浙江省杭州市富阳区2018-2019学年八年级(下)期末数学试卷含解析
- 格式:doc
- 大小:304.81 KB
- 文档页数:15
浙教版2018-2019学年度八年级数学第二学期期末综合复习题B(含答案详解)1.关于x 的一元二次方程(m﹣1)x2+3x+m2﹣1=0 的一根为0,则m 的值是()A.±1 B.±2 C.﹣1 D.﹣22.已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2| D.x12+x1=3.如果关于x的方程x2﹣x+1=0有实数根,那么k的取值范围是()A.k>0 B.k≥0C.k>4 D.k≥44.某同学抽取20名学生统计某月的用笔数量情况,结果如下表:则关于这20名学生这个月的用笔数量的描述,下列说法正确的是( ) .A.众数是7支B.中位数是6支C.平均数是5支D.方差为05.如图,△ABC与△A'B'C'关于点O成中心对称,则下列结论中不成立的是()A.OC=OC'B.OA=OA'C.BC=B'C'D.∠ABC=∠A'C'B'6.如图,在菱形中,,.是边上的一点,,分别是,的中点,则线段的长为()A.B.C.D.7.已知是关于的一元二次方程的一个根,则的值为()A.0 B.0或3 C.0或6 D.3或68.反比例函数3myx-=(m≠3)在图象所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是A.m>3 B.m<3 C.m>-3 D.m<-39.某班九名同学在篮球场进行定点投篮测试,每人投篮五次,投中的次数统计如下:4,3,2,4,4,1,5,0,3,则这组数据的中位数,众数分别为( )A.3,4 B.4,3 C.3,3 D.4,410.若反比例函数y=(2k-1)的图象位于第二、四象限,则k的值是()A.0 B.0或1 C.0或2 D.411.设a、b是方程x2+x-2018=0的两个不等的实根,则a2+2a+b的值为________.12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是。
(浙江省杭州市富阳区 2018-2019 学年八年级(下)期末模拟数学试题一、选择题1.要使代数式有意义,则 的取值范围是( ).A.B. C. D.2.下列选项正确的是()A. 若|a|=|b|,则 a=bB. 若 a 2=b 2 , 则 a=bC. 若 a 3=b 3 , 则 a=bD. 若|a|+|b|=|a+b|,则 a >0,b >03.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是( ).A. 8、15、17B. 7、24、25C. 3、4、5D. 2、3、 44.下列各组二次根式中,不能合并的是( )A.和B. 和C. 或D. 和5.有 20 个班级参加了校园文化艺术节感恩歌咏大赛,他们的成绩各不相同,其中李明同学在知道自己成绩的情况下,要判断自己能否进入前十名,还需要知道这十个班级成绩的 )A. 平均数B. 加权平均数C. 众数D. 中位数6.正方形具有而菱形不一定具有的性质是( )A. 对角线互相垂直B. 对角线互相平分C. 对角线相等D. 对角线平分一组对角7.平行四边形 ABCD 与等边△AEF 如图放置,如果∠B=45°,则∠BAE 的大小是()A. 75°B. 70°C. 65°D. 60°8.已知直线 y=kx+b 不经过第三象限,则下列结论正确的是( )A. k >0,b >0B. k <0,b >0C. k <0,b <0D. k <0,b≥09.下列一组数:0.1010010001,2.7,﹣3 ,,0.66666…,0,0.080080008…(每相邻两个8之间依次增加一个0),其中无理数有()A.0个B.1个C.2个D.3个10.直线y=kx+b(k<0)上有两点A(x1,y1),B(x2,y2),且x1>x2,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定11.下列四组图形中,一定相似的是A.矩形与矩形B.正方形与菱形C.菱形与菱形D.正方形与正方形12.如图,反比例函数y=与一次函数y=kx﹣k+2在同一直角坐标系中的图象相交于A,B两点,其中A(﹣1,3),直线y=kx﹣k+2与坐标轴分别交于C,D两点,下列说法:①k<0;②点B的坐标为(3,﹣1);③当x<﹣1时,<kx﹣k+2;④tan∠OCD=﹣,其中正确的是()A.①③B.①②④C.①③④D.①②③④二、填空题13.化简计算:=________,=________.14.已知:表示a、b两个实数的点在数轴上的位置如图所示,化简|a﹣b|+=________.15.在△Rt ABC中,∠C=90°,BC∶AC=3∶4,AB=10,则BC=________,AC=________.16.写一个正比例函数,使它的图象经过一、三象限:________.17.如图,四边形ABCD是菱形,E、F、G、H分别是各边的中点,随机地向菱形ABCD内掷一粒米,则米粒落到阴影区域内的概率是________.18.如图,直线y=kx+b与坐标轴的两个交点分别为A(2,0),B(0,﹣3),则不等式kx+b+3≥0的解为________19.如图,已知在梯形ABCD中,AD∥BC,∠B=30°,∠C=75°,AD=2,BC=7,那么AB=________.20.如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF△、BCG、△CDH△、DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为________.21.如图1,把一个长为m、宽为n的长方形(m>n)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长(用含m,n的式子表示)为________.三、解答题22.已知x=(2+)2,y=(2﹣)2,求代数式x2﹣2xy+y2的值.23.某校为了解全校1600名学生每周课外体育活动时间的情况,随机调查了其中的部分学生,对这些学生每周课外体育活动时间x(单位:小时)进行了统计,根据所得数据绘制了一幅统计图,根据以上信息及统计图解答下列问题(Ⅰ)本次接受随机抽样调查的学生人数为________;(Ⅱ)求这些学生每周课外体育活动时间的平均数________;(Ⅲ)估计全校学生每周课外体育活动时间不多于4小时的人数________.24.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.(1)甲、乙两地之间的距离为km,乙、丙两地之间的距离为km;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB所表示的S与t间的函数关系式,并写出自变量t的取值范围.225.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.26.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.参考答案一、选择题1.C2.C3.D4.C5.D6.C7.A8.D9.C10.C11.D12.C二、填空题13.2;﹣114.﹣2b15.6;816.y=2x17.18.x≥019.520.1021.三、解答题22.解:原式=(x﹣y)2,∵x=(2+)2,y=(2﹣)2∴原式=[(2+)2﹣(2﹣)2]2,=[(2++2﹣)(2+﹣2+)]2,=192.23.50;由题意可得,=5,即这50名学生每周课外体育活动时间的平均数是5;×1600=118424.解:(1)8,2;(2)第二组由甲地出发首次到达乙地所用的时间为:8÷[2×(8+2)÷2]=8÷10=0.8(小时),第二组由乙地到达丙地所用的时间为:2÷[2×(8+2)÷2]=2÷10=0.2(小时);(3)根据题意得A、B的坐标分别为(0.8,0)和(1,2),设线段AB的函数关系式为:s2=kt+b,根据题意得:解得:∴图中线段AB所表示的s2与t之间的函数关系式为:s2=10t-8,自变量t的取值范围是:0.8≤t≤1。
- 1 - 2018-2019学年浙教版八年级数学下册期末测试题一、选择题(每小题3分,共30分)1、下列计算正确的是 ( )A )()13132-=-B )12223=-C )52553-=+-D )636±= 2、八年级某班50位同学中,1月份出生的频率是0.20,那么这个班1月份生日的同学有 ( )A )10位B )11位C )12位D )13位3、在式子21-x ,31-x ,2-x ,3-x 中,x 可以取2和3的是( ) A. 21-x B. 31-x C. 2-x D. 3-x 4、下列计算正确的是( ) A . (6)2=±6 B. 2)7(-=-7;C. 3×6=32;D. 6÷3=35、下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是( )A ) 5B )2C )4D )86、 “I am a good student .”这句话中,字母”a“出现的频率是 ( )A )2B )152C )181D ) 111 7、用配方法解方程542=-x x 时,此方程可变形为( )A .1)2(2=+xB .1)2(2=-xC .9)2(2=+xD .9)2(2=-x8、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长( )A .10%B .15%C .20%D .25%9、用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是 ( ).(A )①②③ (B )①④⑤ (C )①②⑤ (D )②⑤⑥10、一张矩形纸片按如图甲或乙所示对折,然后沿着图丙中的虚线剪下,得到①,•②两部分,将①展开后得到的平面图形是 ( ).(A )三角形 (B )矩形 (C )菱形 (D )梯形。
绝密★启用前浙教版2018--2019学年度第二学期八年级期末考试数学试卷注意事项:1.做卷时间100分钟,满分120分 2.做题要仔细,不要漏做 一、单选题(计30分)1.(本题3分)反比例函数y=x1的图象经过的象限是( ) A .第一二象限 B .第一三象限 C .第二三象限 D .第二四象限 2.(本题3分)若反比例函数3m y x-=的图象在第一、三象限,则m 的值可以是( ) A .4 B .3 C .0 D .3- 3.(本题3分)下列计算错误的是( ) A .B .C .D .4.(本题3分)方程(x -2)2+(x -2)=0的解是( )A .2,1B .,1C .D .25.(本题3分)如图,已知某广场菱形花坛ABCD 的周长是12米,∠BAD =60°,则花坛对角线AC 的长等于( )A. 33米B. 4米C. 32米D. 2米 6.(本题3分)若关于的一元二次方程的一个根为1,则的值为( )A .或B .C .1D .-1 7.(本题3分)如图,在矩形ABCD 中,,则BD 的长为A .5B .10C .12D .138.(本题3分)在某次射击训练中,甲、乙、丙、丁4人各射击10次,平均成绩相同,方差分别是=0.35,=0.15,=0.25,=0.27,这4人中成绩发挥最稳定的是( )A .甲B .乙C .丙D .丁 9.(本题3分)关于的方程的两根为直角三角形的两直角边的长,且该直角三角形的面积为1,则斜边长为( )A .5B .7C .5D .710.(本题3分)如图所示,反比例函数y=xk(k≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为( )A .B .2C .22D .25 二、填空题(计32分)11.(本题4分)若一组数据6、7、4、6、x 、1的平均数是5,则这组数据的众数是_____. 12.(本题4分)如图,已知菱形ABCD 的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD 的面积为 .13.(本题4分)五边形的内角和的度数是______.14.(本题4分)若关于x 的一元二次方程kx 2-4x+3=0有实数根,则k 的取值范围是 .连接、.当为________度时,四边形为矩形.16.(本题4分)如图,正方形ABCD 的边长为1,E 是边CD 外的一点,满足CE ∥BD ,BE=BD .则CE= .17.(本题4分)已知四边形ABCD 是平行四边形,再从①AB=BC ,②∠ABC=90°, ③AC=BD ,④AC⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,其中错误的是_______ (只填写序号).18.(本题4分)如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y=xk的图象上,OA=1,OC=6,则正方形ADEF 的边长为________.三、解答题19.(本题7分)解方程:(1)(2)(3)12x x --= (2)231y +=20.(本题7分)计算:(1))22 (2)2111a a a +-+-.21.(本题7分)青山村种的水稻2014年平均每公顷产8000kg ,2016年平均每公顷产9680kg ,求该村水稻每公顷产量的年平均增长率.22.(本题7分)一定质量的氧气,其密度ρ(kg/m 3)是它的体积v (m 3)的反比例函数.当V=10m 3时ρ=1.43kg/m 3. (1)求ρ与v 的函数关系式;(2)求当V=2m 3时,氧气的密度.23.(本题7分)如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,两条对角线AC 、OB 的长分别是6和4,反比例函数y=xk的图象经过点C. (1)写出点A 的坐标,并求k 的值;(2)将菱形OABC 沿y 轴向下平移多少个单位长度后点A 会落在该反比例函数的图象上?24.(本题7分)如图,在平面直角坐标系中,直线y=0.5x+2与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第二象限内作正方形ABCD ,过点D 作DE ⊥x 轴,垂足为E. (1)求点A 、B 的坐标,并求边AB 的长; (2)求点D 的坐标;(3)你能否在x 轴上找一点M ,使△MDB 的周长最小?如果能,请求出M 点的坐标;如果不能,说明理由.25.(本题8分)已知关于的方程.求证:方程总有两个实数根;已知方程有两个不相等的实数根,,且满足,求的值.26.(本题8分)甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表. (1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.参考答案1.B【解析】【分析】根据反比例函数y中的4的符号来判定该函数所经过的象限.【详解】∵4>0,∴反比例函数y的图象经过第一、三象限.故选B.【点睛】本题考查了反比例函数的性质与图象.对于反比例函数y(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.2.A【解析】分析: 先根据反比例函数的性质列出关于k的不等式,求出k的取值范围,进而可得出结论.详解: ∵反比例函数3myx-=的图象位于第一、三象限,∴m−3>0,解得m>3,∴k的值可以是4.故选:A.点睛: 本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.3.B【解析】根据二次根式的运算法则逐一作出判断:A.,计算正确;B.,计算错误;C.,计算正确;D.,计算正确。
2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)下面调查中,适合采用普查的是()A.调查你所在的班级同学的身高情况B.调查全国中学生心理健康现状C.调查我市食品合格情况D.调查中央电视台《少儿节目》收视率3.(3分)若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<14.(3分)下列成语所描述的事件为必然事件的是()A.水中捞月B.守株待兔C.拔苗助长D.翁中捉鳖5.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.6.(3分)反比例函数的图象经过点(1,﹣2),则此函数的解析式是()A.y=2x B.C.D.7.(3分)顺次联结对角线相等的四边形各边中点所得到的四边形是()A.平行四边形B.矩形C.正方形D.菱形8.(3分)某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.144C.200D.909.(3分)如果a2﹣6ab+9b2=0(a、b均不为0),那的值是()A.﹣B.C.﹣D.10.(3分)若,则()A.b>3B.b<3C.b≥3D.b≤311.(3分)如图,直线y=x与双曲线y=交于M、N两点,点P在x轴上,连接MP,NP,若MP⊥NP,且△MNP的面积为10,则k的值是()A.6B.8C.10D.1212.(3分)在菱形ABCD中,∠C=∠EDF=60°,AB=1,现将∠EDF绕点D任意旋转,分别交边AB、BC于点E、F(不与菱形的顶点重合),连接EF,则△BEF的周长最小值是()A.1+B.1+C.2D.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接写在答题卡相应位置上)13.(3分)为了解我县11000名九年级毕业生的体育成绩,从中抽取了100名考生的体育成绩进行统计,在这个问题中,样本容量是.14.(3分)一只不透明的袋子中有1个红球、1个黑球和2个白球,这些球除颜色不同外其它都相同,搅匀后从中任意摸出1个球,摸出白球可能性摸出红球可能性(填“等于”或“小于”或“大于”).15.(3分)在▱ABCD中,若∠B=50°,则∠C=°.16.(3分)方程=的解是 .17.(3分)某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款0.4万元,后期每个月分期付一定的数额,则每个月的付款额 y (万元)与付款月数x 之间的函数表达式是 .18.(3分)已知+|2﹣b |=0,则+= .19.(3分)已知点A (1,y 1),B (2,y 2),都在反比例函数y =的图象上,则y 1,y 2的大小关系是 .20.(3分)在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DE ⊥AB ,垂足为E 点,已知四边形ABCD 的面积是16,且AE =1,则AD = .三、解答题(本大题共8小题,共90分解答时应写出必要的文字说明、证明过程或演算步骤)21.(12分)计算(1)+﹣(2)×(﹣)22.(12分)计算(1)﹣(2)1﹣÷23.(10分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)条形统计图中,m=,n=;(2)求扇形统计图中,艺术类读物所在扇形的圆心角的度数.24.(10分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=3,BC=4,求四边形OCED的周长.25.(10分)为了美化城市,某县园林局计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数是原计划的倍,结果提前2天完成了任务,求原计划每天栽树多少棵?26.(12分)仿照下列过程:﹣===﹣1;﹣===;(1)运用上述的方法可知:=,=;(2)拓展延伸:计算:++…+.27.(12分)已知四边形ABCD为矩形,AB=8cm,BC=10cm,点P在边AD上以每秒2cm的速度由点A向点D运动,同时点Q在边CD上以每秒acm的速度由点C向点D 运动(如图1),设运动时间为t秒(t>0),当P、Q中有一点运动到点D时,两点同时停止运动.(1)若a=1,则t为何值时,△DPQ为等腰直角三角形?(2)在运动过程中,若存在某一时刻t,使BQ能垂直平分CP,求此时a,t的值.(3)若G为BC中点,M、N、E、F分别为线段PD、DQ、PG、GQ中点(如图2).①记四边形MNFE的面积为S(cm2),请直接写出S(cm2)与时间t(s)的函数关系式;②在运动过程中,若存在某一时刻t,使得四边形MNFE恰好为正方形,试求出此时a、t的值.28.(12分)如图,正方形OABC边长为4,点A、C分别在x轴和y轴上,点B在第一象限,M为BC中点,反比例函数y=过点M,交BA于点N,D为线段AC上一动点,(点D与A、C两点不垂合),过D作x轴垂线交反比例函数y=函数于点E,连接BE、DE.(1)直接写出k值及N点坐标:k=,N(,).(2)AD=4时,求四边形ABED是菱形.(3)小明说:“当D在线段AC上运动时(D点与A,C两点不重合)△DEB始终为等腰三角形”,你认为他说的正确吗?如果正确,请说说理由,如果不正确,请举一个反例.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,也不是中心对称的图形,故本选项不符合题意;C、不是轴对称图形,是中心对称的图形,故本选项不符合题意;D、是轴对称图形,也是中心对称的图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)下面调查中,适合采用普查的是()A.调查你所在的班级同学的身高情况B.调查全国中学生心理健康现状C.调查我市食品合格情况D.调查中央电视台《少儿节目》收视率【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查你所在的班级同学的身高情况适合普查,故A符合题意;B、调查全国中学生心理健康现状调查范围广适合抽样调查,故B不符合题意;C、调查我市食品合格情况无法普查,故C不符合题意;D、调查中央电视台《少儿节目》收视率调查范围广适合抽样调查,故D不符合题意;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<1【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.(3分)下列成语所描述的事件为必然事件的是()A.水中捞月B.守株待兔C.拔苗助长D.翁中捉鳖【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、水中捞月是不可能事件;B、守株待兔是随机事件;C、拔苗助长是不可能事件;D、瓮中捉鳖是必然事件;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义选择答案即可.【解答】解:∵=,=,=2,∴属于最简二次根式的是.故选:C.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.(3分)反比例函数的图象经过点(1,﹣2),则此函数的解析式是()A.y=2x B.C.D.【分析】把(1,﹣2)代入函数y=中可先求出k的值,那么就可求出函数解析式.【解答】解:由题意知,k=1×(﹣2)=﹣2.则反比例函数的解析式为:y=﹣.故选:B.【点评】本题考查了待定系数法求解反比例函数解析式,此为近几年中考的热点问题,同学们要熟练掌握.7.(3分)顺次联结对角线相等的四边形各边中点所得到的四边形是()A.平行四边形B.矩形C.正方形D.菱形【分析】因为四边形的两条对角线相等,根据三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.【解答】解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,∵AC=BD,∴EH=FG=FG=EF,∴四边形EFGH是菱形.故选:D.【点评】本题考查了三角形的中位线定理,难度中等,需要掌握三角形的中位线平行于第三边,并且等于第三边的一半,另外要知道四边相等的四边形是菱形.8.(3分)某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.144C.200D.90【分析】根据乙类书籍有90本,占总数的45%即可求得总书籍数,丙类所占的比例是1﹣15%﹣45%,所占的比例乘以总数即可求得丙类书的本数.【解答】解:总数是:90÷45%=200(本),丙类书的本数是:200×(1﹣15%﹣45%)=200×40%=80(本)故选:A.【点评】本题考查了扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,正确求得总书籍数是关键.9.(3分)如果a2﹣6ab+9b2=0(a、b均不为0),那的值是()A.﹣B.C.﹣D.【分析】由a2﹣6ab+9b2=0,即(a﹣3b)2=0得a=3b,代入计算可得.【解答】解:∵a2﹣6ab+9b2=0,即(a﹣3b)2=0,∴a﹣3b=0,即a=3b,则原式===,故选:B.【点评】本题主要考查分式的值,解题的关键是掌握完全平方公式及其非负性和分式的约分.10.(3分)若,则( ) A .b >3 B .b <3 C .b ≥3 D .b ≤3【分析】根据二次根式的性质得出b ﹣3≥0,求出即可.【解答】解:∵=b ﹣3,∴b ﹣3≥0,解得:b ≥3,故选:C .【点评】本题考查了对二次根式的性质的应用,注意:当a ≥0时,=a ,当a <0时,=﹣a .11.(3分)如图,直线y =x 与双曲线y =交于M 、N 两点,点P 在x 轴上,连接MP ,NP ,若MP ⊥NP ,且△MNP 的面积为10,则k 的值是( )A .6B .8C .10D .12【分析】设M (x , x ),P (a ,0),根据反比例函数的对称性可得N (﹣x ,﹣x ),且x >0,a >0.由OM =ON 可得S △OMP =S △ONP =S △MNP =5.根据直角三角形斜边上的中线等于斜边的一半得出OM =OP ,即x 2+(x )2=a 2,化简得出a =x .由S △OMP =5,得出•a •x =5,将a =x 代入整理得出x 2=.再把M 点坐标代入y =,即可求出k 的值.【解答】解:如图,设M (x , x ),P (a ,0),则N (﹣x ,﹣x ),且x >0,a >0.∵△MNP 中,MP ⊥NP ,OM =ON ,∴S △OMP =S △ONP =S △MNP =×10=5. ∵OM =OP ,∴x 2+(x )2=a 2, ∴a =x . ∵S △OMP =5,∴•a •x =5,∴•x •x =5,∴x 2=.∵双曲线y =过M 点,∴k =x •x =x 2=×=6. 故选:A .【点评】本题考查了反比例函数的性质,直角三角形的性质,反比例函数图象上点的坐标特征,三角形的面积等知识.设M (x , x ),P (a ,0),根据条件列出关于x 、a 的两个方程是解题的关键.12.(3分)在菱形ABCD 中,∠C =∠EDF =60°,AB =1,现将∠EDF 绕点D 任意旋转,分别交边AB 、BC 于点E 、F (不与菱形的顶点重合),连接EF ,则△BEF 的周长最小值是( )A .1+B .1+C .2D .【分析】连接BD ,如图,利用菱形的性质可判断△ABD 和△CBD 都是等腰直角三角形,则BD =AD ,∠ADB =∠DBC =∠A =60°,再证明∠ADE =∠BDF ,则可判断△ADE ≌△BDF ,所以AE =BF ,DE =DF ,接着判断△DEF 为等边三角形得到EF =DE ,利用等线段代换得到△BEF 的周长=AB +DE =1+DE ,利用垂线段最短得到DE ⊥AB 时,DE的长最小,最小值为AB=,从而得到△BEF的周长最小值.【解答】解:连接BD,如图,∵在菱形ABCD中,∠C=60°,∴△ABD和△CBD都是等腰直角三角形,∴BD=AD,∠ADB=∠DBC=∠A=60°,∵∠EDF=60°,∴∠ADE=∠BDF,在△ADE和△BDF中,∴△ADE≌△BDF,∴AE=BF,DE=DF,∴△DEF为等边三角形,∴EF=DE,∴△BEF的周长=BE+BF+EF=BE+AE+DE=AB+DE=1+DE,当DE的值最小时,△BEF的周长,而DE⊥AB时,DE的长最小,最小值为AB=,∴△BEF的周长最小值是1+.故选:B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质和等边三角形的判定与性质.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接写在答题卡相应位置上)13.(3分)为了解我县11000名九年级毕业生的体育成绩,从中抽取了100名考生的体育成绩进行统计,在这个问题中,样本容量是100.【分析】依据样本容量的定义进行判断,一个样本包括的个体数量叫做样本容量.【解答】解:为了解我县11000名九年级毕业生的体育成绩,从中抽取了100名考生的体育成绩进行统计,在这个问题中样本容量是100,故答案为:100.【点评】本题主要考查了样本容量的定义,一个样本包括的个体数量叫做样本容量,样本容量只是个数字,没有单位.14.(3分)一只不透明的袋子中有1个红球、1个黑球和2个白球,这些球除颜色不同外其它都相同,搅匀后从中任意摸出1个球,摸出白球可能性大于摸出红球可能性(填“等于”或“小于”或“大于”).【分析】分别求出摸出两种颜色球的概率,再比较摸出两个颜色球的可能性大小即可.【解答】解:∵袋子中有1个红球、1个黑球和2个白球共4个小球,其中摸出1个球,摸出白球有2种可能、摸出红球有1种可能,∴摸出白球的概率为=、摸出红球的概率为,∴摸出白球可能性大于摸出红球可能性,故答案为:大于.【点评】本题主要考查了可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目,难度适中.15.(3分)在▱ABCD中,若∠B=50°,则∠C=130°.【分析】根据平行四边形的邻角互补即可得出∠C的度数.【解答】解:∵在▱ABCD中∠B=50°,∴∠C=180°﹣∠A=180°﹣50°=130°.故答案为130°.【点评】本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等,邻角互补的性质.16.(3分)方程=的解是x=﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到未知数的值,代入检验即可【解答】解:方程两边都乘以x(x+1),得:30(x+1)=20x,解得:x=﹣,检验:当x=﹣时,x(x+1)=﹣≠0,所以分式方程的解为x=﹣,故答案为:x=﹣.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.(3分)某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款0.4万元,后期每个月分期付一定的数额,则每个月的付款额y(万元)与付款月数x之间的函数表达式是y=.【分析】根据题意可得电脑的售价=0.4+后期付款金额,根据等量关系列出等式,再整理即可.【解答】解:由题意得:yx+0.4=1.2,xy=0.8,y==,故答案为:y=.【点评】此题主要考查了函数关系式,关键是正确理解题意,找出题目中的等量关系.18.(3分)已知+|2﹣b|=0,则+=.【分析】先由非负数性质得出a、b的值,再代入算式,利用二次根式混合运算顺序和运算法则计算可得.【解答】解:∵+|2﹣b|=0,∴a﹣3=0且2﹣b=0,即a=3、b=2,则原式=+=+=,故答案为:【点评】本题主要考查二次根式的化简求值,解题的关键是掌握非负数的性质与二次根式混合运算顺序和运算法则.19.(3分)已知点A (1,y 1),B (2,y 2),都在反比例函数y =的图象上,则y 1,y 2的大小关系是 y 1<y 2 .【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据各点横坐标的值判断出各点所在的象限.进而可得出结论.【解答】解:∵反比例函数y =(k 为常数)中,﹣k 2﹣1<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y 随x 的增大而增大. ∵点A (1,y 1),B (2,y 2), ∴点A 、B 都在第四象限, 又1<2, ∴y 1<y 2. 故答案为:y 1<y 2.【点评】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.20.(3分)在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DE ⊥AB ,垂足为E点,已知四边形ABCD 的面积是16,且AE =1,则AD =.【分析】作辅助线,构建全等三角形,证明∴△ADE ≌△CDF ,可得S 正方形BEDF =S 四边形ABCD=16,则DE =4,利用勾股定理得AD 的长.【解答】解:过D 作DF ⊥BC 于F , ∵DE ⊥AB ,∴∠AED =∠BED =90°, ∵∠B =∠F =90°, ∴四边形BEDF 是矩形, ∴∠EDF =90°,∴∠FDC +∠EDC =∠EDC +∠ADE =90°, ∴∠ADE =∠CDF , 在△ADE 和△CDF 中,∵,∴△ADE ≌△CDF ,∴DE =DF ,S △ADE =S △CDF , ∴矩形BEDF 是正方形, ∴S 正方形BEDF =S 四边形ABCD =16, ∴DE =4,由勾股定理得:AD ===,故答案为:.【点评】本题考查了三角形全等的性质和判定、矩形和正方形的判定、勾股定理等知识,正确作辅助线,构建并证明△ADE ≌△CDF 是关键.三、解答题(本大题共8小题,共90分解答时应写出必要的文字说明、证明过程或演算步骤)21.(12分)计算(1)+﹣(2)×(﹣)【分析】(1)先化简二次根式,再合并同类二次根式即可得;(2)先化简二次根式,再合并括号内的同类二次根式,最后计算乘法即可得.【解答】解:(1)原式=2+3﹣=4;(2)原式=×(3﹣)=×2=2.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.22.(12分)计算(1)﹣(2)1﹣÷【分析】根据分式的运算法则即可求出答案.【解答】解:(1)原式==1;(2)原式=1•=1﹣=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.23.(10分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)条形统计图中,m=40,n=60;(2)求扇形统计图中,艺术类读物所在扇形的圆心角的度数.【分析】(1)根据文学类的人数和所占的百分比求出总人数,再乘以科普所占的百分比求出n的值,再用总人数减去文学、科普、和其他的人数,即可求出m的值;(2)用360°乘以艺术类读物所占的百分比即可得出答案.【解答】解:(1)本次调查中,一共调查了:70÷35%=200人,科普类人数为:n=200×30%=60人,则m=200﹣70﹣30﹣60=40人,故答案为:40,60;(2)艺术类读物所在扇形的圆心角是:×360°=72°.【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题的关键.24.(10分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=3,BC=4,求四边形OCED的周长.【分析】(1)根据DE∥AC,CE∥BD.得出四边形OCED是平行四边形,根据矩形的性质求得OC=OD,即可判定四边形OCED是菱形.(2)利用勾股定理求得AC的长,从而得出该菱形的边长,即可得出答案.【解答】解:(1)四边形OCED是菱形.∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(2)∵四边形ABCD是矩形,∴AC===5,∴CO=OD=,∴四边形OCED的周长=4×=10.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.25.(10分)为了美化城市,某县园林局计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数是原计划的倍,结果提前2天完成了任务,求原计划每天栽树多少棵?【分析】设原计划每天种树x棵,则实际每天栽树的棵数为x,根据题意可得,实际比计划少用2天,据此列方程求解.【解答】解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:原计划每天种树100棵.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.(12分)仿照下列过程:﹣===﹣1;﹣===;(1)运用上述的方法可知:=﹣2,=+;(2)拓展延伸:计算:++…+.【分析】(1)将两式的分子、分母分别乘以﹣2、﹣计算可得;(2)由=﹣将原式展开后,两两相互抵消即可得.【解答】解:(1)===﹣2,===+,故答案为:﹣2、+.(2)原式=﹣1+﹣+﹣+…+﹣=﹣1.【点评】本题主要考查分母有理化,解题的关键是掌握分母有理化和根据计算得出规律=﹣.27.(12分)已知四边形ABCD 为矩形,AB =8cm ,BC =10cm ,点P 在边AD 上以每秒2cm 的速度由点A 向点D 运动,同时点Q 在边CD 上以每秒acm 的速度由点C 向点D 运动(如图1),设运动时间为t 秒(t >0),当P 、Q 中有一点运动到点D 时,两点同时停止运动.(1)若a =1,则t 为何值时,△DPQ 为等腰直角三角形?(2)在运动过程中,若存在某一时刻t ,使BQ 能垂直平分CP ,求此时a ,t 的值. (3)若G 为BC 中点,M 、N 、E 、F 分别为线段PD 、DQ 、PG 、GQ 中点(如图2). ①记四边形MNFE 的面积为S (cm 2),请直接写出S (cm 2)与时间t (s )的函数关系式;②在运动过程中,若存在某一时刻t ,使得四边形MNFE 恰好为正方形,试求出此时a 、t 的值.【分析】(1)先表示出DP ,DQ ,用等腰直角三角形建立方程即可得出结论; (2)先判断出BP =BC =10,PQ =CQ ,建立方程求解即可得出结论;(3)①利用三角形中位线判断出S △DMN =S △DPQ ,S △GEF =S △GPQ ,进而得出S △DMN +S △GEF =S 四边形DPGQ ,S △PMN +S △QNF =S 四边形DPGQ 即可得出结论;②先判断出PQ ⊥DG ,PQ =DG ,进而判断出△PDQ ≌△DCG 即可得出结论. 【解答】解:(1)当a =1时,∵四边形ABCD 是矩形, ∴AD =BC =10,CD =AB =8, 由运动知,AP =2t ,CQ =t , ∴DP =10﹣2t ,DQ =8﹣t , ∵△DPQ 为等腰直角三角形, ∴DP =DQ , ∴10﹣2t =8﹣t ,∴t =2秒;(2)如图,连接BP ,PQ ,BQ ,∵BQ 能垂直平分CP ,∴BP =BC =10,PQ =CQ ,在Rt △ABP 中,BP =,∴=10, ∴t =﹣3(舍)或t =3秒,∴CQ =3a ,AP =6,∴DP =4,DQ =8﹣3a ,∴PQ =3a ,在Rt △PDQ 中,16+(8﹣3a )2=9a 2,∴a =;(3)如图2,连接PQ ,DG ,∵点M ,N 是DP ,DQ 的中点,∴MN ∥PQ ,MN =PQ ,∴,∴S △DMN =S △DPQ同理:S △GEF =S △GPQ ,∴S △DMN +S △GEF =(S △DPQ +S △GPQ )=S 四边形DPGQ ,同理:S △PMN +S △QNF =S 四边形DPGQ ,∴S =S 四边形EFNM =S 四边形DPGQ ﹣S 四边形DPGQ =S 四边形DPGQ ,∵S 四边形DPGQ =S 矩形ABCD ﹣S △CQG ﹣S 梯形ABGP =﹣(4+a )t +60;∴S=S=﹣(2+a)t+30;四边形DPGQ②∵点M,N是DP,DQ的中点,∴MN∥PQ,MN=PQ,同理:EF∥PQ,EF=PQ,∴EF=MN,∴四边形EFNM是平行四边形,∵四边形EFNM是正方形,∴PQ=DG,PQ⊥DG,∴∠DHQ=90°,∴∠CDG+∠DQP=90°,∵∠CDG+∠CGD=90°,∴∠DQP=∠CGD,∵∠DCG=∠PDQ=90°,∴△PDQ≌△DCG,∴DP=CD=8,DQ=CG=5,∴10﹣2t=8,8﹣at=5,∴t=1,a=3.即:t=1,a=3时,四边形EFNM是正方形.【点评】此题是四边形综合题,主要考查了矩形的性质,三角形中位线定理,相似三角形的判定和性质,全等三角形的判定和性质,用方程的思想解决问题是解本题的关键.28.(12分)如图,正方形OABC边长为4,点A、C分别在x轴和y轴上,点B在第一象限,M为BC中点,反比例函数y=过点M,交BA于点N,D为线段AC上一动点,(点D与A、C两点不垂合),过D作x轴垂线交反比例函数y=函数于点E,连接BE、DE.(1)直接写出k值及N点坐标:k=4,N(4,1).(2)AD=4时,求四边形ABED是菱形.(3)小明说:“当D在线段AC上运动时(D点与A,C两点不重合)△DEB始终为等腰三角形”,你认为他说的正确吗?如果正确,请说说理由,如果不正确,请举一个反例.【分析】(1)先求出A,B,C的坐标,进而求出M的坐标,求出k,即可得出结论;(2)先求出点D坐标,进而求出点E坐标,即可得出结论;(3)先求出直线AC解析式,设出点D坐标,表示出E坐标,即可判断出BE=DE,即可得出结论.【解答】解:(1)∵正方形的边长为4,∴BC=OA=AB=4,∴A(4,0),C(0,4),B(4,4),∵M是BC的中点,∴M(2,4),∵反比例函数y=过点M,∴k=2×4=8,∴反比例函数解析式为y=,当x=4时,y=1,∴N(4,2),故答案为:8,4,2;(2)如图,延长ED交OA于F,∴DF⊥OA,在Rt△ADF中,DF=AF=2,∴OF=4﹣2,∴E(4﹣2,4+2),∴DE=4+2﹣2=4,∴DE=AD,∵AB∥DE,∴四边形ABED是平行四边形,∵AB=AD,∴▱ABED是菱形;(3)小明的说法正确,理由:∵A(4,0),C(0,4),∴直线AC的解析式为y=﹣x+4,设D(m,﹣m+4),∴E(m,),∵B(4,4),∴BE2=(m﹣4)2+(﹣4)2=m2﹣8m+﹣+32,DE2=(+m﹣4)2=m2﹣8m+﹣+32,∴BE=DE,∴当D在线段AC上运动时(D点与A,C两点不重合)△DEB始终为等腰三角形”,小明说的正确.【点评】此题是反比例函数综合题,主要考查了待定系数法,正方形的性质,平行四边形的判定和性质,菱形的判定,两点间的距离公式,求出点M坐标是解本题的关键.。
2018-2019学年八年级(下)期末数学试卷
一、选择题(本题有10小题,每小题3分,共30分)
1.下列属于最简二次根式的是()
A.B.C.D.
2.下列方程是一元二次方程的是()
A.x﹣3=2x B.x2﹣2=0 C.x2﹣2y=1 D.
3.如图在平行四边形中,∠B+∠D=100°,则∠B等于()
A.50°B.65°C.100°D.130°
4.阿克苏冰糖心苹果享誉全国,具有果面光滑细腻、果肉细腻、果核透明等特点,五个苹果的质量(单位:g)分别为:180,200,210,180,190,则这五个苹果质量的中位数和众数分别为()
A.200和180 B.200和190 C.180和180 D.190和180 5.用反证法证明,“在△ABC中,∠A、∠B对边是a、b,若∠A>∠B,则a>b.”
第一步应假设()
A.a<b B.a=b C.a≤b D.a≥b
6.反比例函数的图象如图所示,则k的值可能是()
A.﹣1 B.C.1 D.2
7.某商店四月份的利润为 6.3万元,此后两个月进入淡季,利润均以相同的百分比下降,至六月份利润为 5.4万元.设下降的百分比为x,由题意列出方。
浙教版2018-2019学年八年级数学下册期末检测题考生须知:1.全卷共三大题,24小题,满分为100分。
2.考试时间为90分钟,本次考试采用闭卷形式,不允许使用计算器。
3.全卷答案必须做在答题卷的相应位置上,做在试题卷上无效。
4.请用钢笔或黑色墨迹签字笔将学校、姓名、准考证号、座位号分别填在答题卷的相应位置上。
一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.若二次根式3x -在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≥C .3x <D .3x ≠2.一元二次方程2231x x -=的二次项系数a 、一次项系数b 和常数c 分别是( )A .2,3,1a b c ===-B .2,1,3a b c ===-C .2,3,1a b c ==-=-D .2,3,1a b c ==-=3.下列图形,既是轴对称图形又是中心对称图形的是( )A .平行四边形B .正五边形C .等边三角形D .矩形 4.五边形的内角和是( )A .360°B .540°C .720°D .900°5.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为20.016s =甲,20.025s =乙,20.012s =丙,则三人中成绩最稳定的选手是 ( )A .甲B .乙C .丙D .不能确定 6.在平行四边形ABCD 中,已知∠A :∠B =1:2,则∠B 的度数是( ) A .45°B .90°C .120°D .135°7.用反证法证明某一命题的结论“b a <”时,应假设( ) A .b a >B .b a ≥C .b a =D .b a ≤ 8.用配方法解方程244=0x x +-,配方变形结果正确的是( )A .2(2)8x +=-B . 2(2)8x -=-C .2(2)8x -=D . 2(2)8x +=9.关于x 的一元二次方程ax 2-2x +1=0有实数根,则整数a 的最大值是( )A .1B .1-C .2D .2-10.如图,在矩形ABCD 中,AB =6,BC =8,M 是AD 上任意一点,且ME ⊥AC 于E , MF ⊥BD 于F ,则ME +MF 为 ( ) A .245 B .125 C .65D .不能确定 二、填空题(本题有6小题,每小题3分,共18分)11.计算:2(5)= .F EDA BCM (第10题)(第16题)(第12题)12.如图,A 、B 两点分别位于山脚的两端,小明想测量A 、B 两点间的距离,于是想了个主意:先在地上取一个可以直接达到A 、B 两点的点C ,找到AC 、BC 的中点D 、E ,并且测出DE 的长为 15m ,则A 、B 两点间的距离为 _m .13.点()1,A m ,()3,B n 是双曲线3y x=上的点,则m n (填“>”,“<”,“=”).14.m 是方程2650x x --=的一个根,则代数式2116m m +-的值是 .15.如图,已知矩形ABCD 的边长AB =4,BC =6,对角线AC的垂直平分线分别交AC 、AD 、BC 于O 、E 、F ,连结AF 、CE ,则AEBF= . 16.如图,已知直线y ax =与双曲线(0)ky k x=>交于A 、B 两点,点B 的坐标为()2,1B --,C 为双曲线(0)ky k x=>上一点,且在第一象限内. (1)k = ;(2)若三角形AOC 的面积为32,则点C 的坐标为 . 三、解答题(本题有8小题,共52分) 17.计算(本题6分,每小题3分)(1)()234--; (2)61226⨯÷.18.解方程(本题6分,每小题3分) (1)240x x +=;(2)2670x x -+=.FEODABC(第15题)(第19题)19.(本题6分)如图,A 、B 、C 为一个平行四边形的三个顶点,且A 、B 、C 三点的坐标分别为(56),、(34),、(63),. (1)请直接写出这个平行四边形第四个顶点的坐标; (2)求出△ABC 的周长.20.(本题6分) 某企业车间有技术工人20人,车间为了合理制定产品的每月生产定额,作了这20人某月加工零件个数的条形统计图.(1)写出这20人该月加工零件数的众数和中位数; (2)计算这20人该月加工零件数的平均数;(3)假如车间负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理,请你作出判断并说明理由150 210 240 300 420 500 加工零件数(个)人数8 7 6 5 4 3 2 1 021.(本题6分)某一蓄水池中有水若干吨,若单一个出水口,排水速度v (m 3/h )与排完水池中的水所用的时间t (h )之 间的对应值关系如下表:(1)在如图的直角坐标系中,用描点法画出相应函数的图象;(2)写出t 与v 之间的函数关系式;(3)若5 h 内排完水池中的水,那么每小时的排水量至少应该是多少?22.(本题6分)如图,在平行四边形 A BCD 中,点E 、F 分别在CD 、BC 延长线上,AE //BD ,EF BF ⊥. (1)求证:四边形 A BDE 是平行四边形; (2)若60ABC ∠=︒,6CF = ,求AB 的长. (第21题)FEDABC(第22题)排水速度v(m 3/h )1 2 3 4 6 8 12 所用的时间 t (h ) 1264321.5123.(本题8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每辆汽车的进价与销售量有如下关系:若当月仅售出1辆汽车,则该辆汽车的进价为35万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,月底厂家根据销售量还会返利给销售公司,销售量在8辆以内(含8辆),每辆返利0.6万元;销售量在8辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为万元;(2)如果汽车的售价为36万元/辆,该公司计划当月盈利10万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)24.(本题8分)如图1,边长为a 的正方形发生形变后成为边长为a 的菱形,如果这个菱形的一组对边之间的距离为h ,我们把a 与h 的比值叫做这个菱形的“形变度”.(1)当形变后的菱形有一个内角是30°时,这个菱形的“形变度”为 ;(2)如图2,菱形ABCD 的“形变度”为3,点E 、F 、G 、H 分别是菱形ABCD 各边的中点,求四边形EFGH 形变前与形变后的面积之比;(3)如图3,正方形ABCD 由16个边长为1的小正方形组成,形变后成为菱形A B C D '''',AEF ∆(E,F 是小正方形的顶点)同时形变为A E F '''∆,设这个菱形的“形变度”为k ,判断A E F '''∆的面积S 与k 是否为反比例函数关系,并说明理由;当65A CB D ''=''时,求k 的值.GFE HD BCA(第24题 图2)形变E'EF'D'FDA BB'CC'A'(第24题 图3)a aaah 形变(第24题 图1)参考答案和评分细则一、选择题(本题有10小题,每小题3分,共30分)题号1 2 3 4 5 6 7 8 9 10 答案 BCDBCCBDAA评分标准选对一题给3分,不选,多选,错选均不给分二、填空题(本题有6小题,每小题3分,共18分)11. 5 12. 30 13. > 14. 615. 135 16. (1)2; (2)(1,2) , (4, 12)三、解答题 (本题有8小题,共52分)每题要求写出必要的求解步骤 17.(本题6分)解:(1)原式=321-=. ……3分 (2)原式=24642÷==. ……3分18.(本题6分)解:(1)将原方程的左边分解因式,得(+4)0x x =, 则0x =,或40x +=, ∴01=x ,24x =-. ……3分(2)移项,得267x x -=-.方程两边同加上9,得2692x x -+=,即2(3)2x -=.则32x -=,或32x -=-,∴123+232x x ==-,. ……3分19.(本题6分)解:(1)D 点的坐标为(2,7),或(4,1)或(8,5)……3分(2)因为22AB =,10BC AC ==,所以三角形ABC 的周长为:22+210 ……3分 20.(本题6分)解:(1)众数是240个,中位数是240个. ……2分(2)平均数是:()150321052407300342050020250⨯+⨯+⨯+⨯++÷=(个) ……2分(3)不合理.因为少数人拉高了平均数,故250不能反映大多数人的生产情况,应该定240更加合理. ……2分21.(本题6分)解:(1)函数图象如图所示. ……2分 (2)根据图象的形状,选择反比例函数模型进行尝试.设(0)kv k t=≠,选(1,12)的坐标代入,得k =12,∴12v t=. 12(第19题)DDD∴所求的函数解析式是12v t=(t >0). ……2分 (3)由题意得:当0< t ≤5时,0<v ≤2.4.即每小时的排水量至少应该是2.4m 3. ……2分 22.(本题6分)(1)证明:如图,在□ABCD 中, AB ∥DC , ∵点E 在CD 的延长线上,∴AB ∥DE , 又∵AE ∥BD ,∴四边形ABDE 是平行四边形. ……3分 (2)解: 在□ABCD 中, AB =DC , 在□ABDE 中,AB =ED . ∴EC =2AB ∵AB ∥DC ,∠ABC =60︒. ∴∠ECF =∠ABC =60︒. ∵6CF =,∴EC =2CF=26. ∴AB =6. ……3分 23.(本题8分)解:(1)34.8; ……2分 (2)设需要售出x 部汽车,由题意可知,每部汽车的销售利润为:36﹣[35﹣0.1(x ﹣1)]=(0.1x +0.9)(万元), ……2分 当0≤x ≤8,根据题意,得x •(0.1x +0.9)+0.6x =10,整理,得x 2+15x ﹣100=0, 解这个方程,得x 1=﹣20(不合题意,舍去),x 2=5, 当x >8时,根据题意,得x •(0.1x +0.9)+1.2x =10,整理,得x 2+21x ﹣100=0, 解这个方程,得x 1=﹣25(不合题意,舍去),x 2=4, 因为4<8,所以x 2=4舍去.答:需要售出5部汽车. ……4分24.(本题8分)解:(1)2k =; ……2分 (2)设四边形ABCD 的边长为a ,因为点E 、F 、G 、H 分别是菱形ABCD 各边的中点,所以四边形EFGH形变前的面积为221a ,用三角形中位线性质易证四边形EFGH 形变后为矩形,且AC EF BD HE 21,21==,所以ah S AC BD S ABCD EFGH 21212121==⋅=菱形矩形,所以四边形EFGH 形变前与形变后的面积之比为3a h=; ……2分(3)S 是k 的反比例函数.理由:如图,过D '作D G A B '''⊥,垂足为G ,则,k GD D A =''' 因为4=''=''=''=''D A D C C B B A , 所以k G D 4=',kk S S D C B A 4164141=⋅==∴''''菱形, oE'F'GD'B'C'A'GFEHD B CA当65A C B D ''=''时,162152A CB D ''='',65A O D O '∴=' 222 5, 6, (5)(6)4D O t A O t t t ''==∴+=设则,21661t ∴=又k S D C B A 16=''''菱形,12A C B D ''''∴∙=k 16,2116161012602t t t k k∴∙∙==,即 得到,6160k = ……2分。
杭州市富阳区2018学年第二学期期末学业水平测试八年级数学试题卷一、选择题1. 下列方程中属于一元二次方程的是( )A. 022=-x x B.03=-x C.0=+y x D.31=x2. 在直角坐标系中,点()1,2P 关于原点对称的点为Q ,则点Q 的坐标是( ) A. ()1,2- B.()1,2-- C.()1,2- D.()2,13. 五边形的内角和为( ) A.180° B.360° C.540° D.720°4. 估计15+的值应在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间5. 在平行四边形ABCD 中,下列结论一定成立的是( )A. BD AC ⊥B.AD AB =C.C A ∠≠∠D.ο180=∠+∠B A6. 测试5位学生“一分钟跳绳”成绩,得到5个各不相同的数据.在统计时,出现了一处错误:将最高成绩120个写成了180个。
以下统计量不受影响的是( ) A.方差 B.标准差 C.平均数 D.中位数7. 用反证法证明:“一个三角形中,至少有一个内角大于或等于60°”。
应假设( ) A. 一个三角形中没有一个角大于或等于60° B.一个三角形中至少有一个角小于60° B. 一个三角形中三个角都大于等于60° D.一个三角形中有一个角大于等于60°8. 如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A.2B.6C.322632--+D.52232-+9. 已知反比例函数xy 4-=,则下列结论正确的是( )A. 其图象分别位于第一、三象限B. 当0>x 时,y 随x 的增大而减小C. 若点()n m P ,在它的图象上,则点()m n Q ,也在它的图象上D. 若点()()2211,,,y x B y x A 都在该函数图象上,且21x x <,则21y y <10. 如图,在正方形ABCD 中,点E 是CD 的中点,点F 是AD 的中点,BE 与CF 相交于点P ,设a AB =.得到以下结论: ①CF BE ⊥;②a AP =;③a CP 55=则上述结论正确的是( )A. ①②B.①③ B. ②③ D.①②③ 【解二、填空题11. 当=x 时,42-x 的值最小.12. 已知方程0232=-+kx x 的一个根为2,则=k .13. 已知5个数54321,,,,a a a a a 的平均数为m ,则54321,,0,,,a a a a a 这六个数的平均数为 14. 在平面直角坐标系中,正比例函数x y 211=与反比例函数xky =2的图象交于点()2,-a A ,则=k .15. 在三角形ABC 中,点F E D ,,分别是AC AB BC ,,的中点,BC AH ⊥于点H ,若ο50=∠DEF ,则=∠CFH .16. 如图是一张三角形纸片,其中3,30,90==∠=∠BC A C οο, 从纸片上裁出一矩形,要求裁出的矩形的四个顶点都在三角形的 边上,其面积为32,则该矩形周长的最小值=三、解答题 17. 计算(1)1.01000⨯ (2)()38162--18. 解方程:(1)x x 2172= (2)()22121-=⎪⎭⎫ ⎝⎛-x x x19. 在学校组织的“最美数学小报”的评比中,校团委给每个同学的作品打分,成绩分为D C B A ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,将八(1)班与八(2)班的成绩整理并绘制成如下统计图:请你根据以上提供的信息解答下列问题: 平均数(分)中位数(分)众数(分)八(1)班 83.75 80 八(2)班80(2)若八(1)班有40人,且评分为B 级及以上的同学有纪念奖章,请问该班共有几位同学得到奖章?20. 把一个足球垂直地面向上踢,t (秒)后该足球的高度h (米)适用公式2520t t h -=. (1)经多少秒时足球的高度为20米? (2)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.21. 在数学拓展课上,老师让同学们探讨特殊四边形的做法:如图,先作线段AB ,作射线AM (MAB ∠为锐角),过B 作射线BN 平行于AM ,再作MAB ∠和NBA ∠的平分线分别交BN 和AM 于点C 和D ,连接CD ,则四边形ABCD 为菱形;(1)你认为该作法正确吗?请说明理由. (2)若4=AB ,并且四边形ABCD 的面积 为38,在AC 上取一点Q ,使得7=BQ .请问图中存在这样的点Q 吗?若存在,则求出AQ 的长;若不存在,请说明理由.22. 已知正比例函数kx y =1与反比例函数()02≠-=k xky . (1)证明:直线与双曲线没有交点;(2)若将直线kx y =1向上平移4个单位后与双曲线恰好有且只有一个交点,求反比例函数的表达式和平移后的直线表达式;(3)将(2)小题平移后的直线代表的函数记为3y ,根据图象直接写出:对于负实数k ,当x 取何值时32y y >23. 如图1,在平行四边形ABCD 中,(BC AB >)BC AE ⊥,垂足为E ,BC DF ⊥所在直线,垂足为F . (1)求证:CF BE =(2)如图2,作ADC ∠的平分线交边AB 于点M ,与AE 交于点N ,且AD AE =,求证:AN CF CD +=。
2018-2019学年八年级(下)期末数学试卷
一、选择题(本大题共12小题,每小题3分,共36分)
1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.
2.(3分)下面调查中,适合采用普查的是()
A.调查你所在的班级同学的身高情况
B.调查全国中学生心理健康现状
C.调查我市食品合格情况
D.调查中央电视台《少儿节目》收视率
3.(3分)若分式有意义,则x的取值范围是()
A.x≠1B.x=1C.x>1D.x<1 4.(3分)下列成语所描述的事件为必然事件的是()
A.水中捞月B.守株待兔C.拔苗助长D.翁中捉鳖5.(3分)下列式子中,属于最简二次根式的是()
A.B.C.D.
6.(3分)反比例函数的图象经过点(1,﹣2),则此函数的解析式是()A.y=2x B.C.D.
7.(3分)顺次联结对角线相等的四边形各边中点所得到的四边形是()A.平行四边形B.矩形C.正方形D.菱形8.(3分)某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()
A.80B.144C.200D.90。
浙教版2018-2019学年度八年级数学第二学期期末综合复习检测题3(含答案详解)1.若,则的值为()A.或B.或C.或D.或2.下列各式是一元二次方程的是()A.B.C.D.3.一元二次方程要确定一次项系数和常数项,首先要把方程化成一般形式.的二次项系数,一次项系数,常数项分别是()A.a=l,b=0,c=-1 B.a=0,b=0,c=1C.a=0,b=0,c=-1 D.a=1,b=0,c=14.解一元二次方程3(7x+4)2=5(7x+4)的最适当的方法是()A.直接开平方法B.配方法C.公式法D.因式分解法5.当≤x≤2时,函数y=-2x+b的图象上到少有一个点在函数的图象下方,则b的取值范围为()A.b≥B.b<C.b<3 D.<b<6.已知关于x的一元二次方程有两个相等的实根,则k的值为()A.B.2或3 C.D.或7.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5 B.4 C.3 D.28.一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是21cm2,则该矩形的面积为()A.60cm2B.70cm2C.120cm2D.140cm29.一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是()A.40 B.20 C.10 D.2510.对于反比例函数y=-,下列说法不正确的是( )A.图象经过点(1,-3)B.图象分布在第二、四象限C.当x>0时,y随x的增大而增大D.点A(x1,y1),B(x2,y2)都在反比例函数y=-的图象上,若x1<x2,则y1<y211.如果最简二次根式与可以合并,那么使有意义的x的取值范围是______.12.顺次连接对角线相等的四边形的四边中点,所得的四边形一定是____________.13.已知正方形ABCD在坐标轴上的位置如图所示,x轴、y轴分别是正方形的两条对称轴,若A(2,2),则B点的坐标为______,C点的坐标为________,D点的坐标为___________.14.函数y=-的图象的两个分支分布在________象限.15.利润=(_______-______),售价=(1+________)×进价.16.某校在“爱护地球,绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:则这100名同学平均每人植树_____棵;若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总数是______棵.17.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是_____.18.计算:=_____.19.菱形的一个内角为120°,平分这个内角的对角线长为8cm,则菱形周长为cm.20.在平面直角坐标系中,点关于原点的对称点的坐标是________.21.如图,在平面直角坐标系中,面积为4的正方形OABC的顶点O与坐标原点重合,边OA、OC分别在x轴、y轴的正半轴上,点B、P都在函数y=(x>0)的图象上,过动点P 分别作轴x、y轴的平行线,交y轴、x轴于点D、E.设矩形PDOE与正方形OABC重叠部分图形的面积为S,点P的横坐标为m.(1)求k的值;(2)用含m的代数式表示CD的长;(3)求S与m之间的函数关系式.22.(1)解方程:4x 2—81=0; (2)计算:+-()2;23.若x ,y 为实数,且y =4+3+1,求的值.24.如图,一次函数1y kx b =+的图象与反比例函数26y x=的图象交于()()33A m B n -,,,两点.()1求一次函数的解析式;()2观察函数图象,直接写出关于x 的不等式6kx b x>+的解集.25.在我校的周末广场文艺演出活动中,舞台上有一幅矩形地毯,它的四周镶有宽度相同的花边(如图).地毯中央的矩形图案长 8 米、宽 6 米,整个地毯的面积是 80 平方米.求花边的宽.26.如图,在等腰梯形ABCD中,DC∥AB,AD=BC=2,BD平分∠ABC.∠A=60°,求对角线BD的长和梯形ABCD的面积.27.某班30个同学的成绩如下:76 56 80 78 71 78 90 79 92 83 81 93 84 86 98 61 75 84 90 73 80 86 84 88 81 90 78 92 89 100。
浙江省杭州市富阳区2018-2019学年八年级(下)期末数学试卷一、选择题1.(3分)下列方程中属于一元二次方程的是()A.x2﹣2x=0B.x﹣3=0C.x+y=0D.=32.(3分)在直角坐标系中,点P(2,1)关于原点对称的点为Q,则点Q的坐标是()A.(2,﹣1)B.(﹣2,﹣1)C.(﹣2,1)D.(1,2)3.(3分)五边形的内角和是()A.180°B.360°C.540°D.720°4.(3分)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间5.(3分)在平行四边形ABCD中,下列结论一定成立的是()A.AC⊥BD B.AB=AD C.∠A≠∠C D.∠A+∠B=180°6.(3分)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数7.(3分)用反证法证明:“一个三角形中,至少有一个内角大于或等于60°”.应假设()A.一个三角形中没有一个角大于或等于60°B.一个三角形中至少有一个角小于60°C.一个三角形中三个角都大于等于60°D.一个三角形中有一个角大于等于60°8.(3分)如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A.2B.C.2+﹣2﹣3D.2+2﹣59.(3分)已知反比例函数y=,则下列结论正确的是()A.其图象分别位于第一、三象限B.当x>0时,y随x的增大而减小C.若点P(m,n)在它的图象上,则点Q(n,m)也在它的图象上D.若点A(x1,y1),B(x2,y2)都在该函数图象上,且x1<x2,则y1<y210.(3分)如图,在正方形ABCD中,点E是CD的中点,点F是AD的中点,BE与CF相交于点P,设AB=a.得到以下结论:①BE⊥CF;②AP=a;③CP=a则上述结论正确的是()A.①②B.①③C.②③D.①②③二、填空题11.(3分)当x=时,的值最小.12.(3分)已知方程3x2+kx﹣2=0的一个根是2,则k的值是.13.(3分)已知5个数a1,a2,a3,a4,a5的平均数为m,则a1,a2,a3,0,a4,a5这六个数的平均数为.14.(3分)在平面直角坐标系中,正比例函数y1=x与反比例函数y2=的图象交于点A(A,﹣2),则k=.15.(3分)在三角形ABC中,点D,E,F分别是BC,AB,AC的中点,AH⊥BC于点H,若∠DEF=50°,则∠CFH=.16.(3分)如图是一张三角形纸片,其中∠C=90°,∠A=30°,BC=3,从纸片上裁出一矩形,要求裁出的矩形的四个顶点都在三角形的边上,其面积为2,则该矩形周长的最小值=.三、解答题17.计算(1)×(2)﹣2(﹣)18.解方程:(1)7x2=21x(2)x(x﹣1)=(x﹣2)219.在学校组织的“最美数学小报”的评比中,校团委给每个同学的作品打分,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,将八(1)班与八(2)班的成绩整理并绘制成如下统计图:请你根据以上提供的信息解答下列问题:(1)将表格补充完整.平均数(分)中位数(分)众数(分)八(1)班83.7580八(2)班80(2)若八(1)班有40人,且评分为B级及以上的同学有纪念奖章,请问该班共有几位同学得到奖章?20.把一个足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式h=20t﹣5t2.(1)经多少秒时足球的高度为20米?(2)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.21.在数学拓展课上,老师让同学们探讨特殊四边形的做法:如图,先作线段AB,作射线AM(∠MAB为锐角),过B作射线BN平行于AM,再作∠MAB 和∠NBA的平分线分别交BN和AM于点C和D,连接CD,则四边形ABCD为菱形;(1)你认为该作法正确吗?请说明理由.(2)若AB=4,并且四边形ABCD的面积为8,在AC上取一点Q,使得BQ=.请问图中存在这样的点Q吗?若存在,则求出AQ的长;若不存在,请说明理由.22.已知正比例函数y1=kx与反比例函数y2=﹣(k≠0).(1)证明:直线与双曲线没有交点;(2)若将直线y1=kx向上平移4个单位后与双曲线恰好有且只有一个交点,求反比例函数的表达式和平移后的直线表达式;(3)将(2)小题平移后的直线代表的函数记为y3,根据图象直接写出:对于负实数k,当x取何值时y2>y3.23.如图1,在平行四边形ABCD中,(AB>BC)AE⊥BC,垂足为E,DF⊥BC所在直线,垂足为F.(1)求证:BE=CF;(2)如图2,作∠ADC的平分线交边AB于点M,与AE交于点N,且AE=AD,求证:CD=CF+AN.参考答案一、选择题1.【解答】解:A、x2﹣2x=0属于一元二次方程,故A正确;B、x﹣3=0是一元一次方程,故B错误;C、x+y=0是二元一次方程,故C错误;D、=3是分式方程,故D错误;故选:A.2.【解答】解:∵点P(2,1)与点Q关于原点对称,∴点Q的坐标(﹣2,﹣1),故选:B.3.【解答】解:五边形的内角和是:(5﹣2)×180°=3×180°=540°故选:C.4.【解答】解:∵2=<<=3,∴3<+1<4,故选:B.5.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,AD∥BC,∠A=∠C,∴∠A+∠B=180°.故一定正确的是D.故选:D.6.【解答】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选:C.7.【解答】解:要证明原命题成立,则反证法假设的命题肯定不成立.从这一点出发,可以排除B,D这两个选项;反证法的核心是假设出原命题的相反面(或者说除原命题外的其他情况),证明假设的命题不成立,进而间接的证明原命题成立!原命题中出现“至少有一个”,则其对立面应该是“没有”、“不存在”、“没有一个”,所以应假设:一个三角形中没有一个角大于或等于60°故选:A.8.【解答】解:三个正方形的边长分别为,,2,图中阴影部分的面积=(+)×2﹣2﹣3=2+2﹣5.故选:D.9.【解答】解:∵k=﹣4<0时∵图象在二、四象限,所以A错误;∵k=﹣4<0,图象在二、四象限,当x>0时,y随x的增大而增大,所以B错误;∵y=,∴﹣4=xy,∵点P(m,n)在它的图象上,∴﹣4=mn,又∵点Q(n,m)的横纵坐标值的乘积nm=mn=﹣4,∴点Q也在函数图象上,故C正确∵k=﹣4<0时,反比例函数图象在各象限内y随x的增大而增大,而D选项中的点A(x1,y1),B(x2,y2)并不确定是否在同一象限内,所以y1、y2的大小不能粗糙的决定.故选:C.10.【解答】解:在△CDF和△BCE中∴△CDF≌△BCE(SAS)∴∠CEB=∠CFD∵∠DCF+∠CFD=90°∴∠DCF+∠CEB=90°∴∠EPC=90°∴①正确;如图延长CF交BA延长线于点M,在△CFD和△MFA中∴△CFD≌△MFA(ASA)∴CD=MA=AB=a,∵BP⊥CF∴AP为Rt△MPB斜边BM上的中线,是斜边的一半,即AP=BM=×2a=a,∴②正确;∵CP⊥BE∴CP×BE=CE×BC=∵BE===∴CP===∴③正确故选:D.二、填空题11.【解答】解:由题意可知2x﹣4≥0,当x=2时,取得最小值0故答案是:2.12.【解答】解:把x=2代入方程3x2+kx﹣2=0得3×4+2k﹣2=0,解得k=5.故答案为5.13.【解答】解∵×(a1+a2+a3+a4+a5)=m,则a1+a2+a3+a4+a5=5m,∴a1+a2+a3+0+a4+a5=5m+0=5m,∴a1,a2,a3,0,a4,a5这六个数的平均数为,故答案为:.14.【解答】解:∵点A(a,﹣2)在正比例函数y1=x的图象上,∴﹣2=a,解得a=﹣4,∴A(﹣4,﹣2)∵点A(﹣4,﹣2)在反比例函数y2=的图象,∴k=﹣4×(﹣2)=8,故答案为8.15.【解答】解:∵点D、E、F分别是BC、AB、AC的中点,∴EF∥BC,DE∥AC(三角形的中位线的性质)又∵EF∥BC,∠DEF=50°,∴∠DEF=∠EDB=50°(两直线平行,内错角相等),∵DE∥AC,∴∠EDB=∠FCH=50°(两直线平行,同位角相等),又∵AH⊥BC,∴△AHC是直角三角形,∵HF是斜边上的中线,∴HF=AC=FC,∴∠FHC=∠FCH=50°.∴∠CFH=180°﹣50°﹣50°=80°,故答案为:80°.16.【解答】解:①当矩形的其中一边在AC上时,如图1所示:设CE=x,则BE=3﹣x,∵∠A=30°,∠C=90°,∴DE=(3﹣x),=CE•DE=x(3﹣x)=2,∴S矩形DECF整理得:x2﹣3x+2=0,解得x1=1,x2=2,当x=1时,该矩形周长=(CE+DE)×2=(1+2)×2=4+2,当x=2时,该矩形周长=(CE+DE)×2=2+4,∵(4+2)﹣(2+4)=2﹣2=2(﹣1)>0,∴矩形的周长最小值为2+4;②当矩形的其中一边在AB上时,如图2所示:设CF=x,则BF=3﹣x,∵∠A=30°,∠C=90°,∴FG=2x,EF=(3﹣x),=FG•EF=2x•(3﹣x)=2,∴S矩形DECF整理得:x2﹣3x+2=0,解得x1=1,x2=2,所以和(1)的结果一致,综上所述:矩形周长的最小值为2+4.故答案为:2+4.三、解答题17.【解答】解:(1)×===10(2)﹣2(﹣)=﹣2×(4﹣2)=﹣2×2=﹣418.【解答】解:(1)方程整理得:7x2﹣21x=0,分解因式得:7x(x﹣3)=0,解得:x1=0,x2=3;(2)整理得:x2﹣x﹣x2+4x﹣4=0,即x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,解得:x1=2,x2=4.19.【解答】解:(1)平均数(分)中位数(分)众数(分)八(1)班83.7580③80八(2)班①85.25②8080①=85.25②总计40个数据,从小到大排列得第20、21位数字都是80分,所以中位数为80③众数即目标样本内相同数字最多的数,由扇形图可知C级所占比例最高,所以众数为80(2)由统计图可知B级及以上的同学所占比例分别为17.5%和22.5%,计算可得:40×(17.5%+22.5%)=16人.20.【解答】解:(1)足球高度为20米,即h=20,将h=20代入公式得:20t﹣5t2=20,解得:t=2∴t=2;(2)小明说得对,理由如下:假设足球高度能够达到21米,即h=21,将h=21代入公式得:21=20t﹣5t2由判别式计算可知:△=(﹣20)2﹣4×5×21=﹣20<0,方程无解,假设不成立,所以足球确实无法到达21米的高度.21.【解答】解:(1)作法正确理由如下:∵M∥BN,∴∠DAC=∠ACB,∠ADB=∠BDC,∵AC平分∠DAB,BD平分∠ABC,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ADB=∠ABD,∴AD=AB,AB=BC,又∵AD∥BC,∴四边形ABCD是平行四边形,∵AB=BC∴四边形ABCD是菱形.(2)作DH⊥AB于H.=8,∵AB=4,S四边形ABCD∴DH=2,∵AD=AB=4,∴AH==2,∵AD=2AH,∴∠ADH=30°,∠DAB=60°,∴△ADB是正三角形BP=2,AP=2,∵BQ=,∴PQ=,∴AQ=AP﹣PQ=或AQ=AP+PQ=3.22.【解答】解:(1)联立方程组去掉y整理后得kx2+k=0,∵△=b2﹣4ac=﹣4k•k=﹣4k2<0,∴方程组无解,∴直线与双曲线没有交点;(2)直线向上平移4个单位后为y=kx+4,由整理后得kx2+4x+k=0,∵直线与双曲线恰好有且只有一个交点,∴△=b2﹣4ac=16﹣4k•k=0,解得k=±2,综上所述:当k=2时,反比例函数的表达式和平移后的直线表达式分别为y=﹣,y=2x+4;当k=﹣2时,反比例函数的表达式和平移后的直线表达式分别为y=和y=﹣2x+4;(3)解﹣2x2+4x﹣2=0得,x1=x2=1,把x=1代入y=﹣2x+4得y=2,∴平移后的直线与反比例函数的图形的交点为(1,2),如图由图可知,当0<x<1或x>1时y2>y3.23.【解答】证明:(1)∵平行四边形ABCD,∴AB=CD,AD∥BC.又∵AE⊥BC,DF⊥BC,∴AE=DF(平行线之间垂直距离处处相等).∴Rt△ABE≌Rt△DCF(HL).∴BE=CF;(2)延长CF到G,使得FG=AN.∵AD∥BC,且AE⊥BC,DF⊥BC,∴AE=DF.∴AD=DF.∵△ADN≌△FDG(SAS).∴∠1=∠6=α,∠7=∠G.FG=AN.∵Rt△ABE≌Rt△DCF,∴∠3=∠4=β.∵DM平分∠ADC,∴∠1=∠2=α∵AB∥CD,∴∠5=∠2=α.在△AMN中,∠7=∠4+∠5=α+β,又∠CDG=∠3+∠6=α+β,∴∠CDG=∠G.∴CD=CG.而CG=CF+FG=CF+AN,∴CD=CF+AN.。