱锥的表面积为6+42+2 3.[谨记通法]几何体的表面积的求法(1)求表面积问题的思路是将立体几何问题转化为平面问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.注意衔接部分的处理.考点二 空间几何体的体积重点保分型考点——师生共研[典例引领]1.(2018·金华高三期末考试)某几何体的三视图如图所示,则该几何体的体积为( )A.223 B.233C.423D.433解析:选D 由三视图可知该几何体是一个以俯视图为底面的四棱锥,其直观图如图所示.底面ABCD 的面积为2×2=4,高PO =3,故该几何体的体积V =13×4×3=433.2.(2018·宁波十校联考)某几何体的三视图如图所示,则该几何体的体积等于________,表面积等于________.解析:如图,由三视图可知该几何体是底面半径为2,高为3的圆柱的一半,故该几何体的体积为12×π×22×3=6π,表面积为2×12×π×22+4×3+π×2×3=10π+12.答案:6π 12+10π[由题悟法]有关几何体体积的类型及解题策略[即时应用]1.(2018·西安质检)某几何体的三视图如图所示,该几何体的体积为( )A.43 B .52 C.73 D .3解析:选A 根据几何体的三视图,得该几何体是下部为直三棱柱,上部为三棱锥的组合体,如图所示.则该几何体的体积是V 几何体=V 三棱柱+V 三棱锥=12×2×1×1+13×12×2×1×1=43.2.(2018·杭州高级中学模拟)一个几何体的三视图如图所示,则该几何体的体积为( )A .1B .32 C.12D.34解析:选C 由题可得,该几何体是一个四棱锥,底面是上下底边分别为1和2,高为1的直角梯形,又四棱锥的高为1.所以该几何体的体积为V =13×12×(1+2)×1×1=12.3.(2018·温州高三一模)如图,一个简单几何体的三视图的正视图与侧视图都是边长为1的正三角形,其俯视图的轮廓为正方形,则该几何体的体积为________,表面积为________.解析:如图,还原三视图为正四棱锥,易得正四棱锥的高为32,底面积为1,体积V =13×1×32=36;易得正四棱锥侧面的高为⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫122=1,所以表面积S =4×12×1×1+1=3. 答案:363 考点三 与球有关的切、接问题题点多变型考点——多角探明 [锁定考向]与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点,命题角度多变. 常见的命题角度有: (1)球与柱体的切、接问题;(2)球与锥体的切、接问题.[题点全练]角度一:球与柱体的切、接问题1.已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B .210 C.132D .310解析:选C 如图,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝ ⎛⎭⎪⎫522+62=132.2.如图,已知球O 是棱长为1的正方体ABCD A 1B 1C 1D 1的内切球,则平面ACD1截球O 的截面面积为( )A.66π B.π3C.π6D.33π 解析:选C 平面ACD 1截球O 的截面为△ACD 1的内切圆.因为正方体的棱长为1,所以AC =CD 1=AD 1=2,所以内切圆的半径r =22×tan 30°=66, 所以S =πr 2=π×16=16π.角度二:球与锥体的切、接问题3.(2018·绍兴质检)四棱锥P ABCD 的底面ABCD 是边长为6的正方形,且PA =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( )A .6B .5C.92D.94解析:选D 过点P 作PH ⊥平面ABCD 于点H .由题知,四棱锥P ABCD 是正四棱锥,内切球的球心O 应在四棱锥的高PH 上.过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,M 为球面与侧面的一个切点.设PH =h ,易知Rt △PMO ∽Rt △PHF ,所以OM FH =PO PF ,即13=h -1h 2+32,解得h =94.4.(2017·全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S ABC =V A SBC =13×S △SBC ×AO=13×⎝ ⎛⎭⎪⎫12×SC ×OB ×AO , 即9=13×⎝ ⎛⎭⎪⎫12×2R ×R ×R ,解得 R =3,∴球O 的表面积为S =4πR 2=4π×32=36π. 答案:36π[通法在握]解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:[演练冲关]1.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20πB.205π3C .5πD.55π6解析:选D 由题意知六棱柱的底面正六边形的外接圆半径r =1,其高h =1,∴球半径为R =r 2+⎝ ⎛⎭⎪⎫h 22=1+14=52,∴该球的体积V =43πR 3=43×⎝ ⎛⎭⎪⎫523π=55π6. 2.(2018·镇海期中)一个棱长为6的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体体积的最大值为________.解析:由题可得,要使正方体可以在纸盒内任意转动,则只需该正方体在正四面体的内接球内即可.因为正四面体的棱长为6,所以其底面正三角形的高为33,正四面体的高为26,则该正四面体的内球的半径为62,设该正方体的边长为a ,要满足条件,则3a ≤6,即a ≤ 2.所以正方体的最大体积为V =a 3≤2 2.答案:2 2一抓基础,多练小题做到眼疾手快1.(2018·浙江名校联考)“某几何体的三视图完全相同”是“该几何体为球”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由题可得,球的三个视图都是圆,所以三视图完全相同;三视图完全相同的几何体除了球,还有正方体,所以是必要不充分条件.2.(2018·长兴中学适应性测试)一个几何体的三视图如图所示,则该几何体的体积为( )A .64B .72C .80D .112解析:选C 由题可得,该几何体是一个棱长为4的正方体与一个底面是边长为4的正方形,高为3的四棱锥的组合体,所以其体积为V =43+13×42×3=80.3.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π解析:选A 由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A.4.(2018·嘉兴模拟)如图是一个几何体的三视图,若它的体积是33,则a =________,该几何体的表面积为________.解析:由题可得,该几何体是一个水平放置的三棱柱,其底面是一个底边长为2、高为a 的等腰三角形,高为3.因为其体积为33,所以V =12×2a ×3=3a =33,解得a = 3.所以该几何体的表面积为S =2×12×2×3+2×3×3=23+18.答案: 3 23+185.(2018·丽水模拟)若三棱锥P ABC 的最长的棱PA =2,且各面均为直角三角形,则此三棱锥的外接球的体积是________,表面积是________.解析:如图,根据题意,可把该三棱锥补成长方体,则该三棱锥的外接球即该长方体的外接球,易得外接球的半径R =12PA =1,所以该三棱锥的外接球的体积V =43×π×13=43π,表面积S =4πR 2=4π.答案:43π 4π二保高考,全练题型做到高考达标1.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .3解析:选A 设圆台较小底面半径为r , 则另一底面半径为3r .由S =π(r +3r )·3=84π,解得r =7.2.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为( )A .6B .8C .12D .24解析:选C 由题意可知该六棱锥为正六棱锥,正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×34×22×h =23,∴h =1, ∴斜高h ′=12+32=2,∴S 侧=6×12×2×2=12.故选C.3.(2018·温州十校联考)已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是( )A .4 B.163 C .8D.323解析:选 B 由题可得,该几何体是一个底面为长方形的四棱锥,所以其体积为V =13×4×2×2=163.4.(2018·兰州实战考试)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为( )A.32π B.32C .3πD .3解析:选A 由题意得,该几何体为四棱锥,且该四棱锥的外接球即为棱长为1的正方体的外接球,其半径为32,故体积为43π⎝ ⎛⎭⎪⎫323=32π,故选A. 5.(2018·宁波十校联考)如图,某多面体的三视图中正视图、侧视图和俯视图的外轮廓分别为直角三角形、直角梯形和直角三角形,则该多面体的各条棱中,最长的棱的长度为( )A .2 2 B.10 C .2 3D.13解析:选C 由题可得,该几何体是水平放置的四棱锥,其底面是一个直角梯形.所以其最长的棱的长度为22+22+22=2 3.6.(2018·衢州调研)已知某几何体的三视图如图所示,则此几何体的体积是________;表面积是________.。
[重点保分两级优选练]A级一、选择题1.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β答案B解析如图所示,在正方体A1B1C1D1-ABCD中,对于A项,设l为AA1,平面B1BCC1,平面DCC1D1为α,β.A1A∥平面B1BCC1,A1A∥平面DCC1D1,而平面B1BCC1∩平面DCC1D1=C1C;对于C项,设l为A1A,平面ABCD为α,平面DCC1D1为β.A1A⊥平面ABCD;A1A ∥平面DCC1D1,而平面ABCD∩平面DCC1D1=DC;对于D项,设平面A1ABB1为α,平面ABCD为β,直线D1C1为l,平面A1ABB1⊥平面ABCD,D1C1∥平面A1ABB1,而D1C1∥平面ABCD.故A,C,D 三项都是错误的.而对于B项,根据垂直于同一直线的两平面平行,知B项正确.故选B.2.(·山西临汾二模)已知点A,B在半径为3的球O表面上运动,且AB=2,过AB作相互垂直的平面α,β,若平面α,β截球O所得的截面分别为圆M,N,则()A.MN长度的最小值是2B.MN的长度是定值2C.圆M面积的最小值是2πD.圆M、N的面积和是定值8π答案B解析如图所示,平面ABC为平面α,平面ABD为平面β,则BD⊥BC.BC2+BD2+4=12,∴CD=22,∵M,N分别是AC,AD的中点,∴MN的长度是定值 2.故选B.3.(·江西南昌摸底)如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部答案A解析因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平面ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.故选A.4.(·江西九江模拟)如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE答案C解析因为AB=CB,且E是AC的中点,所以BE⊥AC,同理,DE⊥AC,由于DE∩BE=E,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.故选C.5.(·甘肃二诊)已知长方体ABCD-A1B1C1D1中,AA1=3,AB =4,若在棱AB上存在点P,使得D1P⊥PC,则AD的取值范围是()A.(0,1] B.(0,2]C.(1,3] D.[1,4)答案B解析连接DP,由D1P⊥PC,DD1⊥PC,且D1P,DD1是平面DD1P内两条相交直线,得PC⊥平面DD1P,PC⊥DP,即点P在以CD为直径的圆上,又点P在AB上,则AB与圆有公共点,即0<AD≤12CD=2.故选B.6.(·河北模拟)在四棱锥P -ABCD 中,底面ABCD 是直角梯形,BA ⊥AD ,AD ∥BC ,AB =BC =2,P A =3,AD =4,P A ⊥底面ABCD ,E 是棱PD 上异于P ,D 的动点.设PEED =m ,则“0<m <2”是“三棱锥C -ABE 的体积不小于1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 如图,过E 点作EH ⊥AD ,H 为垂足,则EH ⊥平面ABCD .∵V C -ABE =V E -ABC ,∴三棱锥C -ABE 的体积为23EH .若三棱锥C -ABE 的体积不小于1,则EH ≥32,又P A =3,∴PEED =m ≤1,∴0<m ≤1.故选B.7.如图,三棱锥P -ABC 的所有棱长都相等,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是( )A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面ABCD.平面P AE⊥平面ABC答案C解析∵BC∥DF,∴BC∥平面PDF,A正确.∵BC⊥PE,BC⊥AE,∴BC⊥平面P AE.又∵DF∥BC,∴DF⊥平面P AE,B正确.∵BC⊥平面P AE,BC⊂平面ABC,∴平面P AE⊥平面ABC,D正确.故选C.8·湖北武汉月考)如图,在矩形ABCD中,AB=3,BC=1,将△ACD沿AC折起,使得D折起后的位置为D1,且D1在平面ABC 上的射影恰好落在AB上,在四面体D1-ABC的四个面中,有n对平面相互垂直,则n等于()A.2 B.3C.4 D.5答案B解析设D1在平面ABC上的射影为E,连接D1E,则D1E⊥平面ABC,∵D1E⊂平面ABD1,∴平面ABD1⊥平面ABC.∵D1E⊥平面ABC,BC⊂平面ABC,∴D1E⊥BC,又AB⊥BC,D1E∩AB=E,∴BC⊥平面ABD1,又BC⊂平面BCD1,∴平面BCD1⊥平面ABD1.∵BC⊥平面ABD1,AD1⊂平面ABD1,∴BC⊥AD1,又CD1⊥AD1,BC∩CD1=C,∴AD1⊥平面BCD1,又AD1⊂平面ACD1,∴平面ACD1⊥平面BCD1.∴共有3对平面互相垂直.故选B.9.(·静海县校级月考)如图所示,三棱锥P-ABC的底面在平面α内,且AC⊥PC,平面P AC⊥平面PBC,点P,A,B是定点,则动点C的轨迹是()A.一条线段B.一条直线C.一个圆D.一个圆,但要去掉两个点答案D解析∵平面P AC⊥平面PBC,而平面P AC∩平面PBC=PC,又AC⊂平面P AC,且AC⊥PC,∴AC⊥平面PBC,而BC⊂平面PBC,∴AC⊥BC,∴点C在以AB为直径的圆上,∴点C的轨迹是一个圆,但是要去掉A和B两点.故选D.10.(·吉林期末)已知E,F分别是正方体ABCD-A1B1C1D1中棱AB,AA1的中点,M,N分别是线段D1E与C1F上的点,则与平面ABCD垂直的直线MN有()A.0条B.1条C.2条D.无数条答案B解析 如图,设D 1E 与平面AA 1C 1C 相交于点M ,在平面AA 1C 1C 内过点M 作MN ∥AA 1交C 1F 于点N ,连接MN ,由C 1F 与D 1E 为异面直线知MN 唯一,且MN ⊥平面ABCD .故选B.二、填空题11.(·开封二模)三棱锥S -ABC 中,∠SBA =∠SCA =90°,△ABC 是斜边AB =a 的等腰直角三角形,则以下结论中:①异面直线SB 与AC 所成的角为90°; ②直线SB ⊥平面ABC ; ③平面SBC ⊥平面SAC ; ④点C 到平面SAB 的距离是12a . 其中正确的是________. 答案 ①②③④解析 由题意知AC ⊥平面SBC ,故AC ⊥SB ,故①正确;再根据SB ⊥AC ,SB ⊥AB ,可得SB ⊥平面ABC ,平面SBC ⊥平面SAC ,故②③正确;取AB 的中点E ,连接CE ,可证得CE ⊥平面SAB ,故CE 的长度即为点C 到平面SAB 的距离为12a ,④正确.12.(·苏州期末)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,则下列结论:①AD ∥平面PBC ; ②平面P AC ⊥平面PBD ; ③平面P AB ⊥平面P AC ; ④平面P AD ⊥平面PDC .其中正确的结论序号是________. 答案 ①②④解析 ①由底面为正方形,可得AD ∥BC , AD ⊄平面PBC ,BC ⊂平面PBC , 可得AD ∥平面PBC ;②在正方形ABCD 中,AC ⊥BD , P A ⊥底面ABCD ,可得P A ⊥BD , P A ∩AC =A ,可得BD ⊥平面P AC ,BD ⊂平面PBD ,即有平面P AC ⊥平面PBD ; ③假设面P AB ⊥面P AC , ∵面P AB ∩面P AC =P A , 又∵P A ⊥面ABCD , ∴P A ⊥AC .由面面垂直性质定理, AC ⊥面P AB , ∵AB ⊂面P AB ,∴AC⊥AB.而四边形ABCD为正方形,∴∠BAC=45°,矛盾.∴面P AB⊥面P AC不成立;④在正方形ABCD中,可得CD⊥AD,P A⊥底面ABCD,可得P A⊥CD,P A∩AD=A,可得CD⊥平面P AD,CD⊂平面PCD,即有平面P AD⊥平面PDC.综上可得,①②④正确.故答案为①②④.13.(·三元区月考)如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使CD⊥平面ABD,构成三棱锥A-BCD.则在三棱锥A-BCD中,平面BCD,平面ADC,平面ABC,平面ABD,互相垂直的有________.答案平面ABD⊥平面ACD、平面ABD⊥平面BCD、平面ABC ⊥平面ACD解析∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.由CD⊥平面ABD,CD⊂平面BCD,所以平面ABD⊥平面BCD,由CD⊥平面ABD,则CD⊥AB,又AD⊥AB.故AB⊥平面ADC,所以平面ABC⊥平面ADC,平面ABD⊥平面ADC.14.(·泰安模拟)如图,四边形ABCD中,AB=AD=CD=1,BD =2,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则∠BA′C=________,V A′-BCD=________.答案90°1 6解析由题设知:△BA′D为等腰直角三角形,CD⊥平面A′BD,得BA′⊥平面A′CD,∴∠BA′C=90°,V A′-BCD=V C-A′BD=16.B级三、解答题15.(·临汾期末)在三棱柱ABC-A1B1C1,侧面ABB1A1为矩形,AB=2,AA1=22,D是AA1中点,BD与AB1交于点O,且OC⊥平面ABB1A1.证明:平面AB1C⊥平面BCD.证明∵ABB1A1为矩形,AB=2,AA1=22,D是AA1的中点,∴∠BAD=90°,∠ABB1=90°,BB1=22,AD=12AA1=2,∴tan∠ABD=ADAB=22,tan∠AB1B=ABBB1=22,∴∠ABD=∠AB1B,∴∠AB1B+∠BAB1=∠ABD+∠BAB1=π2,∴∠AOB=π2,即AB1⊥BD.∵CO⊥平面ABB1A1,AB1⊂平面ABB1A1,∴AB1⊥CO,又BD∩CO=O,∴AB1⊥平面BCD.∵AB1⊂平面AB1C,∴平面AB1C⊥平面BCD.16.(·黄冈调研)在三棱锥P-ABC中,△P AB是等边三角形,P A ⊥AC,PB⊥BC.(1)证明:AB⊥PC;(2)若PC=2,且平面P AC⊥平面PBC,求三棱锥P-ABC的体积.解(1)证明:在Rt△P AC和Rt△PBC中AC=PC2-P A2,BC=PC2-PB2.∵P A =PB ,∴AC =BC .取AB 中点M ,连接PM ,CM ,则AB ⊥PM ,AB ⊥MC , ∴AB ⊥平面PMC ,而PC ⊂平面PMC , ∴AB ⊥PC .(2)在平面P AC 内作AD ⊥PC ,垂足为D ,连接BD .∵平面P AC ⊥平面PBC ,∴AD ⊥平面PBC ,又BD ⊂平面PBC , ∴AD ⊥BD ,又Rt △P AC ≌Rt △PBC , ∴AD =BD ,∴△ABD 为等腰直角三角形. 设AB =P A =PB =a ,则AD =22a ,在Rt △P AC 中,由P A ·AC =PC ·AD 得a ·4-a 2=2×22a ,∴a = 2.∴S △ABD =12AD ·BD =12·⎝ ⎛⎭⎪⎫22a 2=12,∴V P -ABC =13S △ABD ·PC =13×12×2=13.17.(·绵阳期末)如图,在正三棱柱ABC -A 1B 1C 1中,点D 是AB 的中点,M 是AA 1上一点,AM =tAA 1.(1)求证:BC 1∥平面A 1CD ;(2)若3AB =2AA 1,当t 为何值时,B 1M ⊥平面A 1CD?解 (1)证明:连接AC 1,交A 1C 于点O ,那么点O 是AC 1的中点,连接OD ,由点D 是AB 的中点,可得BC 1∥OD ,BC 1⊄平面A 1CD ,OD ⊂平面A 1CD ,可得BC 1∥平面A 1CD .(2)由3AB =2AA 1,D 为AB 中点可得AD AA 1=13,∴当A 1M A 1B 1=13时,可得Rt △A 1AD ∽Rt △B 1A 1M , ∴∠DA 1A =∠MB 1A 1,∴∠A 1MB 1+∠DA 1A =∠A 1MB 1+∠MB 1A 1=90°, ∴B 1M ⊥A 1D .∵D 是AB 的中点,∴CD ⊥AB , 又∵CD ⊥AA 1,AB ∩AA 1=A , ∴CD ⊥平面AA 1B 1B .∵B 1M ⊂平面AA 1B 1B ,∴CD ⊥B 1M .∵CD∩A1D=D,∴B1M⊥平面A1CD,此时A1MA1B1=13,3AB=2AA1,所以A1M=29AA1,故AM=79AA1,即当t=79时,B1M⊥平面A1CD.18.(·昌平区调研)已知正四棱柱ABCD-A1B1C1D1中,M是DD1的中点.(1)求证:BD1∥平面AMC;(2)求证:AC⊥BD1;(3)在线段BB1上是否存在点P,当BPBB1=λ时,平面A1PC1∥平面AMC?若存在,求出λ的值并证明;若不存在,请说明理由.解(1)证明:在正四棱柱ABCD-A1B1C1D1中,连接BD交AC 于N,连接MN.因为ABCD为正方形,所以N为BD中点,在△DBD1中,因为M为DD1中点,所以BD1∥MN.因为MN⊂平面AMC,BD1⊄平面AMC,所以BD1∥平面AMC.(2)证明:因为ABCD为正方形,所以AC⊥BD.因为DD1⊥平面ABCD,所以DD1⊥AC.因为DD1∩BD=D,所以AC⊥平面BDD1.因为BD1⊂平面BDD1,所以AC⊥BD1.(3)当λ=12,即点P为线段BB1的中点时,平面A1PC1∥平面AMC.因为AA1∥CC1,且AA1=CC1,所以四边形AA1C1C是平行四边形,所以AC∥A1C1.取CC1的中点Q,连接MQ, QB.因为M为DD1中点,所以MQ∥AB,且MQ=AB,所以四边形ABQM是平行四边形.所以BQ∥AM.同理BQ∥C1P.所以AM∥C1P.因为A1C1∩C1P=C1,AC∩AM=A,所以平面A1PC1∥平面AMC.。
学习资料2022版高考数学一轮复习第七章立体几何第七讲立体几何中的向量方法学案(理,含解析)新人教版班级:科目:第七讲立体几何中的向量方法(理)知识梳理·双基自测错误!错误!错误!错误!知识点一两个重要的向量(1)直线的方向向量直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有__无数__个.(2)平面的法向量直线l⊥平面α,取直线l的方向向量,则这个向量叫做平面α的法向量.显然一个平面的法向量有__无数__个,它们是共线向量.知识点二空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇒n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔m·n=0 l⊥αn∥m⇔n=λm平面α、β的法向量分别为n、m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0知识点三两条异面直线所成角的求法设两条异面直线a,b的方向向量分别为a,b,其夹角为θ,则cosφ=|cosθ|=__错误!__(其中φ为异面直线a,b所成的角).知识点四直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,向量e与n的夹角为θ,则有sinφ=|cosθ|=__错误!__.知识点五求二面角的大小(1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=__〈错误!,错误!〉__.(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cosθ|=__错误!__,二面角的平面角大小是向量n1与n2的夹角(或其补角).知识点六利用空间向量求距离(1)点到平面的距离如图所示,已知AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离为d=错误!.(2)线面距、面面距均可转化为点面距进行求解.注意体积法在求点到平面距离时的应用.错误!错误!错误!错误!1.直线的方向向量的确定:l是空间一直线,A,B是l上任意两点,则错误!及与错误!平行的非零向量均为直线l的方向向量.2.平面的法向量的确定:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为错误!3.若二面角A-BC-D的大小为α,平面ABC内的直线l与平面BCD所成角为β,则α≥β,当l⊥BC时,取等号.错误!错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√"或“×")(1)两直线的方向向量所成的角就是两条直线所成的角.(×)(2)平面的单位法向量是唯一确定的.(×)(3)若两平面的法向量平行,则两平面平行.(√)(4)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(×)(5)两个平面的法向量所成的角是这两个平面所成的角.(×)(6)若空间向最a平行于平面α,则a所在直线与平面a平行.(×)题组二 走进教材2.(必修2P 111T3)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是__垂直__.[解析] 以A 为原点,分别以AB ,→,错误!,错误!所在直线为x ,y ,z 轴建立空间直角坐标系,如图所示.设正方体的棱长为1,则A (0,0,0),M 错误!, O 错误!,N 错误!,错误!·错误!=错误!·错误!=0, ∴ON 与AM 垂直.3.(必修2P 117A 组T4)如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为错误!,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是__错误!__.[解析] 分别取AC 、A 1C 1的中点D 、D 1,连接BD ,D 1D ,易知D 1D ⊥平面ABC ,且BD ⊥AC ,故以D 为坐标原点,AC 、DB 、DD 1所成的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.易知B 错误!,C 1错误!, ∴C 1B →=错误!,设BC 1与侧面ACC 1A 1所成的角为θ,∵平面ACC 1A 1的一个法向量为n =(0,1,0), ∴sin θ=错误!=错误!=错误!,∴θ=错误!. 题组三 走向高考4.(2020·新高考Ⅰ)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( B )A .20°B .40°C .50°D .90°[解析] 由题意作出如图所示的截面图,设所求角为α,由图易知α=40°,故选B .5.(2019·浙江)如图,已知三棱柱ABC-A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.[解析]解法一:(1)证明:连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC,又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.所以BC⊥平面A1EF.因此EF⊥BC.(2)取BC的中点G,连接EG,GF,则四边形EGF A1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGF A1为矩形.由(1)得BC⊥平面EGF A1,则平面A1BC⊥平面EGF A1,所以EF在平面A1BC上的射影在直线A1G上.连接A1G交EF于O,则∠EOG是直线EF与平面A1BC所成的角,不妨设AC =4,则在Rt △A 1EG 中,A 1E =2错误!,EG =错误!. 由于O 为A 1G 的中点,故EO =OG =错误!=错误!, 所以cos ∠EOG =错误!=错误!.因此,直线EF 与平面A 1BC 所成角的余弦值是错误!. 解法二:(1)证明:连接A 1E ,因为A 1A =A 1C , E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz .不妨设AC =4.则A 1(0,0,2错误!),B (错误!,1,0),B 1(错误!,3,2错误!),F 错误!,C (0,2,0).因此,错误!=错误!,错误!=(-错误!,1,0). 由错误!·错误!=0得EF ⊥ BC . (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC →=(-错误!,1,0),错误!=(0,2,-2错误!). 设平面A 1BC 的法向量为n =(x ,y ,z ). 由错误!得错误! 取n =(1,错误!,1),故sin θ=|cos 〈错误!,n 〉|=错误!=错误!.因此,直线EF与平面A1BC所成的角的余弦值为错误!.考点突破·互动探究考点一利用向量证明空间的平行与垂直——自主练透例1(2020·山东青岛胶州实验学校期中)如图,在四棱锥P-ABCD中,底面ABCD为梯形,AB∥CD,AB⊥BC,AB=2,P A=PD=CD=BC=1,平面P AD⊥平面ABCD,E 为AD的中点.(1)求证:P A⊥BD;(2)在线段AB上是否存在一点G,使得直线BC∥平面PEG?若存在,请证明你的结论;若不存在,请说明理由.[解析]取BA的中点H,连EH,在梯形ABCD中,由题意易知EH⊥AD,∵P A=PD,E为AD的中点,∴PE⊥AD,又平面P AD⊥平面ABCD,∴PE⊥平面ABCD,∴PE⊥EH,PE⊥AD,∴AE、EH、EP两两垂直,如图建立空间直角坐标系,则P错误!,A错误!,B错误!,D错误!,E(0,0,0),C错误!.(1)错误!=(错误!,0,-错误!),错误!=(0,-错误!,0),∴错误!·错误!=错误!×0+0×(-错误!)+错误!×0=0,∴错误!⊥错误!,即P A⊥BD.(2)设线段AB上存在点G满足条件,则错误!=λ错误!=(-错误!λ,错误!λ,0)(0≤λ≤1),错误!=错误!-错误!=(-错误!λ,错误!λ,0)-错误!=错误!.且错误!=m错误!+n错误!,即错误!=错误!,∴错误!解得λ=错误!.∴存在点G,当AG=错误!AB时,BC∥平面PEG.注:本题也可用几何法求解,或求平面PEG的法向量n,利用n·错误!=0⇔n⊥错误!⇔BC ∥平面PEG判断解答.名师点拨](1)建立空间直角坐标时尽可能地利用图形中的垂直关系,要准确写出相关点的坐标,进而确定向量的坐标.(2)用向量法证平行问题的类型及常用方法线线平行证明两直线的方向向量共线线面平行①证明该直线的方向向量与平面的某一法向量垂直②证明该直线的方向向量与平面内某直线的方向向量平行③证明该直线的方向向量可以用平面内的两个不共线的向量表示面面平行①证明两平面的法向量平行(即为共线向量)②转化为线面平行、线线平行问题(3)利用向量法证垂直问题的类型及常用方法线线垂直问题证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直问题直线的方向向量与平面的法向量共线,或利用线面垂直的判定定理转化为证明线线垂直面面垂直问题两个平面的法向量垂直,或利用面面垂直的判定定理转化为证明线面垂直〔变式训练1〕如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.(1)求证:平面A1B1D⊥平面ABD;(2)求证:平面EGF∥平面ABD.[证明]以B为坐标原点,BA,BC,BB1所在直线分别为x轴,y轴,z轴建立如图所示空间直角坐标系,则B(0,0,0),D(0,2,2),B1(0,0,4),E(0,0,3),F(0,1,4).设BA=a,则A(a,0,0),G错误!,A1(a,0,4).(1)因为错误!=(a,0,0),错误!=(0,2,2),错误!=(0,2,-2),所以错误!·错误!=0,错误!·错误!=0.所以错误!⊥错误!,错误!⊥错误!,即B1D⊥BA,B1D⊥BD.又BA∩BD=B,所以B1D⊥平面ABD.因为B1D⊂平面A1B1D,所以平面A1B1D⊥平面ABD.(2)证法一:因为错误!=错误!,错误!=(0,1,1),错误!=(0,2,-2),所以错误!·错误!=0,错误!·错误!=0.所以B1D⊥EG,B1D⊥EF.因为EG∩EF=E,所以B1D⊥平面EGF.又由(1)知B1D⊥平面ABD,所以平面EGF∥平面ABD.证法二:∵错误!=错误!,∴错误!=-错误!错误!,又GF⊄平面ABD,AB⊂平面ABD,∴GF∥平面ABD,同理EF∥平面ABD,又GF∩EF=F,GF⊂平面EGF,EF⊂平面EGF,∴平面EGF∥平面ABD.考点二利用向量求空间的角-—多维探究角度1向量法求异面直线所成的角例2(2020·豫南豫北精英对抗赛)在四面体ABCD中,CA=CB=CD=BD=2,AB=AD=错误!,则异面直线AB与CD所成角的余弦值为(B)A.错误!B.错误!C.错误!D.-错误![解析]取BD的中点O,连AO,OC,由CA=CB=CD=BD=2,AB=AD=错误!,得AO ⊥BD,CO⊥BD,且OC=错误!,AO=1.在△AOC中,AC2=AO2+OC2,故AO⊥OC,又知BD∩OC=O,因此AO⊥平面BCD,以OB,OC,OA所在直线分别为x轴,y轴,z轴建立空间直角坐标系,如图所示,则A(0,0,1),B(1,0,0),C(0,错误!,0),D(-1,0,0),∴错误!=(1,0,-1),错误!=(-1,-错误!,0),设异面直线AB与CD所成角为θ,则cos θ=错误!=错误!=错误!,即异面直线AB与CD所成角的余弦值为错误!,故选B.名师点拨](1)求异面直线所成角的思路:①选好基底或建立空间直角坐标系;②求出两直线的方向向量v1,v2;③代入公式|cos〈v1,v2〉|=错误!求解.(2)两异面直线所成角的关注点:两异面直线所成角的范围是θ∈错误!,两向量的夹角的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.角度2向量法求线面角例3(2021·浙江联考)如图,底面ABCD为菱形,AP⊥平面ABCD,AP∥DE,∠BAD=错误!π,P A=AD=2DE.(1)求证:BD∥平面PEC;(2)求直线DP与平面PEC所成角的正弦值.[解析]解法一:连AC交BD于O,∵四边形ABCD为菱形,∴AC⊥BD,又∠BAD=错误!,∴△ABC为正三角形,以点O为坐标原点,建立如图所示的空间直角坐标系.设P A=AD=2DE=2,则易得点C(0,1,0),D(-错误!,0,0),P(0,-1,2),E(-错误!,0,1),∴错误!=(错误!,-1,2),错误!=(0,-2,2),错误!=(-错误!,-1,1).设平面PEC的法向量为n=(x,y,z),则错误!即错误!令y=1,∴n=(0,1,1).(1)∵错误!=(2错误!,0,0),∴错误!·n=0,即错误!⊥n,又BD⊄平面PCE,∴BD∥平面PCE.(2)设直线DP与平面PEC所成角为θ,∴sin θ=|cos〈错误!,n〉|=错误!=错误!.即直线DP与平面PEC所成角的正弦值为错误!.解法二:(1)连接AC交BD于点O,取PC的中点G,连接EG,GO,则G,O分别为PC,AC的中点,故GO∥P A,且GO=错误!P A.∵AP∥DE,P A=2DE,∴GO∥DE,GO=DE,∴四边形EDOG为平行四边形,∴EG∥DO,即EG∥BD.又∵EG⊂平面PEC,BD⊄平面PEC,∴BD∥平面PEC.(2)连接DP.∵AP⊥平面ABCD,∴AP⊥AD,AP⊥AC,∴△P AD,△P AC为直角三角形,且P A⊥平面ABCD,∵AP∥DE,∴DE⊥平面ABCD,∴DE⊥CD,∴△EDC为直角三角形.又P A=AD=2DE,不妨设P A=AD=2DE=2,∴DP=2错误!,在直角梯形P ADE中,PE=错误!.∵底面ABCD为菱形,DC=DA=2,∴EC=错误!,S△EDC=1.∵∠DAB=错误!π,∴AC=2.在Rt△P AC中,PC=22,∴S△PEC=错误!,∵AP∥DE,∴AP∥平面DCE,∵V P-EDC=V A-EDC,又V D-PEC=V P-EDC,∴V D-PEC=V A-EDC,过点A作AH⊥DC于点H,易得AH⊥平面EDC,AH=3.设点D到平面PEC的距离为h,故错误!×错误!·h=错误!×错误!×1,∴h=错误!.设DP与平面PEC所成角为θ,∴sin θ=hDP=错误!=错误!.名师点拨1.线面角涉及斜线的射影,故找出平面的垂线是解题的基本思路,而这往往正是解题难点所在,故常用向量法求解斜线与平面所成角的问题,关键是确定斜线的一个方向向量a和平面的一个法向量b,再通过计算线面角的向量公式sin θ=|cos〈a,b〉|=错误!(θ是斜线与平面所成的角)求解,要特别注意a和b的夹角与线面角的关系.2.利用空间向量解答立体几何问题的步骤(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为0列出方程组,求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角.注:用体积法求出点P到平面α的距离h,只需再求出|P A|,则可得直线P A与平面α所成角的余弦值cos θ=错误!.通过本例两种解法可看出向量法在解决立体几何有关问题中的优越性.角度3向量法求二面角例4(2021·安徽合肥调研)在三棱锥P-ABC中,BC⊥平面P AB,平面P AC⊥平面ABC.(1)证明:P A⊥平面ABC;(2)若D为PC的中点,且P A=2错误!AB,AB=BC,求二面角A-BD-C的余弦值.[解析](1)证明:过点B作BO⊥AC于O.∵平面P AC⊥平面ABC,平面P AC∩平面ABC=AC,BO⊂平面ABC,∴BO⊥平面P AC,∴BO⊥P A.又∵BC⊥平面P AB,P A⊂平面P AB,∴BC⊥P A.又∵BC∩BO=B,BC,BO⊂平面ABC,∴P A⊥平面ABC.(2)∵AB=BC,BO⊥AC,∴O为BC中点.又∵D为PC的中点,∴DO∥P A.由(1)知,P A⊥平面ABC,∴DO⊥平面ABC,∴DO⊥BO,DO⊥AO,∴以O为原点,以错误!,错误!,错误!所在方向为x,y,z轴正方向,建立空间直角坐标系,如图.设AB =BC =错误!,则AC =2,P A =4,则O (0,0,0),A (1,0,0),C (-1,0,0),B (0,1,0),P (1,0,4),D (0,0,2). 设平面ABD 的法向量为n 1=(x 1,y 1,z 1),∴n 1⊥错误!,n 1⊥错误!,n 1·错误!=0,n 1·错误!=0, 错误!=(-1,1,0),错误!=(-1,0,2), ∴错误!.设z 1=1得x 1=2,y 1=2,∴n 1=(2,2,1), 设平面BCD 的法向量为n 2=(x 2,y 2,z 2),∴n 2⊥错误!,n 2⊥错误!,n 2·错误!=0,n 2·错误!=0, 错误!=(1,1,0),错误!=(0,1,-2), ∴错误!.令z 2=1得x 2=-2,y 2=2,∴n 2=(-2,2,1), ∴cos<n 1,n 2〉=错误!=错误!. ∵二面角A -BD -C 的平面角θ是钝角, ∴cos θ=-19.即二面角A -BD -C 的余弦值为-错误!.注:(1)注意到AB 、BC 、P A 两两垂直,故也可以BC 为x 轴、BA 为y 轴建立坐标系求解;(2)注意到△BCD ≌△BAD ,故作CH ⊥BD 于H ,连AH ,则AH ⊥BD ,∴∠AHC 即为二面角A -BD -C 的平面角,令AB =BC =错误!,易求得CH =AH =错误!,∴cos ∠AHC =错误!=-错误!.名师点拨利用向量法确定二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.(3)将二面角转化为线面角求解.如图要求二面角P-AB-C,可作PH⊥AB,则二面角P-AB-C的大小即为PH与平面ABC所成角的大小θ,PH易求,可用体积法求P到平面ABC的距离h,则sin θ=h|PH|.〔变式训练2〕(1)(角度1)(2018·江苏高考题改编)在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点,则异面直线BP与AC1所成角的余弦值为__错误!__.(2)(角度2)(2021·广东广州广雅中学等三校联考)如图,在梯形ABCD中,AB∥CD,AD=CD=CB=2,∠ABC=60°,矩形ACFE中,AE=2,又BF=2错误!.①求证:BC⊥平面ACFE;②求直线BD与平面BEF所成角的正弦值.(3)(角度3)(2019·课标Ⅰ)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.①证明:MN∥平面C1DE;②求二面角A-MA1-N的正弦值.[解析](1)如图,在正三棱柱ABC-A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以{错误!,错误!,错误!}为基底,建立空间直角坐标系O-xyz.因为AB=AA1=2,所以A(0,-1,0),B(错误!,0,0),C1(0,1,2).因为P为A1B1的中点,所以P错误!.从而错误!=错误!,错误!=(0,2,2).故|cos〈错误!,错误!>|=错误!=错误!=错误!.因此,异面直线BP与AC1所成角的余弦值为错误!.(2)证明:①在梯形ABCD中,AB∥CD,AD=CD=CB=2,∠ABC=60°,∴四边形ABCD是等腰梯形,∠ADC=120°,∴∠DCA=∠DAC=30°,∠DCB=120°,∴∠ACB=∠DCB-∠DCA=90°,∴AC⊥BC(也可以利用余弦定理求出AC,BC再证明) 又∵矩形ACFE中,CF=AE=2,又BF=2错误!,CB=2,∴CF2+BC2=BF2,∴CB⊥CF,又∵AC∩CF=F,∴BC⊥平面ACFE.②以点C为坐标原点,以CA所在直线为x轴,以CB所在直线为y轴,以CF所在直线为z轴,建立空间直角坐标系.可得C(0,0,0),B(0,2,0),F(0,0,2),D(错误!,-1,0),E(2错误!,0,2).∴错误!=(-2错误!,0,0),错误!=(0,-2,2),错误!=(错误!,-3,0),设平面BEF的法向量为n=(x,y,z),∴错误!,令y=1,则x=0,z=1,∴n=(0,1,1),∴|cos〈错误!,n〉|=错误!=错误!,∴直线BD与平面BEF所成角的正弦值是错误!.(3)①证法一:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=错误!B1C.又因为N为A1D的中点,所以ND=错误!A1D.由题设知A1B1綊DC,可得B1C綊A1D,故ME綊ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.证法二:∵四边形ABCD为菱形,∠BAD=60°,连BD.则△BCD为正三角形,又E为BC的中点,∴DE⊥BC,又DD1⊥平面ABCD,∴DA、DE、DD1两两垂直,如图建立空间直角坐标系,则错误!=(0,-错误!,0),错误!=(0,-错误!,0),∴错误!=错误!,∴MN∥ED,又MN ⊄平面ABCD ,ED ⊂平面ABCD , ∴MN ∥平面ABCD .②解法一:由已知可得DE ⊥DA .以D 为坐标原点,DA ,→的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),A 1(2,0,4),M (1,错误!,2),N (1,0,2), 错误!=(0,0,-4),错误!=(-1,错误!,-2), 错误!=(-1,0,-2),错误!=(0,-错误!,0). 设m =(x ,y ,z )为平面A 1MA 的法向量, 则错误!所以错误!可取m =(错误!,1,0). 设n =(p ,q ,r )为平面A 1MN 的法向量, 则错误!所以错误!可取n =(2,0,-1).于是cos 〈m ,n 〉=错误!=错误!=错误!, 所以二面角A -MA 1-N 的正弦值为错误!. 解法二:由题意易知,A 1M =2错误!=AM , 又AA 1=4,∴A 1M 2+AM 2=AA 错误!,∴AM ⊥A 1M ,∴二面角A -MA 1-N 的大小即为AM 与平面A 1MN 所成角的大小θ, 又A 1M =2错误!,MN =错误!,A 1N =错误!, ∴A 1N +MN 2=A 1M ,∴A 1N ⊥MN ,取AB 的中点H ,则DH ⊥AB ,且DH =错误!, ∵平面ABB 1A 1⊥平面ABCD , ∴DH ⊥平面ABB 1A 1,∴A1D的中点N到平面ABB1A1的距离为错误!,记A到平面A1MN的距离为h,∵VN-A1AM=VA-A1MN,则错误!=错误!h,∴h=错误!,∴sin θ=错误!=错误!,即二面角A-MA1-N的正弦值为错误!.考点三,利用向量求空间的距离—-师生共研例5(2021·广东广州模拟)如图,在四棱锥P-ABCD中,底面ABCD的边长为2的菱形,∠BAD=60°,∠APD=90°,且P A=PD,AD=PB.(1)求证:AD⊥PB;(2)求点A到平面PBC的距离.[解析](1)证明:取AD的中点O,连接OP,OB,BD,因为底面ABCD为菱形,∠BAD=60°,所以AD=AB=BD.因为O为AD的中点,所以BO⊥AD.在△P AD中,P A=PD,O为AD的中点,所以PO⊥AD.因为BO∩PO=O,所以AD⊥平面POB.因为PB⊂平面POB,所以AD⊥PB.(2)由题意及(1)易知OP=1,BO=错误!,PB=2,∴OP2+BO2=PB2,∴OP⊥OB,∴OP、OA、OB两两垂直,如图建立空间直角坐标系,则A(1,0,0),B(0,错误!,0),C(-2,错误!,0),P(0,0,1),∴错误!=(-1,0,1),错误!=(0,错误!,-1),错误!=(-2,错误!,-1),设平面PBC 的法向量为n =(x ,y ,z ),则错误!,∴错误!,不妨取y =1,则n =(0,1,错误!),∴点A 到平面PBC 的距离d =错误!=错误!.另解(2)(体积法):∵P A =PD ,∠APD =90°,∴PO =12AD =1, 又AD ⊥PB ,BC ∥AD ,∴BC ⊥PB ,记A 到平面PBC 的距离为h ,则由V A -PBC =V P -ABC 得错误!h =错误!×错误!×2×2sin 120°,∴h =错误!,即A 到平面PBC 的距离为错误!.〔变式训练3〕(2021·安徽合肥质检)如图,边长为2的等边△ABC 所在平面与菱形A 1ACC 1所在平面互相垂直,A 1C =3AC 1,M 为线段AC 的中点.(1)求证:平面BMC 1⊥平面A 1BC 1;(2)求点C 到平面A 1BC 1的距离.[解析] (1)因为四边形A 1ACC 1为菱形,所以A 1C ⊥AC 1.又因为A 1C =错误!AC 1,所以∠ACC 1=60°,即△ACC 1为等边三角形.因为AC 1=CC 1,M 为线段AC 的中点,所以AC ⊥C 1M .因为AB =BC ,M 为线段AC 的中点,所以AC ⊥BM .又因为C 1M ∩BM =M ,所以AC ⊥平面BMC 1.又因为AC∥A1C1,所以A1C1⊥平面BMC1.又A1C1⊂平面A1BC1,所以平面BMC1⊥平面A1BC1.(2)因为平面A1ACC1⊥平面ABC,交线是AC,且C1M⊥AC,所以C1M⊥平面ABC.以M为原点,MB,MC,MC1分别为x,y,z轴建立空间直角坐标系,如图所示:C(0,1,0),B(错误!,0,0),C1(0,0,错误!),A1(0,-2,错误!),则错误!=(0,2,0),错误!=(-错误!,0,错误!),错误!=(0,-1,错误!),设平面A1BC1的法向量为n=(x,y,z),则错误!,令x=1,则n=(1,0,1),∴点C到平面A1BC1的距离d=错误!=错误!=错误!.名师讲坛·素养提升利用向量法解答立体几何中的探究型问题例6(2021·山东潍坊安丘市、诸城市、高密市联考)在四棱锥P-ABCD中,平面P AD⊥平面ABCD,底面ABCD为直角梯形,BC∥AD,∠ADC=90°,BC=CD=错误!AD=1,E为线段AD的中点,过BE的平面与线段PD,PC分别交于点G,F.(1)求证:GF⊥P A;(2)若P A=PD=错误!,是否存在点G,使得直线PB与平面BEGF所成角的正弦值为错误!,若存在,请确定G点的位置;若不存在,请说明理由.[解析](1)因为BC=错误!AD,且E为线段AD的中点,所以BC=DE,又因为BC∥AD,所以四边形BCDE为平行四边形,所以BE∥CD,又因为CD⊂平面PCD,BE⊄平面PCD,所以BE∥平面PCD,又平面BEGF∩平面PCD=GF,所以BE∥GF,又BE⊥AD,且平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,所以BE⊥平面P AD,所以GF⊥平面P AD,又P A⊂平面P AD,所以GF⊥P A.(2)因为P A=PD,E为线段AD的中点,所以PE⊥AD,又因为平面P AD⊥平面ABCD,所以PE⊥平面ABCD,以E为坐标原点,错误!的方向为x轴正方向,建立如图所示的空间直角坐标系E-xyz;则P(0,0,1),B(0,1,0),E(0,0,0),D(-1,0,0),则错误!=(0,1,-1),错误!=(0,-1,0),错误!=(1,0,1),设错误!=λ错误!(0≤λ≤1),得G(λ-1,0,λ),所以错误!=(λ-1,0,λ),设平面BEGF的法向量为n=(x,y,z),则错误!即错误!不妨令x=λ,可得n=(λ,0,1-λ)为平面BEGF的一个法向量,设直线PB与平面BEGF所成角为α,于是有sin α=|cos〈n,错误!>|=错误!=错误!=错误!;得λ=错误!或λ=-1(舍),所以存在点G错误!,使得直线PB与平面BEGF所成角的正弦值为错误!.故G为DP的靠近D点的三等分点.名师点拨对于“是否存在"型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.〔变式训练4〕(2021·福建龙岩质检)在四棱锥P-ABCD中,底面ABCD为直角梯形,∠ADC=∠BCD=90°,BC=1,PD=AD=2DC=2,∠PDA=60°,且平面P AD⊥平面ABCD.(1)求证:BD⊥PC;(2)在线段P A上是否存在一点M,使二面角M-BC-D的大小为30°?若存在,求出错误!的值;若不存在,请说明理由.[解析](1)过点P在平面P AD内作PO⊥AD,垂足为O,连接BO、OC,∵平面P AD⊥平面ABCD,∴PO⊥平面ABCD,∴PO⊥BD,∵∠PDA=60°,PD=DA=2,∴△PDA是等边三角形,∴OD=1=BC,∵OD∥BC,∠BCD=90°,∴四边形OBCD是正方形,∴BD⊥OC,∵OC∩PO=O,∴BD⊥平面POC,∵PC⊂平面POC,∴BD⊥PC.(2)∵PO⊥平面ABCD,OB⊥AD,如图,建立空间直角坐标系O-xyz,则B(0,1,0),C(-1,1,0),D(-1,0,0),P(0,0,错误!),A(1,0,0),假设在线段P A上存在一点M,使二面角M-BC-D大小为30°,设错误!=λ错误!(0≤λ≤1),错误!=(0,-1,错误!)则错误!=错误!+错误!=(λ,-1,错误!-错误!λ),错误!=(-1,0,0), 设平面MBC的法向量为m=(x,y,z),则错误!,取m=(0,3-3λ,1),又平面ABCD的一个法向量n=(0,0,1),∵二面角M-BC-D大小为30°,∴cos 30°=错误!=错误!=错误!,解得λ=错误!或λ=错误!(舍),∴在线段P A上存在点M,满足题设条件,且错误!=错误!.。
第七章立体几何第一讲空间几何体的结构及其三视图和直观图A组基础巩固一、选择题1.下列结论中正确的是(D)A.各个面都是三角形的几何体是三棱锥B.两个面平行且相似,其余各面都是梯形的几何体是棱台C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任一点的连线都是母线[解析]当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A错误;如右图可知,B错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必须要大于底面边长,故C错误.选D。
2.(2021·安徽毛坦厂中学月考)已知一个几何体的三视图如图所示,则这个几何体的直观图是(C)[解析]对A、B选项俯视图不符;对D选项正视图不符,故选C。
3.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图为(D)[解析]由正视图与俯视图知,几何体是一个三棱锥与被轴截面截开的半个圆锥的组合体,故侧视图为D.4.(2019·烟台一模)若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为(D)A.1B.2C.3D.4[解析]观察三视图,可得直观图如图所示.该三棱锥A-BCD的底面BCD是直角三角形,AB⊥平面BCD,CD⊥BC,所以侧面ABC,侧面ABD是直角三角形;由CD⊥BC,CD⊥AB,BC∩AB=B。
知CD⊥平面ABC,CD⊥AC,所以侧面ACD也是直角三角形,故选D.5.(2016·天津)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为(B)[解析]由正视图、俯视图得原几何体的形状如图所示,则该几何体的侧视图为B.6.(2020·北京海淀一模)某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为(C)A.错误!B.2错误!C.2错误!D.错误![解析]由三视图知,四棱锥底面是直角梯形,EA⊥底面ABCD,EA=AB=BC=2,最长棱是EC,在Rt△ABC中,AC2=AB2+BC2,在Rt△EAC中,EC2=EA2+AC2,∴EC2=EA2+AB2+BC2=12,EC=2错误!.故选C.7.(理)(2014·湖北高考)在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为(D)A.①和②B.③和①C.④和③D.④和②(文)(2020·四川省泸州市诊断)几何体的三视图如图所示,则这个几何体的直观图可以是(B)[解析](理)在空间直角坐标系中,构建棱长为2的正方体,设A(0,0,2),B (2,2,0),C(1,2,1),D(2,2,2),则四面体ABCD即为满足条件的四面体,得出正视图和俯视图分别为④和②,故选D。
[基础送分 提速狂刷练]一、选择题1.已知点O ,A ,B ,C 为空间不共面的四点,且向量a =OA →+OB →+OC →,向量b =OA →+OB →-OC →,则与a ,b 不能构成空间基底的向量是( )A.OA →B.OB →C.OC →D.OA →或OB →答案 C解析 根据题意得OC →=12(a -b ),所以OC →,a ,b 共面.故选C. 2.有4个命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ;③若MP →=xMA →+yMB →,则P ,M ,A ,B 共面; ④若P ,M ,A ,B 共面,则MP →=xMA →+yMB →. 其中真命题的个数是( ) A .1 B .2 C .3 D .4 答案 B解析 ①正确;②中,若a ,b 共线,p 与a 不共线,则p =x a +y b 就不成立;③正确;④中,若M ,A ,B 共线,点P 不在此直线上,则MP →=xMA →+yMB →不正确.故选B.3.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′→=xAB →+2yBC →-3zCC ′→,则x +y +z =( )A .1 B.76 C.56 D.23答案 B解析 ∵AC ′→=AC →+CC ′→=AD →+AB →+CC ′→=AB →+BC →+CC ′→=xAB →+2yBC →-3zCC ′→,∴x =1,y =12,z =-13, ∴x +y +z =1+12-13=76.故选B.4.已知四边形ABCD 满足AB → BC → 0 ,BC → CD → 0 ,CD → DA →0 ,DA → AB →0 ,则该四边形为( )A .平行四边形B .梯形C .平面四边形D .空间四边形答案 D解析 由已知条件得四边形的四个外角均为锐角,但在平面四边形中任一四边形的外角和都是36 °,这与已知条件矛盾,所以该四边形是一个空间四边形.故选D.5. ( 北京东城模拟)如图所示,已知P A ⊥平面ABC ,∠ABC =12 °,P A =AB =BC =6,则|PC →|等于( )A .6 2B .6C .12D .144答案 C解析 ∵PC →=P A →+AB →+BC →, ∴PC →2=P A →2+AB →2+BC →2+2AB → BC →, ∴|PC →|2=36+36+36+2×36cos6 °=144, ∴|PC →|=12.故选C.6.( 舟山模拟)平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为6 °,且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8答案 A解析 设AB →=a ,AD →=b ,AA 1→=c ,则AC 1→=a +b +c ,|AC 1→|2=a 2+b 2+c 2+2a b +2b c +2c a =25,因此|AC 1→|=5.故选A.7.( 南充三模)已知正方体ABCD -A 1B 1C 1D 1,下列命题:①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2; ②A 1C → (A 1B 1→-A 1A →)= ;③向量AD 1→与向量A 1B →的夹角为6 °;④正方体ABCD -A 1B 1C 1D 1的体积为|AB → AA 1→ AD →|, 其中正确命题的序号是( ) A .①② B .①②③ C .①④ D .①②④答案 A解析 设正方体边长为单位长为1,建立空间直角坐标系,如图. A 1A →=( , ,1),A 1D 1→=(1, , ),A 1B 1→=( ,1, ),A 1C →=(1,1,1),AD 1→=(1, ,-1),所以对于①,(A 1A →+A 1D 1→+A 1B 1→)2=(1,1,1) (1,1,1)=3=3A 1B 1→2,故①正确;对于②,A 1C → (A 1B 1→-A 1A →)=(1,1,1) ( ,1,-1)= ,故②正确; 对于③,因为AD 1→ A 1B →=(1, ,-1) ( ,1,1)=-1,向量AD 1→与向量A 1B →的夹角为12 °,故③错误;④正方体ABCD -A 1B 1C 1D 1的体积为|AB → ||AA 1→ | |AD →|,但是|AB → AA 1→ AD →|= ,故④错误.故选A.8.对于空间任意一点O 和不共线的三点A ,B ,C ,且有OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则x =2,y =-3,z =2是P ,A ,B ,C 四点共面的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件答案 B解析 当x =2,y =-3,z =2时, 即OP →=2OA →-3OB →+2OC →,则AP →-AO →=2OA →-3(AB →-AO →)+2(AC →-AO →),即AP →=-3AB →+2AC →,根据共面向量定理,知P ,A ,B ,C 四点共面;反之,当P ,A ,B ,C 四点共面时,根据共面向量定理AP →=mAB →+nAC →,即OP →-OA →=m (OB →-OA →)+n (OC →-OA →), 即OP →=(1-m -n )OA →+mOB →+nOC →,即x =1-m -n ,y =m ,z =n ,这组数显然不止2,-3,2. 故是充分不必要条件.故选B.9.( 福州质检)正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( )A.216a B.66a C.156aD.153a答案 A解析 以D 为原点建立如图所示的空间直角坐标系Dxyz ,则A (a, , ),C 1( ,a ,a ),N ⎝⎛⎭⎪⎫a ,a ,a 2. 设M (x ,y ,z ),∵点M 在AC 1上且AM →=12MC 1→, ∴(x -a ,y ,z )=12(-x ,a -y ,a -z ), ∴x =23a ,y =a 3,z =a 3.∴M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,∴|MN →|=⎝⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216a .故选A.1 .已知矩形ABCD ,AB =1,BC =2,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直答案 B解析 如图所示,在图1中,易知AE =CF =63,BE =EF =FD =33.在图2中,设AE →=a ,EF →=b ,FC →=c , 则〈a ,b 〉=〈b ,c 〉=9 °,设〈a ,c 〉=θ, 则AC →=a +b +c ,BD →=3b , 故AC → BD →=3b 2=1≠ ,故AC 与BD 不垂直,A 不正确;AB →=AE →+EB →=a -b ,CD →=CF →+FD →=b -c , 所以AB → CD →=-a c -b 2=-23cos θ-13.当cos θ=-12,即θ=2π3时,AB → CD →= ,故B 正确,D 不正确;AD →=AE →+ED →=a +2b ,BC →=BF →+FC →=2b +c , 所以AD → BC →=a c +4b 2=23cos θ+43=23(cos θ+2), 故无论θ为何值,AD → BC →≠ ,故C 不正确.故选B. 二、填空题11.( 银川模拟)已知点A (1,2,1),B (-1,3,4),D (1,1,1),若AP →=2PB →,则|PD →|的值是________.答案773解析 设P (x ,y ,z ),∴AP →=(x -1,y -2,z -1).PB →=(-1-x ,3-y ,4-z ),由AP →=2PB →,得点P 坐标为⎝⎛⎭⎪⎫-13,83,3,又D (1,1,1),∴|PD →|=773.12.如图,已知ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O ,Q 是CD 的中点,若P A →=xPO →+yPQ →+PD →,则x +y =________.答案解析 P A →-PD →=DA →=OA →-OD →=-OC →-OD →=-(OC →+OD →)=-2OQ →=-2(PQ →-PO →)=2PO →-2PQ →.∵P A →=xPO →+yPQ →+PD →,∴P A →-PD →=xPO →+yPQ →, ∴2PO →-2PQ →=xPO →+yPQ →.∵PQ →与PO →不共线,∴x =2,y =-2,∴x +y = .13.已知O ( , , ),A (1,2,3),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA → QB →取最小值时,点Q 的坐标是________.答案 ⎝ ⎛⎭⎪⎫43,43,83解析 由题意,设OQ →=λOP →,即OQ →=(λ,λ,2λ), 则QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ), ∴QA → QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ) (2-2λ)=6λ2-16λ+1 =6⎝ ⎛⎭⎪⎫λ-432-23,当λ=43时有最小值,此时Q 点坐标为⎝ ⎛⎭⎪⎫43,43,83. 14.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________.答案25解析 以A 为坐标原点,射线AB ,AD ,AQ 分别为x 轴,y 轴,z 轴的正半轴,建立如图所示的空间直角坐标系.设正方形ABCD 和ADPQ 的边长为2,则E (1, , ),F (2,1, ),M ( ,y,2)( ≤y ≤2).所以AF →=(2,1, ),EM →=(-1,y,2).所以AF → EM →=-2+y ,|AF →|=5,|EM →|=5+y 2. 所以cos θ=|AF → EM →||AF →||EM →|=|-2+y |5 5+y 2=2-y 5 5+y2. 令2-y =t ,则y =2-t ,且t ∈[ ,2].所以cos θ=t 5 5+(2-t )2=t 5 9-4t +t2. 当t = 时,cos θ= .当t ≠ 时,cos θ=159t 2-4t +1=15 9⎝ ⎛⎭⎪⎫1t -292+59, 由t ∈( ,2],得1t ∈⎣⎢⎡⎭⎪⎫12,+∞, 所以 9⎝ ⎛⎭⎪⎫1t -292+59≥ 9×⎝ ⎛⎭⎪⎫12-292+59=52. 所以 <cos θ≤25,即cos θ的最大值为25.三、解答题15.( 唐山模拟)已知空间三点A (-2, ,2),B (-1,1,2),C (-3, ,4),设a =AB →,b =AC →.(1)求a 和b 夹角的余弦值;(2)设|c |=3,c ∥BC →,求c 的坐标.解 (1)因为A B →=(1,1, ),AC →=(-1, ,2),所以a b =-1+ + =-1,|a |=2,|b |= 5. 所以cos 〈a ,b 〉=a b |a ||b |=-12×5=- 1 1 . (2)BC →=(-2,-1,2),设c =(x ,y ,z ),因为|c |=3,c ∥BC →,所以x 2+y 2+z 2=3,存在实数λ使得c =λBC →,即⎩⎪⎨⎪⎧ x =-2λ,y =-λ,z =2λ,联立解得⎩⎪⎨⎪⎧ x =-2,y =-1,z =2,λ=1或⎩⎪⎨⎪⎧ x =2,y =1,z =-2,λ=-1,所以c =±(-2,-1,2).16.已知平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =12 °.(1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值;(3)证明:AA 1⊥BD .解 (1)如图所示,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=1,|c |=2.a b = ,a c =b c =2×1×cos12 °=-1.∵AC 1→=AB →+BC →+CC 1→=a +b +c ,∴|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2a b +2a c +2b c=1+1+22-2-2=2.∴|AC 1→|= 2.即AC 1长为 2.(2)∵AC 1→=a +b +c ,A 1D →=b -c ,∴AC 1→ A 1D →=(a +b +c ) (b -c ) =a b -a c +b 2-b c +b c -c 2 =1+12-22=-2.又|A 1D →|2=(b -c )2=b 2+c 2-2b c =1+4+2=7,∴|A 1D →|=7.∴cos 〈AC 1→,A 1D →〉=AC 1→ A 1D →|AC 1→||A 1D →|=-22×7=-147. ∴异面直线AC 1与A 1D 所成角的余弦值为147.(3)证明:∵AA 1→=c ,BD →=b -a ,∴AA 1→ BD →=c (b -a )=c b -c a =-1-(-1)= .∴AA 1→⊥BD →,即AA 1⊥BD .。
2025年新人教版高考数学一轮复习讲义第七章§7.10 立体几何中的动态、轨迹问题“动态”问题是高考立体几何问题最具创新意识的题型,它渗透了一些“动态”的点、线、面等元素,给静态的立体几何题赋予了活力,题型更新颖.同时,由于“动态”的存在,也使立体几何题更趋多元化,将立体几何问题与平面几何中的解三角形问题、多边形面积问题以及解析几何问题之间建立桥梁,使得它们之间灵活转化.题型一 平行、垂直中的动态轨迹问题例1 如图,在棱长为a的正方体ABCD-AB1C1D1中,E,F,G,H,N分别是CC1,C1D1,DD1,CD,BC的中点,M在四边形EFGH边上及其内部运动,若MN∥平面A1BD,则点M轨迹的长度是√连接HN,GN(图略),∵在棱长为a的正方体ABCD-A1B1C1D1中,E,F,G,H,N分别是CC1,C1D1,DD1,CD,BC的中点,则GH∥BA1,HN∥BD,又GH⊄平面A1BD,BA1⊂平面A1BD,∴GH∥平面A1BD,同理可证得NH∥平面A1BD,又GH∩HN=H,GH,HN⊂平面GHN,又∵点M在四边形EFGH上及其内部运动,MN∥平面A1BD,则点M在线段GH上运动,即满足条件,思维升华动点轨迹的判断一般根据线面平行、线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程.跟踪训练1 正四棱锥S-ABCD的底面边长为2,高为2,E是边BC的中点,动点P在正四棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为√由正四棱锥的性质可得SO⊥平面ABCD,因为AC⊂平面ABCD,故SO⊥AC.又BD⊥AC,SO∩BD=O,SO,BD⊂平面SBD,故AC⊥平面SBD.由题意,PE⊥AC则动点P的轨迹为过E且垂直AC的平面与正四棱锥S-ABCD的交线,即平面EFG,则AC⊥平面EFG.由线面垂直的性质可得平面SBD∥平面EFG,又由面面平行的性质可得EG∥SB,GF∥SD,EF∥BD,又E是边BC的中点,故EG,GF,EF分别为△SBC,△SDC,△BCD的中位线.题型二 距离、角度有关的动态轨迹问题例2 已知长方体ABCD-A1B1C1D1的外接球的表面积为5π,AA1=2,点P在四边形A1ACC1内,且直线BP与平面A1ACC1所成的角为,则长方体的体积最大时,动点P的轨迹长为√因为长方体ABCD-A1B1C1D1的外接球的表面积为5π,设外接球的半径为R,如图,设AC,BD相交于点O,因为BO⊥AC,BO⊥AA1,AC∩AA1=A,AC,AA1⊂平面A1ACC1,思维升华距离、角度有关的轨迹问题(1)距离:可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹.(2)角度:直线与面成定角,可能是圆锥侧面;直线与定直线成等角,可能是圆锥侧面.设底面等腰直角三角形ABC的直角边的边长为x(x>0),又∵顶点P到底面ABC的距离为4,∴顶点P的轨迹是一个截面圆的圆周(球心在底面ABC和截面圆之间)且球心O到该截面圆的距离d2=1,题型三 翻折有关的动态轨迹问题例3 在矩形ABCD中,E是AB的中点,AD=1,AB=2,将△ADE沿DE 折起得到△A′DE,设A′C的中点为M,若将△ADE沿DE翻折90°,则在此过程中动点M形成的轨迹长度为______.90°,此时平面A′DE⊥平面ABCD,取CD中点P,CE中点Q,PQ中点N,连接PQ,MP,MQ,MN,M0P,M0Q,M0N.又MP∥A′D,MP⊄平面A′DE,A′D⊂平面A′DE,∴MP∥平面A′DE,同理MQ∥平面A′DE,又∵MP∩MQ=M,∴平面MPQ∥平面A′DE,又平面A′DE⊥平面ABCD,又平面MPQ∩平面ABCD=PQ,MN⊥PQ,故MN⊥平面ABCD,又M0N⊂平面ABCD,∴MN⊥M0N,思维升华翻折有关的轨迹问题(1)翻折过程中寻找不变的垂直的关系求轨迹.(2)翻折过程中寻找不变的长度关系求轨迹.(3)可以利用空间坐标运算求轨迹.跟踪训练3 (2024·连云港模拟)在矩形ABCD中,AB=,AD=1,点E 在CD上,现将△AED沿AE折起,使平面AED⊥平面ABC,当E从D运动到C时,求点D在平面ABC上的射影K的轨迹长度为√由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED 内过点D作DK⊥AE,垂足K为D在平面ABC上的射影,连接D′K,由翻折的特征知,则∠D′KA=90°,故K点的轨迹是以AD′为直径的圆上一段弧,如图当E与C重合时,∠D′AC=60°,取O为AD′的中点,得到△OAK是正三角形.一、单项选择题1.在正方体ABCD-A1B1C1D1中,Q是正方形B1BCC1内的动点,A1Q⊥BC1,则Q点的轨迹是√A.点B1B.线段B1CC.线段B1C1D.平面B1BCC1因为BC1⊥A1Q,BC1⊥A1B1,A1Q∩A1B1=A1,A1Q,A1B1⊂平面A1B1Q,所以BC1⊥平面A1B1Q,又B1Q⊂平面A1B1Q,所以BC1⊥B1Q,又BC1⊥B1C,所以点Q在线段B1C上.2.(2023·佛山模拟)如图,正方体ABCD-AB1C1D1的棱长为1,点P为正方形A1B1C1D1内的动点,满足直线BP与下底面ABCD所成角为60°的点P的轨迹长度为√直线BP与下底面ABCD所成的角等于直线BP与上底面A1B1C1D1所成的角,连接B1P,如图,因为BB1⊥平面A1B1C1D1,PB1⊂平面A1B1C1D1,所以BB1⊥PB1,故∠BPB1为直线BP与上底面A1B1C1D1所成的角,则∠BPB1=60°,3.如图,在三棱柱ABC-A1B1C1中,M为A1C1的中点,N为侧面BCC1B1上的一点,且MN∥平面ABC1,若点N的轨迹长度为2,则A.AC1=4B.BC1=4C.AB1=6D.B1C=6√如图,取B1C1的中点D,BB1的中点E,连接MD,DE,ME,由MD∥A1B1∥AB,DE∥BC1,又MD⊄平面ABC1,AB⊂平面ABC1,所以MD∥平面ABC1,同理可得DE∥平面ABC1,又MD∩DE=D,MD,DE⊂平面MDE,所以平面MDE∥平面ABC1,又MN∥平面ABC1,故点N的轨迹为线段DE,√如图,在侧棱AA1上取一点R,使得AR=2RA1,连接PR,BR,过点A作AN⊥BR交BR于点M,交BB1于点N,连接AC,CN,BD,由PR∥AD,可知PR⊥AN,BR,PR⊂平面BPR,BR∩PR=R,从而AN⊥平面BPR,BP⊂平面BPR,所以BP⊥AN,又由BP在平面ABCD内的射影BD⊥AC,所以BP⊥AC,AN,AC⊂平面ACN,AN∩AC=A,在Rt△ABN,Rt△RAB中,∠BAN=∠ARB,所以Rt△ABN∽Rt△RAB,√取A1D1的中点M,连接AM,B1M,AB1,EM,FM,如图所示,在正方体ABCD-A1B1C1D1中,AD∥B1C1且AD=B1C1,因为E,F分别是棱AD,B1C1的中点,则AE∥B1F且AE=B1F,所以四边形AB1FE为平行四边形,则AB1∥EF,因为AB1⊄平面BEF,EF⊂平面BEF,所以AB1∥平面BEF,同理可证AM∥平面BEF,因为AM⊂平面AA1D1D,若P∈AM,则B1P⊂平面AB1M,所以B1P∥平面BEF,所以点P在侧面AA1D1D内的轨迹为线段AM,6.已知菱形ABCD边长为2,∠ABC=60°,沿对角线AC折叠成三棱锥B′-ACD,使得二面角B′-AC-D为60°,设E为B′C的中点,F为三棱锥B′-ACD表面上动点,且总满足AC⊥EF,则点F轨迹的长度为√连接AC,BD交于点O,连接OB′,四边形ABCD为菱形,∠ABC=60°,所以AC⊥BD,OB′⊥AC,△ABC,△ACD,△AB′C均为正三角形,所以∠B′OD为二面角B′-AC-D的平面角,于是∠B′OD=60°,又因为OB′=OD,所以△B′OD为正三角形,取OC的中点P,取CD的中点Q,连接EP,EQ,PQ,所以PQ∥OD,EP∥OB′,AC⊥平面EPQ,所以在三棱锥B′-ACD表面上,满足AC⊥EF的点F轨迹为△EPQ,二、多项选择题7.(2024·济南模拟)已知正方体ABCD -A 1B 1C 1D 1的各顶点均在表面积为12π的球面上,P 为该球面上一动点,则A.存在无数个点P ,使得P A ∥平面A 1B 1C 1D 1B.当平面P AA 1⊥平面CB 1D 1时,点P 的轨迹长度为2πC.当P A ∥平面A 1B 1CD 时,点P 的轨迹长度为2πD.存在无数个点P ,使得平面P AD ⊥平面PBC √√√且正方体的棱长满足(2r)2=3a2=12,故棱长a=2,选项A,由题意可知平面ABCD∥平面A1B1C1D1,且P A∥平面A1B1C1D1,故PA⊂平面ABCD,则P的轨迹为正方形ABCD的外接圆,故有无数个点P满足,故A正确;平面CB1D1,PA⊂平面PAA1,故P的轨迹为矩形AA1C1C的外接圆,选项C,因为PA∥平面A1B1CD,设过PA且与平面A1B1CD平行的平面为α,边形ABCD为轴截面的某个圆柱面上,该圆柱面与球面交线为曲线,故有无数个点P满足,故D正确.8.(2023·长沙模拟)在棱长为1的正方体ABCD-A1B1C1D1中,M为正方体表面上的动点,N为线段AC1上的动点,若直线AM与AB的夹角为,则下列说法正确的是A.点M的轨迹确定的图形是平面图形√√√如图,建立空间直角坐标系,则D(0,1,0),C1(1,1,1),当点M在底面A1B1C1D1和侧面CC1D1D(不包含边界)上时,点M到直线AB的距离大于AB的长度,当点M在侧面AA1B1B和底面ABCD上时,可知线段AB1,AC满足题意;BM=AB,此时弧B1C为所求.∴M点的轨迹为线段AC,AB1,弧B1C,显然线段AC,AB1,弧B1C不共面,∴A错误;对于C,若M在线段AC上,则C1M的最小值为1,同理,若M在线段AB1上,则C1M的最小值也为1,+z2=1,由题意设N(λ,λ,λ),λ∈[0,1],当且仅当y=z=λ,且y2+z2=1,三、填空题9.已知正方体ABCD-A1B1C1D1的棱长为2,M为棱B1C1的中点,N为底面正方形ABCD上一动点,且直线MN与底面ABCD所成的角为,则动点N的轨迹长度为________.为∠MNG,。
2024年高考数学一轮复习第7章:立体几何学生版一、单项选择题
1.如图,用斜二测画法作水平放置的正三角形A1B1C1的直观图,则正确的图形是(
)
2.下列四个命题中,正确的是()
A.各侧面都是全等四边形的棱柱一定是正棱柱
B.对角面是全等矩形的六面体一定是长方体
C.有两侧面垂直于底面的棱柱一定是直棱柱
D.长方体一定是直四棱柱
3.从平面外一点P引与平面相交的直线,使P点与交点的距离等于1,则满足条件的直线可能有()
A.0条或1条B.0条或无数条
C.1条或2条D.0条或1条或无数条
4.已知m,n表示两条不同的直线,α,β表示两个不同的平面,则下列命题中正确的是() A.若m∥α,n⊥β,m∥n,则α⊥β
B.若m⊥n,m⊥α,n∥β,则α∥β
C.若α⊥β,m⊥α,m⊥n,则n∥β
D.若α⊥β,α∩β=m,n⊥m,则n⊥β
5.已知直线a,b,l和平面α,β,a⊂α,b⊂β,α∩β=l,且α⊥β.对于以下命题,判断正确的是()
①若a,b异面,则a,b至少有一个与l相交;
②若a,b垂直,则a,b至少有一个与l垂直.
A.①是真命题,②是假命题
B.①是假命题,②是真命题
C.①是假命题,②是假命题
D.①是真命题,②是真命题
第1页共14页。
[基础送分提速狂刷练]
一、选择题
1.一个几何体的三视图如图所示,则该几何体的直观图可以是( )
答案 D
解析由俯视图是圆环可排除A,B,C,进一步将已知三视图还原为几何体,故选D.
2.如图所示,在正方体ABCD-A′B′C′D′中,M,E是AB的三等分点,G,N是CD的三等分点,F,H分别是BC,MN的中点,则四棱锥A′-EFGH的侧视图为( )
答案 C
解析侧视图中A′E,A′G重合,A′H成为A′N,A′F,A′B重合,侧视图为向左倾斜的三角形.故选C.
3.(2017·临沂模拟)如图甲,将一个正三棱柱ABC-DEF截去一个三棱锥A-BCD,得到几何体BCDEF,如图乙,则该几何体的正视图(主视图)是( )
答案 C
解析由于三棱柱为正三棱柱,故平面ADEB⊥平面DEF,△DEF 是等边三角形,所以CD在后侧面上的投影为AB的中点与D的连线,CD的投影与底面不垂直.故选C.
4.(2018·江西景德镇质检)如图所示,正方体ABCD-A1B1C1D1上、下底面中心分别为O1,O2,将正方体绕直线O1O2旋转一周,其中由线段BC1旋转所得图形是( )
答案 D
解析由图形的形成过程可知,在图形的面上能够找到直线,在B,D中选,显然B不对,因为BC1中点绕O1O2旋转得到的圆比B 点和C1点的小.故选D.
5.(2017·内江模拟)如图,已知三棱锥P-ABC的底面是等腰直
角三角形,且∠ACB=π
2
,侧面PAB⊥底面ABC,AB=PA=PB=2.
则这个三棱锥的三视图中标注的尺寸x ,y ,z 分别是( )
A.3,1, 2
B.3,1,1 C .2,1, 2 D .2,1,1
答案 B
解析 ∵三棱锥P -ABC 的底面是等腰直角三角形,且∠ACB =π2
,侧面PAB ⊥底面ABC ,AB =PA =PB =2; ∴x 是等边△PAB 边AB 上的高,x =2sin60°=3,
y 是边AB 的一半,y =12
AB =1,z 是等腰直角△ABC 斜边AB 上的中线,z =12
AB =1; ∴x ,y ,z 分别是3,1,1.故选B.
6.(2017·南昌二模)一个四面体的顶点在空间直角坐标系Oxyz
中的坐标分别是(0,0,0),(1,0,1),(0,1,1),⎝ ⎛⎭
⎪⎫12,1,0,绘制该四面体三视图时,按照如图所示的方向画正视图,则得到侧(左)视图可以为( )
答案 B
解析满足条件的四面体如下图,
依题意投影到yOz平面为正投影,所以侧(左)视方向如图所示,所以得到侧(左)视图效果如上图.故选B.
7.(2018·湖南郴州模拟)一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是( )
A .①②
B .①③
C .③④
D .②④
答案 D
解析 由点A 经正方体的表面,按最短路线爬行到达顶点C 1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB 1A 1和平面BCC 1B 1展到同一个平面内,连接AC 1,则AC 1是最短路线,且AC 1会经过BB 1的中点,此时对应的正视图为②;若把平面ABCD 和平面CDD 1C 1展到同一个平面内,连接AC 1,则AC 1是最短路线,且AC 1会经过CD 的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.
8.(2018·山西康杰中学模拟)已知某锥体的正视图和侧视图如图所示,其体积为233
,则该锥体的俯视图可能是( )
答案 C
解析 由正视图得该锥体的高是h =
22-12=3,因为该锥体的体积为
233,所以该锥体的底面面积是S = 2
33
1
3h =23333=2,A 项的正方形的面积是2×2=4,B 项的圆的面积是π×12=π,C 项的大三角形的面积是12
×2×2=2,D 项图形不满足三视图“宽相等”原则,所以不可能是该锥体的俯视图.故选C.
9.早在公元前三百多年我国已经运用“以度审容”的科学方法,其中商鞅铜方升是公元前344年商鞅督造的一种标准量器,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为( )
A .1.2
B .1.6
C .1.8
D .2.4
答案 B
解析 由三视图知,商鞅铜方升是由一个圆柱和一个长方体组合而成的,利用体积及已知线段长度即可求出x .故其体积为(5.4-x )×3
×1+π×⎝ ⎛⎭
⎪⎫122×x =16.2-3x +14πx =12.6,又π=3,故x =1.6.故选B. 10.(2018·辽宁六校联考)如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是
( )
答案 B
解析 根据所给的三视图可知原几何体是倒放的圆锥,设圆锥的
底面半径为R ,高为H ,水流的速度是v ,则由题意得vt =13π⎝ ⎛⎭
⎪⎫h H 2R 2h .当vt >0时,解得h =33vH 2t
πR 2,这是一个幂型函数,所以容器中水
面的高度h 随时间t 变化的图象类似于幂函数y =
3x 的图象,故选
B.
二、填空题 11.如图所示,正方形O ′A ′B ′C ′的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是________cm.
答案8
解析根据直观图的画法可知,在原几何图形中,OABC为平行四边形,且有OB⊥OA,OB=22,OA=1,所以AB=3.从而原图的周长为8 cm.
12.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是(填出所有可能的序号).
答案①②③
解析空间四边形D′OEF在正方体的平面DCC′D′上的投影是①;在平面BCC′B′上的投影是②;在平面ABCD上的投影是③,而不可能出现的投影为④的情况.
13.一四面体的三视图如图所示,则该四面体四个面中最大的面积是________.
答案 2
3
解析 由三视图可知该四面体为D -BD 1C 1,由直观图可知面积最大的面为△BDC 1.在正三角形BDC 1中,BD =22,所以面积S =
12
×(22)2×32
=2
3.
14.(2018·大连模拟)某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是________.
答案27
解析由三视图可知该四面体为V-ABC,如图所示.其中AE ⊥BE,VC⊥平面ABE.EC=CB=2,AE=23,VC=2,所以VB2=VC2+CB2=8,AC2=AE2+EC2=(23)2+22=16,所以VA2=AC2+VC2=16+22=20,VA=20=2 5.AB2=AE2+EB2=(23)2+42=28,所以AB=28=27>25,所以该四面体的六
条棱的长度中,最大的为27.
三、解答题
15.已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所
示.
(1)画出该三棱锥的直观图; (2)求出侧视图的面积. 解 (1)如下图所示.
(2)根据三视图间的关系可得BC = 2
3,
∴侧视图中VA =
42-⎝ ⎛⎭
⎪⎫23
×
32
×2
32 =2
3.
∴S △VBC =1
2
×2
3×23=6.
16.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(1)求该几何体的体积V ; (2)求该几何体的侧面积S .
解 由正视图和侧视图的三角形结合俯视图可知该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥,如图.
(1)V =1
3
×(8×6)×4=64.
(2)四棱锥的两个侧面VAD ,VBC 是全等的等腰三角形,取BC
的中点E ,连接OE ,VE ,则△VOE 为直角三角形,VE 为△VBC 边上的高,VE =
VO 2+OE 2=4 2.
同理侧面VAB 、VCD 也是全等的等腰三角形,AB 边上的高h =
42+⎝ ⎛⎭⎪⎫622=5.
∴S 侧=2×⎝ ⎛⎭
⎪⎫
1
2
×6×4
2+12×8×5=40+24
2.。