北师大版七年级数学上册第二单元有理数及其运算导学案
- 格式:doc
- 大小:7.32 MB
- 文档页数:102
二.10科学计数法知识点一:科学计数法1.定义一般地,一个大于10的数可以表示成a×10n (1≤a<10,n是正整数)的形式,这种记数的方法叫做科学记数法.2.a与n的取法在a×10n形式中,n是原数整数位数减1,a则是将原数保留一位整数得来的.例1-1:若97 000 000用科学记数法表示为a×10n,则a=__________,n=__________.例1-2:用科学记数法表示下列各数:(1)3 400 000; (2)-98 120 000;(3)23 458.2; (4)960万.知识点二、把科学记数法表示的数还原1.科学记数法与原数的关系科学记数法是表示大数的一种简单方法,其大小与原数的大小相等.无论用哪一种表示方式,都不会改变数的大小和数的符号.2.科学记数法的还原把一个用科学记数法表示的数还原成原数的方法:①根据a×10n中10的指数n来确定,n是几,就将小数点向右移动几位,把10n去掉即可;②把科学记数法a×10n中的n加上1,就得到原数的整数位数.例2-1:若一个数用科学记数法表示为1.754×105,则原数为__________.例2-2:下面用科学记数法表示的数,原来是什么数?(1)赤道长约4×104千米;(2)按365天计算一年有3.153 6×107秒.1.据某市旅游局统计,今年“五一”小长假期间,该市旅游市场走势良好,假期旅游总收入达到8.55亿元,该总收入用科学记数法可以表示为( )A.8.55×106元B.8.55×107元 C.8.55×108元 D.8.55×109元2.某水库的总库存量为119 600 000立方米,用科学记数法表示为( )A.11.96×107立方米 B.1.196×107立方米 C.1.196×108立方米 D.0.119 6×109立方米3.在我国各大超市、市场实行塑料购物袋有偿使用制度有利于控制白色污染.已知一个塑料袋丢弃在地上,地面被污染的面积为500 cm2,如果100万名游客每人丢弃一个塑料袋,那么地面受到污染的最大面积用科学记数法表示是( )A.5×104 m2 B.5×106 m2 C.5×103 m2 D.5×10-2 m24.据某域名统计机构公布的数据显示,截至2012年5月21日,我国“.NET”域名注册量约为560 000个,居全球第三位.将560 000用科学记数法表示应为( )A.560×103 B.56×104 C.5.6×105 D.0.56×1065.联合国人口基金会的报告显示,世界人口总数在2011年10月31日达到70亿.将70亿用科学记数法表示为( )A.7×109 B.7×108 C.70×108 D.0.7×10106.南京地铁2号线(含东延线)、4号线南延线开通后,南京地铁总里程约为85 000 m.将85 000用科学记数法表示为________.7.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为__________千米.8.2012年5月底,三峡电站三十二台机组全部投产发电,三峡工程圆满实现2 250万千瓦的设计发电能力.据此,三峡电站每天能发电约540 000 000度,用科学记数法表示应为________度.9.上海世界博览会自2010年5月1日开幕以来,截止到5月18日,累计参观人数约为324万人,将324万用科学记数法表示为______万.10.太阳到地球的距离为一亿五千万千米,你能用科学记数法表示吗?若飞机的速度是6×102km/h,则它从地球飞到太阳需多长时间?11.在地球绕太阳转动的过程中,地球每小时通过的路程约是 1.1×105千米,用科学记数法表示地球转动一天(以24小时计)通过的路程约是多少千米.12.下列用科学记数法表示的数,原来各是什么数?(1)中国森林面积有1.2 863×108公顷;(2)地球绕太阳每小时转动通过的距离约为1.1×105km.13.建一幢房子大约需要3万块砖,而每块砖的体积约为1 200 cm3.(1)把建一幢房子的砖堆成一堆,体积大约是多少立方厘米?(2)一个小区有这样的房子60幢,把这60幢房子的砖堆起来,体积大约是多少立方米?。
1.有理数一、学习目标(1)借助生活中的实例,理解有理数的含义,体会负数引入的必要性和有理书应用的广泛性. (2)会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量. 二、重点难点重点:认识负数及有理数的分类。
难点:有理数的分类及如何表示生活中具相反意义的量。
三、学法指导指导学生自学、合作探究例题、指导学生独立完成课堂检测。
四、学导过程 (一)自主学习用小学学过的数能表示右边的温度吗?(二)合作交流根据课本第23页计算某班二个代表队举行知识竞赛得分情况,创设一个便于学生动手、动脑、主动探索的求知情境,然后进行小组合作讨论.得出新知后,利用新的知识完成表格。
现在我们用带有“+”号和“-”号的数表示各队的得分情况,试完成下表例1(1)某大米包装袋上标注着“净含量:10kg ±150g ”这里的“10kg ±150g ”表示什么?(2)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02,那么-0.03克表示什么? (4)如果向东运动4m 记作+4m ,那么向西运动7m 应记作什么?若在原地不动又记作什么?(三)课堂检测 1、填空题(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作______________.(2)东、西为两个相反方向,如果-4米表示一个物体向西运动4米,那么+2米表示___________,物体原地不动记作________。
(3)某仓库运进面粉7.5吨,那么运出3.8吨应记作_______________。
2、+1350米表示高于海平面1350米,低于海平面200米,记作. 3、如果上升10米记作+10米,那么下降12米,记作 .4、如果规定向西走30米记作+30米,那么-40米,表示 .零上5ºC 零下5ºC5.如果零上5记作+5,那么零下3 记作.6.某仓库运进面粉7.5吨记作+7.5,那么运出3.8吨,记作.7.把下列数分别填在对应的括号内:13,-0.5,2.7,123,0,2/5 ,-4,7/4 .(1)分数();(2)负整数();(3)正分数();(4)有理数().8、下列各数中,哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?哪些是正数?哪些是负数?7,-9.25,-9/10,-301,4/27,31.25,7/15,-3.59、请举出3对具有相反意义的量,并分别用正、负数表示.10、在4个不同时刻,对同一水池中的水位进行测量,记录如下:上升3厘米,下降6厘米,下降1厘米,不升不降,如果上升3厘米记为+3厘米,那么其余3个记录怎样表示?11、(1)如果节约20千瓦·时电记作+20千瓦·时,那么浪费10千瓦·时电记作什么?(2)如果-20.50元表示亏本20.50元,那么+100.57元表示什么?(3)如果+20%表示增加20%,那么-6%表示什么?99国债(1)__________;99国债(2)_________;99国债(3)__________;01通化债券________;01三峡债券___________.13、某厂计划每天生产零件800个,第一天生产零件850个,第二天生产零件800个,第三天生产零件750个,你能正、负数表示该厂每天的超产量吗?14、.去超市买食品时经常看到包装袋上写着净重150g±5g.这里表示什么意思?(四)课堂小结小组交流讨论回顾本节课的学习过程,交流结束后由学生对本节课的内容进行总结.1、正数与负数都来自于实际生活;用正、负数可以表示实际问题中具有相反意义的量,例如…2、小学里学过的数除0外都是正数;正数前面添上“-”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限。
“创生型”助学案【学习内容】有理数的加法(2)【学习目标】通过本节课的学习,你需要达到以下目标:1、基础性目标(1)经历探索有理数加法运算律过程,理解有理数加法运算律;(2)能熟练运用运算律简化运算,提倡得法多样化.2、发展性目标(1)在具体情境中探索运算律,并提倡算法多样化;(2)尝试评价不同方法间的差异,能探索解决问题的有效方法,并试图寻找其他途径,解释其合理性.3、生成目标重视过程中学生归纳、概括、描述、交流等能力的培养除此之外,在学完本课后,你还有哪些收获?【学习重难点】重点:合理运用运算律简化运算.难点:理解运算律在实际问题中的应用.【学习方法】“自主——协作”式教学【学习活动】____323=+-+y x ,y x 则互为相反数与若2、某潜水员先潜入水下61米,然后又上升32米,这时潜水员处在什么位置?3.某日小明在一条南北方向的公路上跑步。
他从A 地出发,每隔10分钟记录下自己的跑步情况(向南为正方向,单位:米):-1008,1100,-976,1010,-827,9461小时后他停下来休息,此时他在A 地的什么方向?距A 地多远?小明共跑了多少米?4、某个食品店一周内每天的利润如下(单位:元):50,-60,-30,70,60,-20,40. 总的来说,这个食品店本周是盈利了还是亏损了?请你先估计一下,然后再列式算一算,并把结果与同学交流。
活动五:暂停之思——谈一谈收获体会 活动要点:这节课——我学会了…...我明白了……我收获了……我还希望知道……活动六:作业布置活动要点:完成教材上46页作业。
活动要点: 教师指定几名学生板演,并引导学生发现解题过程中出现的问题,及时解决。
设计意图:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。
点拨内容:运算律的灵活运用 组织要点:让学生有序地以小组为单位讨论,分工与合作共同完成任务。
第二章 有理数及其运算2.1 有理数1.在具体情境中,进一步认识负数,理解有理数的意义.2.经历用正负数表示具有相反意义的量的过程,体会负数是实际生活的需要.3.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类.自学指导看书学习第23~24页后,请你认真思考,你认为整数包括哪些?分数包括哪些?有理数按数的形式可以怎样来分类?你认为正有理数包括哪些?负有理数包括哪些?有理数按性质(符号)可以怎样来分类?知识探究1.正整数、0和负整数统称为整数.正分数和负分数统称为分数.2.整数和分数统称为有理数.自学反馈1.(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么﹣0.03克表示什么?(3)某大米包装袋上标注着:“净重量:10kg ±150g ”,这里的“10kg ±150g ” 表示什么?解:(1)沿顺时针方向转了12圈记作-12圈;(2)-0.03克表示乒乓球的质量低于标准质量0.03克;(3)每袋大米的标准质量应为10kg ,但实际每袋大米可能有150g 的误差,即每袋大米的净含量最多是10kg+150g ,最少是10kg-150g.2.把下列各数写在相应的集合里.-5,10,-4.5,0,+532,-2.15,0.01,+66,-53,15%,722,2009,-16 正整数集合:{10,+66,2009,…}负整数集合:{-5,-16,…}负分数集合:{-4.5,-2.15,-53,…} 正分数集合:{+532,0.01,15%,722,…} 整数集合:{-5,10,0,+66,2009,-16,…}负数集合:{-5,-4.5,-2.15,-53,-16,…} 正数集合:{10,+532,0.01,+66,15%,722,2009,…} 有理数集合:{-5,10,-4.5,0,+532,-2.15,0.01,+66,-53,15%,722,2009,-16,…} 3.有理数的分类(分两类).有理数的分类标准要统一.活动1:小组讨论1.在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么?解:记作-20分.2.在数-5,32,0,-0.24,7,4076,-95,-2中,正数有32,7,4076,负数有-5,-0.24,-95,-2,整数有-5,0,7,4076,-2,分数有32,-0.24,-95,有理数有-5,32,0,-0.24,7,4076,-95,-2. 3.下列说法不正确的是( A )A.正整数和负整数统称为整数B.正有理数和负有理数和零统称有理数C.整数和分数统称有理数D.正分数和负分数统称为分数4.有理数:-7,3.5,-21,211,0,π,1713中正分数有( C ) A.1个 B.2个 C.3个 D.4个活动2:活学活用1.下列各数:-8,-311,2.03,0.5,76,-44,-0.99,其中整数是-8,-44,负分数有-311,-0.99. 2.下列说法正确的是( D )A.一个有理数不是正数就是负数B.正有理数和负有理数组成有理数C.有理数是指整数、分数、正有理数、负有理数和零这五类数D.负整数和负分数统称为负有理数3.有理数中,是整数而不是负数的是非负整数,是负有理数而不是分数的是负整数.通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是正整数、零、负整数、正分数、负分数.欢迎您的下载,资料仅供参考!。
北师大版七年级数学上册第二章2.1有理数 导学案1、教学目标1.了解正数与负数是从实际需要中产生的,并会判断一个数是正数还是负数.2.会用正、负数表示具有相反意义的量.3.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力.2、教学重点和难点教学重点:1.理解并掌握有理数的概念.2.会用正、负数表示生活中具有相反意义的量.教学难点:有理数的分类.3、预习导学1.正数和负数的意义(1)正数:像6,3.7,23,10%,…这样大于0的数叫做正数. ①为了突出数的符号,可以在正数的前面加“+”号,如6,3.7,23,10%可以写成+6,+3.7,+23,+10%. ②正数前面的“+”号可以省略.如+7可以省略“+”号写成7.(2)负数:像-3,-5.6,-50,-12,-15%,…在正数前面加上“-”号的数叫做负数.辨误区 正数和负数的理解①对于正数和负数的意义,不能简单地理解为带“+”号的数是正数,带“-”号的数是负数.②负数是在正数前面加上一个“-”号,如-5,-(+7)等都是负数,负数中的“-”号不能省略,如-5省略“-”号就是5,变成正数了.(3)0:0既不是正数也不是负数.0是正数和负数的分界点,如温度计上的0 ℃,也是一个特定的温度,0 ℃以下为负数,0 ℃以上为正数.2.有理数(1)定义:整数与分数统称为有理数.(2)有理数的判断方法:①正整数、0、负整数都是有理数.②正分数和负分数都是有理数.(3)拓展发散:引入负数后,数的范围扩大为有理数,奇数和偶数也由自然数范围扩大到有理数范围.偶数不仅有正偶数和0,还有负偶数;奇数也包括正奇数和负奇数.3.有理数的分类方法(1)按定义分(两分):(2)按性质分(三分):“不重复”的意思是说,每一个数只能属于其中的一类,不能出现某一个数属于多类的情况.如,将有理数分为非负数、非正数两类就是错误的.因为0这个数被重复分类了,把0既分在了非负数中,又分在了非正数中.“不遗漏”的意思是说,分类时,不能遗漏某些数.如,将有理数分为正有理数与负有理数两类,显然遗漏了0.4.具有相反意义的量及应用(1)具有相反意义的量: ①向东向西、买进卖出、零上零下、收入和支出、运进和运出……,都具有相反的意义.如“向东5米”和“向西3米”就是一对具有相反意义的量.②特征:a .意义相反;b .成对出现.(2)表示方法:用正数和负数表示具有相反意义的量.当规定其中一个量用正数表示时,那么另一个就用负数表示.0是正负数的界限,是表示“基准”的数.4、课堂例题讲解【例1】 下列各数中,哪些数是正数?哪些数是负数?+12,0.15,-52,-2.05,0,-7,3.14 分析:用正数、负数的定义进行区分.解:正数有:+12,0.15,3.14;负数有:-52,-2.05,-7.【例2】 下列说法正确的有( ).①-5是有理数②73是有理数 ③0.3不是有理数 ④-2是偶数A .①②③B .①②③④C .②③④D .①②④ 解析:负整数是有理数,正分数是有理数,有限小数可化为分数,因此是有理数;偶数包括正偶数、0和负偶数.答案:D【例3】 把下面各有理数填在相应的大括号里:12,-3,+1,13,-1.5,0,0.2,314,-435. 正数集合:{ …};负数集合:{ …};整数集合:{ …};分数集合:{ …};正分数集合:{ …};负分数集合:{ …}.分析:根据正数、负数;整数、分数;正分数、负分数的定义可完成本题.解:正数集合:⎩⎨⎧⎭⎬⎫12,+1,13,0.2,314,…. 负数集合:⎩⎨⎧⎭⎬⎫-3,-1.5,-435,…. 整数集合:{12,-3,+1,0,…}.分数集合:⎩⎨⎧⎭⎬⎫13,-1.5,0.2,314,-435,…. 正分数集合:⎩⎨⎧⎭⎬⎫13,0.2,314,…. 负分数集合:⎩⎨⎧⎭⎬⎫-1.5,-435,…. 点评:解答有理数的分类问题,要明确分类的标准,在将有理数填入相应的集合中时,注意不要发生遗漏和错填现象.【例4】 阅读下面的材料,从中找出一对具有相反意义的量,并用正数和负数表示它们. 非洲“撒哈拉”是世界上著名的大沙漠,昼夜温差非常大,一个科学考察队测得某一天中午12时的气温是零上53 ℃,下午2时的气温是零上58 ℃,晚上10时的气温是零下34 ℃.分析:“零上温度”与“零下温度”是具有相反意义的量,规定其中的一个量为正,则另一个量为负.解:具有相反意义的量是“零上温度”和“零下温度”.把零上记为正,则零上53 ℃和零上58 ℃分别记作+53 ℃和+58 ℃,零下34 ℃记作-34 ℃.【例5】 一种零件的尺寸在图纸上标注是10±0.05(单位:毫米),表示这种零件的标准尺寸是多少毫米?加工时,符合要求的零件最大不能超过多少毫米?最小不能少于多少毫米?分析:由标注“10±0.05”可知,10是指标准尺寸的大小,+0.05说明在10毫米的基础上,最多只能多出0.05毫米,-0.05说明在10毫米的基础上,最多只能比标准尺寸少0.05毫米.解:这种零件的标准尺寸是10毫米;符合要求的零件最大不能超过10.05毫米,最小不能少于9.95毫米.5、总结反思通过本节课的学习,请大家总结我们都学到了哪些数学知识和方法?1.我们知道了为什么要学习负数,学会了用正、负数表示生活中的具有相反意义的一对量,还知道了有理数都包括哪些数及其分类.2.我们还要掌握分类的思想方法.3.学生易困惑的地方:学生对于有理数的分类理解不是很好,易把两种分类混淆和重复,应通过判断题或选择题的形式多加练习.。
北师大版七年级数学上册第二章《有理数及其运算》全部导学案课题:2.1数怎么不够用了一、教师寄语:知识改变命运,拼搏成就人生。
二、学习目标:1、知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,会将有理数正确分类。
2、过程与方法:(1)、体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。
(2)、能结合具体情境出现并提出数学问题,并解释结果的合理性。
3、情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。
三、学习过程:(一)、创设情境:某班举行知识竞赛,评分标准是答对一题加10分,答错一题扣10分,不回答得0分,每个队的基本分均为0分,四个队的答题情况见课本37页。
(二)、自主学习:探究一:什么是正负数。
1、你能把每个队的最后得分计算出来吗?2、第一队与第四队的得分相同吗?如何区分呢?3、自学课本38页并完成下表:4、上面出现了一些带“—”的数,生活中你见过这样的数吗?5、小组共同学习课本39页。
议一议6、你能再举出生活中的其他实例吗。
(三)、合作交流:1、通过上面的学习你知道什么样的数是正数,什么样的数是负数了吗?0是正数啊还是负数?你能给它们下一个定义吗?2、通过学习你能理解负数引入的必要性吗?归纳总结:1、正数:2、负数:3、零:(四)、例题解析:探究二.探究正负数的意义。
(1)如果上升20m记作+20m,那么下降10m记作__m.(2)高出海平面50m记作+50m,那么-20m表示_________.分析:我们规定上升和高出海平面为正,那么下降记作“负”。
表示为负数的则代表相反意义的量。
4、正负数有什么意义:5、你还能举出生活中的其他的具有相反意义的量吗探究三。
探究什么是有理数?怎样将有理数分类?1、到目前为止你都是学过哪些数?你能举出一些例子吗?2、你能将我们学过的这些数正确的分类吗?小组合作交流。
北师大版数学七年级上册《第二章有理数及其运算》教案一. 教材分析《第二章有理数及其运算》这一章主要介绍了有理数的概念、分类及有理数的运算规则。
内容涵盖了有理数的概念、分类、加减乘除运算、乘方运算等。
这部分内容是整个初中数学的基础,对于学生理解和掌握后续知识具有重要意义。
二. 学情分析学生在学习这一章内容时,已经具备了初步的数学运算能力,对数学概念有一定的理解。
但部分学生可能对有理数的概念和分类理解不深,对于有理数的运算规则容易混淆。
因此,在教学过程中,需要注重对学生概念的理解和运算规则的训练。
三. 教学目标1.理解有理数的概念,掌握有理数的分类。
2.掌握有理数的加减乘除运算规则,能够熟练进行计算。
3.理解有理数的乘方运算规则,能够进行相应的计算。
4.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算规则,特别是乘方运算。
五. 教学方法采用讲解、示例、练习、讨论等教学方法,通过引导学生自主探究、合作交流,让学生在实践中掌握知识,提高能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题,包括基础题和拓展题。
七. 教学过程1.导入(5分钟)通过复习小学学过的加减乘除运算,引出有理数的概念和分类。
2.呈现(15分钟)讲解有理数的概念和分类,示例说明有理数的运算规则。
3.操练(15分钟)让学生进行有理数的加减乘除运算,引导学生掌握运算规则。
4.巩固(10分钟)让学生进行一些有关有理数的运算题目,巩固所学知识。
5.拓展(10分钟)讲解有理数的乘方运算规则,让学生进行相关的计算。
6.小结(5分钟)对本节课的主要内容进行总结,强调重点和难点。
7.家庭作业(5分钟)布置一些有关有理数运算的题目,让学生课后巩固。
8.板书(课后整理)整理本节课的主要板书内容,方便学生复习。
教学过程每个环节所用时间共计50分钟,剩余10分钟用于学生自主学习和教师解答疑问。
针对以上教案对教学情境和教学活动的分析如下:一、教学情境本节课的主题是有理数及其运算,我通过创设生动有趣的教学情境,激发学生的学习兴趣。
北师大版七年级数学上册第二章导学案
1. 知识概述
本章主要介绍数的分类和数的比较。
2. 研究目标
- 理解自然数、整数、有理数和实数的含义和性质;
- 掌握数的比较运算,包括大于、小于和等于的概念及其运算方法。
3. 研究内容
3.1 数的分类
- 自然数:由1开始,顺序往后的数,用符号N表示;
- 整数:包括正整数、负整数和0,用符号Z表示;
- 有理数:可以表示为两个整数的比,其中分母不为0,用符号Q表示;
- 实数:包括有理数和无理数,用符号R表示。
3.2 数的比较
- 大于:数值较大的数比较大;
- 小于:数值较小的数比较小;
- 等于:数值相等的数相等。
4. 研究方法
- 多观察身边的事物,发现其中的规律;
- 多做一些实际问题的比较,提高数的比较运算的能力;
- 多与同学、老师讨论,交流思考。
5. 总结回顾
本章主要学习了数的分类和数的比较。
通过掌握自然数、整数、有理数和实数的概念,以及数的比较运算方法,我们能够更好地理
解数的性质和关系。
在学习中,我们要多观察身边的事物,多做实
际问题的比较,并与他人交流讨论,从中提高自己的理解和应用能力。
新北师大版七年级数学上册第二章导学案:有理数及其运算知识点8:有理数的减法法则:减去一个数等于加上这个数的相反数。
1. 9-(-5)=14, -3-1=-4, 0-8=-8, -5-0=-5, 45-(-45)=90, (+3)-(+2)=1, (-3)-(-2)=-12. 对于有理数的加减混合运算,可以将减法变成加法,将减数变成其相反数,然后按照加法运算的步骤进行计算。
例如:-18+12-15+18+6+3-31-28+69+2816-29+7-11+9。
3. 对于有理数的乘法法则,两数相乘同号得正,异号得负,并将绝对值相乘。
如果有多个有理数相乘,积的符号由其中负数的个数决定,再将绝对值相乘。
例如:2/3×0.2=-4/15, 12×(-3)=-36, (-1.2)×(-3)=3.6, (-8/3)×(-1/2)=4/3, (-7/6)×0=0, (-4)×8×(-0.25)=8, (-3/5)×(-25/6)×(-2)=25/4, 7/3×(-5)×(-8/7)=40.4. 倒数的定义是,如果两个数的乘积为1,那么这两个数互为倒数。
例如,7的倒数是1/7,-3的倒数是-1/3,-8/7的倒数是-7/8,0.2的倒数是5。
5. 对于有理数的除法法则,除以一个数等于乘以这个数的倒数。
两数相除,同号得正,异号得负,并将绝对值相除。
除以任何一个非零数都得有限小数。
例如,194÷(-2.5)=-77.6, (-10)÷(-8)=5/4, (-0.25)÷(-4.5)=1/18, (-4.5)÷(-2)=-2.25, (-5)÷100=-0.05。
6. 乘方是指将一个数连乘若干次的运算,其中底数表示被连乘的数,指数表示连乘的次数。
正数的任何次幂都是正数,负数的偶次幂是正数,奇次幂是负数。
北师大版数学七年级上册《第二章有理数及其运算》教学设计一. 教材分析《第二章有理数及其运算》这一章节是北师大版数学七年级上册的重要内容,主要介绍了有理数的概念、分类、大小比较、加减乘除运算及其应用。
本章内容是学生学习数学的基础,对后续的学习具有重要意义。
教材通过丰富的例题和练习题,帮助学生掌握有理数的运算方法,培养学生的运算能力和逻辑思维能力。
二. 学情分析七年级的学生已经掌握了整数和分数的基本知识,对运算有一定的理解。
但是,对于有理数的概念、分类、大小比较等可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
此外,学生可能对负数和分数的运算存在一定的困难,需要教师进行针对性的引导和讲解。
三. 教学目标1.理解有理数的概念、分类、大小比较方法。
2.掌握有理数的加减乘除运算方法,并能灵活运用。
3.培养学生的运算能力和逻辑思维能力。
4.培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.有理数的概念、分类、大小比较。
2.有理数的加减乘除运算方法。
3.运用有理数解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究和发现。
2.使用实例和练习题,让学生在实践中学习和掌握知识。
3.分组讨论和合作,培养学生的团队合作意识和问题解决能力。
4.教师讲解和引导,帮助学生理解和克服难点。
六. 教学准备1.准备PPT和教学课件,用于展示和讲解。
2.准备实例和练习题,用于让学生练习和巩固。
3.准备小组讨论的问题和任务,用于培养学生的团队合作意识。
七. 教学过程1.导入(5分钟)通过引入实例,如温度、海拔等,引导学生思考和讨论这些实例与有理数的关系,激发学生的兴趣和好奇心。
2.呈现(15分钟)使用PPT和教学课件,呈现有理数的概念、分类、大小比较等内容,并进行讲解和解释。
通过丰富的实例和图示,帮助学生理解和掌握。
3.操练(15分钟)让学生进行有理数的加减乘除运算练习,教师给予指导和讲解。
通过练习题,让学生在实践中学习和掌握运算方法。
1.有理数一、学习目标(1)借助生活中的实例,理解有理数的含义,体会负数引入的必要性和有理书应用的广泛性.(2)会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量.二、重点难点重点:认识负数及有理数的分类。
难点:有理数的分类及如何表示生活中具相反意义的量。
三、学法指导指导学生自学、合作探究例题、指导学生独立完成课堂检测。
四、学导过程(一)自主学习用小学学过的数能表示右边的温度吗?(二)合作交流零上5ºC零下5ºC根据课本第23页计算某班二个代表队举行知识竞赛得分情况,创设一个便于学生动手、动脑、主动探索的求知情境,然后进行小组合作讨论.得出新知后,利用新的知识完成表格。
现在我们用带有“+”号和“-”号的数表示各队的得分情况,试完成下表例1(1)某大米包装袋上标注着“净含量:10kg±150g‖这里的“10kg±150g‖表示什么?(2)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02,那么-0.03克表示什么?(4)如果向东运动4m记作+4m,那么向西运动7m应记作什么?若在原地不动又记作什么?(三)课堂检测1、填空题(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作______________.(2)东、西为两个相反方向,如果-4米表示一个物体向西运动4米,那么+2米表示___________,物体原地不动记作________。
(3)某仓库运进面粉7.5吨,那么运出3.8吨应记作_______________。
2、+1350米表示高于海平面1350米,低于海平面200米,记作.3、如果上升10米记作+10米,那么下降12米,记作.4、如果规定向西走30米记作+30米,那么-40米,表示.5.如果零上5记作+5,那么零下3 记作.6.某仓库运进面粉7.5吨记作+7.5,那么运出3.8吨,记作.7.把下列数分别填在对应的括号内:13,-0.5,2.7,123,0,2/5 ,-4,7/4 .(1)分数();(2)负整数();(3)正分数();(4)有理数().8、下列各数中,哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?哪些是正数?哪些是负数?7,-9.25,-9/10,-301,4/27,31.25,7/15,-3.59、请举出3对具有相反意义的量,并分别用正、负数表示.10、在4个不同时刻,对同一水池中的水位进行测量,记录如下:上升3厘米,下降6厘米,下降1厘米,不升不降,如果上升3厘米记为+3厘米,那么其余3个记录怎样表示?11、(1)如果节约20千瓦·时电记作+20千瓦·时,那么浪费10千瓦·时电记作什么?(2)如果-20.50元表示亏本20.50元,那么+100.57元表示什么?(3)如果+20%表示增加20%,那么-6%表示什么?12、下表是某日上海发行的部分债券行情表,试说明各债券当天涨跌情况。
99国债(1)__________;99国债(2)_________;99国债(3)__________;01通化债券________;01三峡债券___________.13、某厂计划每天生产零件800个,第一天生产零件850个,第二天生产零件800个,第三天生产零件750个,你能正、负数表示该厂每天的超产量吗?14、.去超市买食品时经常看到包装袋上写着净重150g±5g.这里表示什么意思?(四)课堂小结小组交流讨论回顾本节课的学习过程,交流结束后由学生对本节课的内容进行总结.1、正数与负数都来自于实际生活;用正、负数可以表示实际问题中具有相反意义的量,例如…2、小学里学过的数除0外都是正数;正数前面添上“-”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限。
3、有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类。
4、我学得怎样?(五)作业布置一、填空题1.如果提高10分表示+10分,那么下降8分表示_______,不升不降用_______表示..如果向南走5 km记为-5 km,那么向北走10 km记为____.如果收入2万元用+2万元表示,那么支出3000元,用_______表示..某乒乓球比赛用+1表示赢一局,那么输2局用_______表示,不输不赢用_______表示..某企业以1996年的利润为标准,2000年增加了10%记为+10%,2001年利润为-5%表示的意义是_______..节约用水,如果节约5.6吨水记作+5.6吨,那么浪费3.8吨水,记作_______.2.大于-5.1的所有负整数为_____.3.分数有_____,_____.4.珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____.5.请写出3个大于-1的负分数_____.6.某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.7.某县外贸局一年出口总额人民币1300万元,表示为+1300万.进口某种原料350万应表示为_____.8.在―学雷锋活动月‖活动中,甲乙两组同学上街清扫街道,它们分别在街道的两端同时相向开始打扫,街道总长1200米,两组会合时甲组向南清扫了500米,记作+500米,则乙组向北清扫了_____米,应记作_____.9.某下岗职工购进一批苹果,第一天盈利17元,记作+17元,第二天亏损6元应记作_____.二、选择题1、下面是关于0的一些说法,其中正确说法的个数是( )①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数. A.0B.1C.2D.32、在0,21,-51,-8,+10,+19,+3,-3.4中整数的个数是()A.6B.5C.4D.33、下列说法正确的是( )A.零上5℃与零下5℃意思一样,都是5℃.B.正整数集合与负整数集合并在一起是整数集合.C.收入-2000元表示支出2000元.D.-a 是负数, a 是正数.4、下列各数中,大于-21小于21的负数是( ) A.-32 B.-31C.31D.05、.负数是指( )A.把某个数的前边加上―-‖号B.不大于0的数C.除去正数的其他数D.小于0的数 6、关于零的叙述错误的是( ) A.零大于所有的负数 B.零小于所有的正数C.零是整数D.零既是正数,也是负数7、非负数是( ) A.正数B.零C.正数和零D.自然数8、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处三、解答题9、下面是具有相反意义的量,请用箭头标出其对应关系10、某天气预报显示,我国五个地区的最高气温第二天比第一天下降了12℃,这五个地区第一天最高气温如图所示,请填写第二天的最高气温11、某同学语、数、外三科的成绩,高出平所示请回答,该生成绩最好和最差的科目分别是什么?12、某公司今年第一季度收入与支出情况如表所示(单位:万元)请问:(1)该公司今年第一季度总收入与总支出各多少万元?(2)如果收入用正数表示,则总收入与总支出应如何表示?(3)该公司第一季度利润为多少万元?13、某地气象站测得某天的四个时刻气温分别为:早晨6点为零下3℃,中午12点为零上1℃,下午4点为0℃,晚上12点为零下9℃.1.用正数或负数表示这四个不同时刻的温度.2.早晨6点比晚上12点高多少度.3.下午4点比中午12点低多少度.?14、找规律(1)1,-2,3,-4,5,-6,7,-8 ,………其中第199个数为,第2002个数,规律是;(2)1,2,-3,4,5,-6,7,8 ,-9 ………其中第345个数为,第2002个数,规律是;(3)-1,2,-3,4,-5,6,-7,8 ,-9……其中第279个数为,第320个数的符号为,规律是.15、小明的爸爸开的小店昨天获利120元,他在每日收支账本上记下“120元”.今天小店亏了20元,记作__.A:20元B:-20元C:-20 D:100元进一步来看,一周来他的账本上的数据为周一周二周三周四周五周六周日120元-20元80元0元-10元150元100元如此看来他这一周是赚了还是赔了?有多少?16、某日傍晚,项城的气温由中午的零上2℃下降了7℃,这天傍晚项城的气温是多少?(六)延伸拓展2.数轴一、学习目标1、通过与温度计的类比认识数轴,会用数轴上的点表示有理数;2、借助数轴了解相反数的概念,知道互为相反数的一对数在数轴上的位置关系;3、利用数轴比较有理数的大小.4、培养学生的观察、比较、分析、抽象、概括的逻辑思维能力和动手能力,渗透数形结合的数学思想和方法.二、重点难点重点:数轴、相反数的概念及应用。
难点:数形结合的数学思想和方法的渗透,利用数轴比较有理数的大小。
三、学法指导指导学生自学、合作探究例题、指导学生独立完成课堂检测、并做好总结。
四、学导过程(一)自主学习1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?2:在一条东西向的马路上,有一个汽车站,汽车站东3 m 和7.5m 处分别有一棵柳树和一棵杨树,汽车站西3 m 和4.8m 处分别有一棵槐树和一根电线杆,试画图表示这一情境.(二)合作交流3、由上述两问题得到什么启发?你能用一条直线上的点表示有理数吗?4、 是数轴,数轴的三要素: 例题:1: +3,-4,41,-1.5,0分别在数轴的什么位置? 2:指出数轴上 A, B, C, D 各点分别表示什么数?3: 画出数轴,并用数轴上的点表示下列各数: 23, -5, 0, 5, -4,234:2与-2有什么相同点与不相同点?它们在数轴上的位置有什么关系?23与23-,5与-5呢?4、 称这两个数互为相反数,特别地,0的相反数是 。
在数轴上,表示互为相反数的两个点,位于原点的 并且与原点的距离 。
6、观察数轴并回答问题:问题1:数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?问题2:正数、负数在数轴的什么位置?判断它们的大小? 利用结论练习:比较下列每组数的大小,并说明理由.⑴-2 和 +6;⑵0和 -1.8;⑶23-和 -4.7、数轴上两个点所表示数,右边的总比左边的 .正数 0,负数 0,正数 负数. (三)课堂检测1、在数轴上把下列各数的相反数表示出来,并比较它们的大小. 7 ,45- ,-3.5 ,0 ,342、比较下列每组数的大小(1) -10 ,-7 (2) -3.5,1 (3)21-,41- (4) 3.8,-4.1,-3.93、 (1)点A 在数轴上距原点3个单位长度,且位于原点左侧,若将A 向右移动4个单位长度,在向左移动1个单位长度,此时A 点所表示的是什么数?(2)B 点所表示的数是A 点开始时所表示数的相反数做同样的移动以后, B 点表示什么数?(四)课堂小结1、本节课共学习了多少内容?2、你掌握多少?还有哪些不会?如何解决?(五)作业布置 一、选择题1.下列所画的数轴中正确的是( ) A . B .C .D .2、互为相反数是指( )A 、具有相反意义的两个量B 、一个数的前面添上“–”号所得的数C 、数轴上原点两旁的两个点表示的数D 、只有符号不同的两个数 3、在数轴上距离原点4个单位长度的点所表示的数是( ) A 、4 B 、–4 C 、4或–4 D 、2或–2 4、大于–2.5而不大于3的整数( )A 、4个B 、5个C 、6个D 、7个5、如图所示,根据有理数a ,–b ,–c ,在数轴上的位置,比较a ,b ,c ,的大小, 则有( )A 、a<b<cB 、a<c<bC 、b<a<cD 、b<c<a 6、下列说法错误的是( )A 、所有的有理数都可以用数轴上的点表示B 、数轴上的原点表示零C 、在数轴上表示–3的点于表示+1的点的距离是2D 、数轴上表示413 的点,在原单位左边413个单位 二、填空题7、在数轴上表示+3的点在原点的______侧,距原点的距离是______个单位;表示–5的点原点的_____侧,它离原点的距离是_____个单位;表示+3的点位于表示–5的点的_____侧,根据_____,可得–5<38、若数轴上得点M 和N 点表示的两个数互为相反数,并且这两点间的距离为7.2,则这两个点表示的数分别和______和______. 9、已知A ,B 是数轴上的点.(1)如果点A 表示数–3,将A 向右移动7个单位长度,那么终点表示的数是_______;(2)如果点B 表示数3,将B 向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是______.10、正数的相反数是______数,一个数的相反数的相反数是______,0的相反数是______.11、______的相反数大于它本身,______的相反数小于它本身.12、在数轴上,点A 对应的数是21,那么在数轴上与点A 相距3个单位长度的点表示的数是______.9.+3的相反数是_____;______的相反数是-1.2;-175与_____互为相反数。