一种新的无位置传感器无刷直流电机起动方法
- 格式:pdf
- 大小:2.29 MB
- 文档页数:3
直流无刷电机无位置传感器控制方法摘要:在直流无刷电机的使用过程中,不能很准确的接收换相信号,因此,就导致该电机无法实现对换相良好的控制,为了解决这类问题的出现,本篇文章将对直流无刷电机中无位置传感器进行研究与分析,并且找到有效的控制方法。
具体的方法是利用电机内部的各种装置之间的联系,来建立出一个直观的电机模型,之后通过电机内部反电势力的不断变化来研究反电势对于换相位置的影响,在经过一定的计算从而能够保证换相信号的准确性,最终实现对其良好的控制。
本篇文章通过具体的试验与测试来对控制的方法进行验证,最终得出,通过上述的方法,能够实现对其换相的控制。
关键词:直流无刷电机;传感器;换相位置;控制效果前言随着经济与技术的共同发展,使得各种工业也得到了快速的发展,由于直流无刷电机在使用的过程中效率非常高且其的构成比较简单,使得直流无刷电机在各个领域中都被广泛地应用,其中包括航天、汽车、家电、工具等等。
与以往的有刷的电机来说,直流无刷电机的组成部分少了电刷这一部分,但是直流无刷电机的作用原理却比有刷的更为复杂。
在直流无刷电机的使用过程中,可以适当地将电机的电路进行调整,从而更好地实现对于换相信号的收集,实现对其的控制,并能够有效地缩小该电机的体积。
一、直流无刷电机的主要构造在直流无刷电机的使用过程中,主要是通过内部的传感器来对换相位置进行检测。
传感器的种类非常多样,最常见的一般为电磁式传感器、光电式传感器以及霍尔式传感器这三种类型,根据需求的不同来选择合适的传感器类型。
与其他的传感器相比,霍尔式传感器的使用成本比较低,且具有较强的性能条件,因此,该类型的传感器被使用得更加广泛。
为了保证直流无刷电机使用的效率,需要对其进行有效地控制,从而提高对于换相信号搜集的准确性。
二、背景介绍随着经济与技术的共同发展,使得人们对于电机的需求越来越大,随之对电机也有了更高的标准。
过去,大多数使用的是直流有刷电机,但这种电机存在诸多缺陷,无法满足需求。
无位置传感器BLDCM起动控制仿真研究孟光伟;向东;吴强;熊浩【摘要】针对无位置传感器的三相永磁无刷直流电机的控制,分析了120°导通三相逆变器的SVPWM控制,提出了具有SVPWM控制和电流调节控制的无位置传感器BLDCM的起动控制,其中电流调节控制采用两点式比较器控制.该起动控制方法不但能有效控制起动电流大小,而且能改善BLDCM开环起动性能.在Matlab/Simlink环境下,以模块化方式,综合运用Matlab中的S-函数以及Matlab/Simlink/SimPowerSystems元件库中的电气元件模型,建立三相永磁BLDCM起动控制系统的仿真模型.仿真结果表明,基于SVPWM和电流调节控制的起动控制,不但优于升频起动控制,而且在保持对二二导通BLDCM电流调节控制的基础上,使得BLDCM的开环起动性能更好.【期刊名称】《防爆电机》【年(卷),期】2014(049)006【总页数】6页(P18-23)【关键词】无刷直流电机;电压空间矢量;起动控制【作者】孟光伟;向东;吴强;熊浩【作者单位】海军工程大学电气工程系,湖北武汉430033;海军工程大学电气工程系,湖北武汉430033;海军工程大学电气工程系,湖北武汉430033;海军工程大学电气工程系,湖北武汉430033【正文语种】中文【中图分类】TM301.20 引言对于靠反电动势进行位置检测的无位置传感器永磁无刷直流电机(BLDCM)的起动来说,由于静止以及低速时很难检测到反电动势信号,从而使得电机怎样顺利起动成了重要问题。
目前一般采用的方法是先他控同步式起动,使电机加速到反电势可以被检测到的速度,然后再利用反电动势检测法切换到自控同步方式。
文献[1-3]采用三段式起动方法,即首先给任意的两相定子绕组通电一定时间,转子将被定位在相应的位置上,然后给出频率逐渐增高的换相信号,电机将被加速,当电机到达一定转速后切换至自同步运行。
无刷直流电动机无传感器低成本控制方法关键词:无刷直流电动机无位置传感器控制可编程逻辑器件1引言无刷直流电机的无传感器控制是近年来电机驱动领域关注的一项技术。
无位置传感器控制的关键在于获得可靠的转子位置信号,即从软、硬件两个方面间接获得可靠的转子位置信号来代替传统的位置传感器[1~3]。
采用无传感器控制技术的无刷电机具有结构简单、体积小、可靠性高和可维护性强等优点,使其在多个领域内得到了充分的利用[4]。
目前对于无传感器无刷电机的控制多采用单纯依靠DSP软件控制的方法[5],但是由于控制算法计算量大,执行速度较慢,且DSP成本较高,不利于以后向市场推广。
同时也出现了应用于无传感器BLDCM控制的一些专用的集成电路[6],但由于这些芯片可扩展性和通用性较低,而且价格昂贵,只适用于低压、小功率领域。
为了扩展无传感器BLDCM应用领域,降低其控制系统的成本,扩充控制系统的功能,增加控制系统的灵活性,本文以MCU+PLD方式组成控制系统的核心,利用PLD数字逻辑功能,分担MCU 的逻辑运算压力,使MCU和PLD的功能都得到了最大程度的发挥。
对于无位置传感器BLDCM控制系统,本文着重分析了换相控制策略和闭环调速,最后通过仿真和实验,验证了控制系统的合理性和可行性。
2系统的总体硬件设计本文中所设计系统是以8位PIC单片机和PLD构成的硬件平台,硬件结构框图如图1所示。
功率逆变电路采用三相全桥逆变结构,电机定子绕组为Y接法,电机工作模式为三相6状态方式。
在本文无传感器控制方式中采用反电动势过零位置检测方法,位置检测电路根据电机端电压获取3路位置信号,将信号送入PIC单片机进行软件移相后得到3路换相信号,由可编程逻辑器件进行逻辑解码后输出6路驱动开关管的前极信号,通过驱动芯片IR2233产生驱动信号以控制各开关管的导通与关断。
该系统采用速度单闭环方式,通过改变PWM的占空比以达到调速的目的。
本文中选用Microchip 公司的单片机PIC16F874作为控制核心,它内部有8K的FLASH 程序存储器,368字节的数据存储器(RAM),256字节的EEPROM数据存储器,14个中断源,8级深度的硬件堆栈,3个定时/计数器,两个捕捉/比较/PWM (CCP)模块,10位多通道A/D转换器等外围电路和硬件资源⑹。
年第期无位置传感器无刷直流电机起动方法在煤矿机车上的应用宁永威1李韧2于鹏2(1神华集团神东煤炭分公司,陕西榆林719315;2辽宁工程技术大学,辽宁葫芦岛125105)摘要给出了以数字信号处理器TMS320LF2407A为控制核心的系统结构,并对常用的起动方法进行比较分析,对永磁无位置传感器无刷直流电机的转子位置检测及起动进行了研究,并采用了新的定位-切换方法,说明了该方法的正确性和有效性。
关键词:无刷直流电机;无位置传感器;位置检测;起动A Starting Method of the Permanent-Magnet BLDC Motor s without PositionSensor for Mine Motorcycle ApplicationNing Y ongwei1Li Ren2Y u Peng2(1.China Shenhua Shendong Coal Branch,Y ulin,Shanxi719315;2.Liaoning Technical University,Huludao,Liaoning125105)Abstr act System based on TMS320LF2407A is given.From the analysis of the commonly used starting method,the rotor position detection and starting of permanent-magnet brushless DC motor (BLDCM)without position sensor are studied.adopted a new location-switching method for experiment. The test shows the correctness and effectiveness of the method.Key words:brushless DC motor;without position sensor;position detection;starting1引言传统的牵引电机都是采用有刷电机驱动,由于电机碳刷换向器的问题,造成保养维护的麻烦和困难,有刷直流电机无法做成密闭型结构,因此不适合应用在不良的环境;永磁无刷直流电机(Brushless DC Motor,BLDCM)没有碳刷和换向器,因此电机可以设计成适用各种环境的密闭结构,无刷直流电机结构简单、运行可靠、性能优良,已广泛应用于航空航天、机器人、交通、煤矿自动化和工业自动化等领域。
无感BLDC的“三段式”起动由于定子绕组的反电动势与电机的转速成正比,所以电机在静止时反电动势为零或低速时反电动势很小,此时无法根据反电动势信号确定转子磁极的位置,因此反电动势法需要采用特殊起动技术,从静止开始加速,直至转速足够大,通过反电势能检测到过零时,再切换至无刷直流电机运行状态。
这个过程称为“三段式”起动,主要包括转子预定位、加速和运行状态切换三个阶段。
这样既可以使电机转向可控,又可以保证电机达到一定转速后再进行切换,保证了起动的可靠性。
下面对“三段式”起动技术进行详细的分析。
技术咨询qq:3119502755(cassy)❖电机转子预定位若要保证无刷直流电机能够正常起动,首先要确定转子在静止时的位置。
在小型轻载条件下,对于具有梯形反电势波形的无刷直流电机来说,一般采用磁制动转子定位方式。
系统起动时,任意给定一组触发脉冲,在气隙中形成一个幅值恒定、方向不变的磁通,只要保证其幅值足够大,那么这一磁通就能在一定时间内将电机转子强行定位这个方向上。
在应用中,可以在任意一组绕组上通电一定时间,其中预定位的PWM 占空比和预定位时间的长短设定值可由具体电机特性和负载决定,在实际应用中调试而得。
在预定位成功后,转子在起动前可达到预定的位置,为电机起动做好准备。
❖电机的外同步加速确定了电机转子的初始位置后,由于此时定子绕组中的反电动势仍为零,所以必须人为的改变电机的外施电压和换相信号,使电机由静止逐步加速运动,这一过程称为外同步加速。
对于不同的外施电压调整方法和换相信号调整方法,外同步加速可以划分为三类:换相信号频率不变,逐步增大外施电压使电机加速,称为恒频升压法。
保持外施电压不变,逐渐增高换相信号的频率,使电机逐步加速,称为恒压升频法。
在逐步增大外施电压的同时,增高换相的频率,称为升频升压法。
各个方法都有其优点和缺点。
如升频升压法是人为地给电机施加一个由低频到高频不断加速的他控同步切换信号,而且电压也在不断地增加。
基于STM32无位置传感器无刷直流电机控制器设计一、本文概述本文主要探讨了基于STM32无位置传感器无刷直流电机控制器的设计。
随着现代科技的不断进步,电机控制技术也在日益成熟。
无刷直流电机(Brushless DC Motor, BLDC)作为一种高效、低噪音的电机类型,被广泛应用于各种工业和消费电子产品中。
然而,传统的无刷直流电机控制器通常需要位置传感器来监测电机的运行状态,这不仅增加了系统的复杂性和成本,还可能因为传感器的故障或误差影响电机的控制效果。
针对这一问题,本文提出了一种基于STM32的无位置传感器无刷直流电机控制器设计方案。
该方案利用STM32微控制器强大的处理能力和灵活的编程接口,结合先进的电机控制算法,实现了对无刷直流电机的无位置传感器控制。
文章首先介绍了无刷直流电机的基本原理和控制方法,然后详细阐述了基于STM32的无位置传感器控制器的硬件和软件设计,包括电机驱动电路、电流采样电路、控制算法等关键部分。
通过实验验证了所设计的无位置传感器无刷直流电机控制器的有效性和可靠性,为无刷直流电机的无位置传感器控制提供了一种新的解决方案。
本文的研究不仅有助于推动无刷直流电机控制技术的发展,还可为相关领域的研究人员和工程师提供有益的参考和借鉴。
通过深入研究和不断优化无位置传感器无刷直流电机控制器的设计,有望进一步提高电机的控制精度和效率,降低系统成本和维护难度,推动无刷直流电机在更多领域的应用。
二、无刷直流电机基本原理无刷直流电机(Brushless Direct Current,简称BLDC)是一种采用电子换向器替代传统机械换向器的直流电机。
它利用电子换向技术,实现了电机的高效、低噪音、长寿命运行。
无刷直流电机通常由永磁体、定子、转子和电子控制器四部分组成。
无刷直流电机的基本工作原理是电磁感应和换向控制。
当电机定子上的线圈通电时,会产生一个旋转磁场。
这个旋转磁场会与转子上的永磁体相互作用,从而使转子产生旋转力矩。
无刷直流电机驱动方案引言无刷直流电机(Brushless DC Motor,简称BLDC)由于其高效率、高转速、高力矩密度等优点,在众多工业和消费电子设备中得到广泛应用。
而BLDC电机的驱动方案则是保证其正常运转和性能发挥的核心要素。
本文将介绍无刷直流电机驱动方案的基本原理和常见的控制方式。
同时,还会讨论一些常见的驱动方案,并比较它们的特点和适用场景。
无刷直流电机的基本原理电机结构BLDC电机的结构与传统的直流电机相似,都由转子、定子、电刷和永磁体组成。
但其不同之处在于BLDC电机的转子上没有电刷,而是通过控制器来实现对定子绕组的电流控制。
工作原理BLDC电机采用电子换向技术,通过控制器对定子绕组的电流进行精确控制,从而实现电机转子的正常运转。
具体而言,BLDC电机的驱动过程可以分为六个步骤:1.磁极A和磁极B受到电流,而磁极C不受电流,此时A磁极和B磁极之间产生差异磁场,转子受到力矩作用转动;2.当转子旋转到一定角度时,磁极A与磁极B之间不再有差异磁场,此时磁极A和磁极C之间产生差异磁场,继续驱动转子旋转;3.转子继续旋转,磁极A与磁极C之间不再有差异磁场,此时磁极B和磁极C之间产生差异磁场,继续驱动转子旋转;4.转子继续旋转,磁极B与磁极C之间不再有差异磁场,此时磁极B和磁极A之间产生差异磁场,继续驱动转子旋转;5.转子继续旋转,磁极B与磁极A之间不再有差异磁场,此时磁极C和磁极A之间产生差异磁场,继续驱动转子旋转;6.转子继续旋转,磁极C与磁极A之间不再有差异磁场,此时磁极C和磁极B之间产生差异磁场,继续驱动转子旋转。
通过不断地交替改变电流的流向,BLDC电机可以实现高效、平稳的运动。
无刷直流电机的驱动控制方式传感器反馈控制传感器反馈控制是一种常见的BLDC电机驱动方式,通过磁编器或霍尔效应传感器等装置,实时检测转子位置和转速,并反馈给控制器。
控制器根据传感器的反馈信息,控制定子绕组的电流,从而实现对电机的精确控制。
无位置传感器控制技术是无刷直流电机研究的热点之一,国内外相关研究已经取得阶段性成果。
在无刷直流电机工作过程中,各相绕组轮流交替导通,绕组表现为断续通电。
在绕组不通电时,由于绕组线圈的蓄能释放,会产生感应电动势,该感应电动势的波形在绕组两端有可能被检测出来。
利用感应电动势的一些特点,可有取代转子上的位置传感器功能,来得到需要的换相信息。
由此,就出现了无位置传感器的无刷直流电动机。
尽管无位置传感器控制方式使得转子位置检测的精确度有所降低,但由于取消了位置传感器,电机的结构更加简单,安装更加方便,成本降低,可靠性进一步提高,在对体积和可靠性有要求的领域以及不适合安装位置传感器的场合,无位置传感器无刷直流电机应用广泛。
无位置传感器控制方式下的无刷直流电机具有可靠性高、抗干扰能力强等优点,同时在一定程度上克服了位置传感器安装不准确引起的换相转矩波动。
无位置传感器技术是从控制的硬件和软件两方面着手,以增加控制的复杂性换取电机结构复杂性的降低。
以采用120o电角度两两导通换相方式的三相桥式Y接无刷直流电机为例,讨论基于现代控制理论和智能算法的无刷直流电机无位置传感器控制方法。
转子位置间接检测法目前无刷直流电机中主要采用电磁式、光电式、磁敏式等多种形式的位置传感器,但位置传感器的存在限制了无刷直流电机在某些特定场合的应用,主要体现在:1、位置传感器可使电机系统的体积增大;2、位置传感器使电机与控制系统之间导线增多,使系统易受外界干扰影响;3、位置传感器在高温、高压和湿度较大等恶劣工况下运行时灵敏度变差,系统运行可靠性降低4、位置传感器对安装精度要求较高,机械安装偏差引起的换相不准确直接影响电机的运行性能。
无位置传感器控制技术越来越受到重视,并得到了迅速发展。
依据检测原理的不同,无刷直流电机无位置传感器控制方法主要包括反电势法、磁链法、电感法及人工智能法等。
反电势法反电势法(感应电动势过零点检测法)目前是技术最成熟、应用最广泛的一种位置检测方法。