半导体激光器与光纤耦合系统的研究
- 格式:pdf
- 大小:202.44 KB
- 文档页数:4
绿光半导体激光器单管合束及光纤耦合技术研究摘要:近年来,随着我国经济的高速发展和科技的进步,光电器件与材料相关领域的研发不断取得新进展,性能得到明显强化,在各大领域得到广泛应用。
为进一步提高半导体激光功率,可以采用激光器单管合束及光纤耦合技术。
基于此,分析研究绿光半导体激光器单管合束及光纤耦合技术,对提高仪器总功率以及将其应用于更多领域有重要的现实意义。
关键词:绿光半导体激光器;单管合束;光纤耦合前言:利用合束技术可以使多个半导体激光器在光纤中进行耦合,由此形成半导体激光器的光学器件,保证激光的输出功率,提高激光束的质量。
目前,国内外已广泛使用多种红外波段的半导体激光器,广泛用于彩色显示、激光印刷、高密度光盘存储等领域,但目前对于可见光波段激光耦合模块尤其是绿光波段的研究还很少,因此,对绿光高功率半导体激光器光纤耦合模块进行深入研究,是当前光电器件与材料相关领域研发重点之一。
1半导体激光器光纤耦合模块研究半导体激光器技术已经相对成熟,由于其具有光束不均匀性、单元功率低等特点,在一定程度上限制其应用领域。
为保证半导体激光器的功率输出,需要对激光器进行多层叠加,这会一定程度上限制光束质量。
随着半导体耦合技术的不断发展和进步,通过使用半导体激光器进行合束,可以有效提升光束的质量,实现激光远距离柔性传输。
最早的光纤是20世纪50年代研制出来的,后来被人们逐渐推广使用。
在20世纪70年代,就有国外公司利用化学气相沉积法得到了损耗较低的光纤,随着半导体激光器的迅速发展和光纤耦合技术的发展,人们对不同类型的半导体激光器进行了大量的研究,并取得了大量的成果。
2半导体激光器非相干合束技术目前,半导体激光器的合束技术方法有两种:相干合束和非相干合束。
半导体激光器利用光束准直技术和聚焦耦合技术,使多个光束单元的耦合成为可能。
在相干合束技术的应用中,采用了相位控制方法,使激光阵列各发光元件产生同一波长的光束,从而达到相干合束。
光纤和半导体激光器耦合的实现方法光纤和半导体激光器的耦合是将光纤与半导体激光器的光输出进行有效地连接的过程。
光纤和半导体激光器的耦合技术对于实现高效率和高品质的光纤通信、光纤传感和光纤激光器应用非常重要。
下面将介绍光纤和半导体激光器耦合的几种基本实现方法。
1.朴素方法:一种最简单的方法是将光纤粗略地对准激光器的外圆,然后用胶水或其他适当的导光材料固定光纤。
这种方法的缺点是会引入大量的光耦合损耗和模式不匹配损耗,导致耦合效率较低。
2.渐变折射率耦合:渐变折射率耦合是一种改进的方法,该方法通过在光纤末端表面使用透镜或折射率均匀变化的介质来改善耦合效率。
这种方法可以通过将光纤端面与激光器外表面之间的折射率差最小化来减少反射和模式相位匹配的不匹配,从而提高光纤和激光器之间的功率转移效率。
3.FC/APC连接:FC/APC(Angled Physical Contact)是一种常见的连接器类型,其端面倾斜以减少反射。
在光纤和激光器之间使用倾斜的光纤连接器,可以减少反射损耗,并提高耦合效率。
4.GRIN透镜耦合:GRIN(Graded-Index)透镜是一种折射率渐变的透镜,其折射率从中心向外缓慢减小。
将适当长度的GRIN透镜嵌入光纤末端,并将其与半导体激光器的激光输出区域对准,可以有效地将激光通过透镜耦合到光纤中。
GRIN透镜耦合可以提高耦合效率和模式匹配。
5.V-形槽耦合:V-形槽耦合是一种使用槽形结构来改善光纤和激光器之间耦合的方法。
在光纤末端和激光器之间创建V形槽,然后将光纤放置在槽中,可以实现更高的耦合效率。
这种方法可通过优化V形槽的形状、深度和角度,来减少反射和提高光耦合效率。
以上是光纤和半导体激光器耦合的几种基本实现方法。
在实际应用中,根据具体需求和要求,可以选用合适的耦合方法。
此外,还可以通过优化耦合尺寸、使用适当的光纤补偿器、调整光纤和激光器之间的距离等方法,进一步改善光纤和半导体激光器的耦合效果。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==光纤耦合实验报告篇一:光纤测量实验报告光纤测量实验报告课程名称:光纤测量实验名称:耦合器光功率分配比的测量学院:电子信息工程学院专业:通信与信息系统班级:研1305班姓名:韩文国学号:131201X1实验日期:201X年4月22日指导老师:宁提纲、李晶耦合器光功率分配比的测量一、实验目的:1. 理解光纤耦合器的工作原理;2. 掌握光纤耦合器的用途和使用方法;3. 掌握光功率计的使用方法。
二、实验装置:LD激光器,1 ×2光纤耦合器,2 ×2光纤耦合器,TL-510型光功率计,光纤跳线若干。
1. LD激光器半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。
.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。
电注入式半导体激光器,一般是由砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。
本实验用的LD激光器中心频率是1550nm。
2. 光功率计光功率计(optical power meter )是指用于测量绝对光功率或通过一段光纤的光功率相对损耗的仪器。
在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表;在光纤测量中,光功率计是重负荷常用表。
通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。
用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。
3. 耦合器光纤耦合器是一种用于传送和分配光信号的光纤无源器件,是光纤系统中使用最多的光无源器件之一,在光纤通信及光纤传感领域占有举足轻重的地位。
光纤耦合半导体激光器原理光纤耦合半导体激光器是一种将光纤与半导体激光器相结合的器件,可将激光器器件与光纤相互耦合,实现高效的光纤传输和集成应用。
它不仅具备了半导体激光器的小尺寸、高效率、低功耗等特点,还能实现激光光束与光纤之间的高效耦合和传输。
首先,模式匹配是光束通过光纤耦合的关键环节。
激光器芯片的输出模式和光纤的模式必须匹配才能进行有效的耦合。
通常,半导体激光器芯片的输出模式为高斯模式,而光纤的传输模式也为高斯模式。
通过设计激光器芯片和光纤的参数,如直径、焦距等,使得两者的输出模式能够匹配,以确保较高的耦合效率。
其次,光束扩展过程将激光器芯片的较小直径的光束扩展到与光纤直径相匹配的尺寸。
这一过程可以通过使用透镜或光纤连接器等光学元件来实现。
透镜可以将光束进行聚焦和发散,从而实现光束尺寸的调整。
光纤连接器则通过其内部的光学结构来实现光束尺寸的调整和耦合。
最后,耦合效率是衡量光束传输和耦合质量的指标。
耦合效率取决于光纤与半导体激光器芯片之间的距离、角度和位置等因素。
一般情况下,为了最大程度地提高耦合效率,需要将激光器芯片的输出焦点与光纤的输入端对准,并保持二者的光轴一致。
此外,通过调整激光器芯片和光纤之间的距离和角度等,还可以进一步优化耦合效率。
除了以上原理,光纤耦合半导体激光器还需要注意温度的控制和光学元件的稳定性等问题。
激光器芯片的温度对其性能有很大影响,因此需要采用冷却措施来控制温度。
此外,光纤连接器和透镜等光学元件在使用过程中也需要保持稳定的性能,这对于长时间稳定的激光输出至关重要。
总之,光纤耦合半导体激光器通过将半导体激光器芯片与光纤相结合,实现了激光光束的高效耦合和传输。
它的原理涉及模式匹配、光束扩展和耦合效率等关键过程,并需要注意温度控制和光学元件的稳定性等问题。
光纤耦合半导体激光器在光通信、光传感和激光加工等领域具有广泛的应用前景。
通信工程专业综合实验报告――光通信部分姓名学号通信班级上课时间周二下午16:20~18:10第8章光纤传输系统实验一激光器P-I特性测试实验1. 实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法2. 实验仪器1、ZY12OFCom13BG型光纤通信原理实验箱1台2、FC接口光功率计1台3、FC/PC-FC/PC单模光跳线1根4、万用表1台5、连接导线20 根3. 实验原理半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。
处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。
由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(》10mW辐射,而且输出光发散角窄(垂直发散角为30〜50°,水平发散角为0〜30°),与单模光纤的耦合效率高(约30%〜50%),辐射光谱线窄(△入=0.1〜1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHZ直接调制,非常适合于作高速长距离光纤通信系统的光源。
P-I 特性是选择半导体激光器的重要依据。
在选择时,应选阈值电流I th尽可能小,I th对应P值小,而且没有扭折点的半导体激光器。
这样的激光器工作电流小,工作稳定性高,消光比大,而且不易产生光信号失真。
并且要求P-I曲线的斜率适当。
斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。
半导体激光器可以看作为一种光学振荡器, 要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布, 而且产生的增益足以抵消所有的损耗。
大功率半导体激光器光纤耦合技术调研报告1.前言近年来,高功率光纤激光器因其优良的性能日益受到人们的重视和青睐,被广泛地应用于工业加工、空间光通信、医疗和军事等各个方面,其迅速发展在很大程度上得益于大功率高亮度半导体激光器技术的进步,大功率半导体激光光纤耦合技术一直是高功率光纤激光器技术的一项关键核心技术。
相反地,半导体激光器泵浦的高功率光纤激光器(DPFL)的发展也带动了大功率半导体激光器技术,尤其是大功率半导体激光光纤耦合技术的进步。
由于单管半导体激光器(LD)的输出功率受限于数瓦量级,远不能满足高功率光纤激光器泵浦源的要求,要获得更大输出功率须采用具有多个发光单元的激光二极管阵列(LD Array)。
按照结构形式的不同,激光二极管阵列分为线阵列(LD Bar)和面阵列(LD Stack),分别如图1(a)和(b)所示,其中LD Bar的输出功率一般在数十瓦至百瓦量级,而LD Stack的输出功率一般在数百瓦乃至上千瓦。
无论是单管LD还是LD Array,由其固有结构特点决定了半导体激光器具有光束发散角较大,输出光束光斑不对称,亮度不高等问题,给作为高功率光纤激光器泵浦源的实际应用带来很大困难和不便。
一个较好的解决方法是将半导体激光耦合进光纤输出,这样既可以利用光纤的柔性传输,增加使用的灵活性,又可以从根本上改善半导体激光器的输出光束质量。
Fig.1 (a)LD Bar 和(b)LD Stack大功率半导体激光器阵列光纤耦合技术作为一项高新技术,具有很高的技术含量,涉及半导体材料、纤维光学技术、微光学技术、微精细加工技术和耦合封装技术等关键单元技术。
目前为止,大功率半导体激光器阵列光纤耦合技术主要采用两条技术路线:光纤束耦合法和微光学系统耦合法。
下面将主要以LD Bar 光纤耦合技术为例,就该两种方法进行详细阐述。
2.大功率半导体激光器阵列光纤耦合技术2.1光纤束耦合法光纤束耦合法(又称光纤阵列耦合法)是早期使用的一种光纤耦合技术,具有结构简单明了、耦合效率高、各发光元的间隙不影响整体光束质量和成本低等优点。
常用光纤器件特性测试实验 实验一 半导体激光器P-I 特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P 〔平均发送光功率〕-I 〔注入电流〕曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I 关系曲线。
2、根据P -I 特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率。
三、预备知识1、光源的种类2、半导体激光器的特性、内部结构、发光原理四、实验仪器1、ZY12OF13BG3型光纤通信原理实验箱 1台2、FC 接口光功率计 1台3、FC/PC-FC/PC 单模光跳线 1根4、万用表 1台5、连接导线20根五、实验原理半导体激光二极管〔LD 〕或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。
处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率一样,而且相位、偏振方向和传播方向都一样,它和感应光子是相干的。
由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率〔≥10mW 〕辐射,而且输出光发散角窄〔垂直发散角为30~50°,水平发散角为0~30°〕,与单模光纤的耦合效率高〔约30%~50%〕,辐射光谱线窄〔Δλnm 〕,适用于高比特工作,载流子复合寿命短,能进展高速信号〔>20GHz 〕直接调制,非常适合于作高速长距离光纤通信系统的光源。
阈值电流是非常重要的特性参数。
图1-1上A 段与B 段的交点表示开始发射激光,它对应的电流就是阈值电流th I 。
半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。
将开始出现净增益的条件称为阈值条件。
光纤耦合半导体激光器原理光纤耦合半导体激光器是一种将激光器与光纤相结合的器件,它利用光纤对激光的传输特性进行耦合,实现高效的光纤传输。
本文将从光纤耦合半导体激光器的原理、结构和应用等方面进行介绍。
光纤耦合半导体激光器的原理主要依托于半导体激光器的特性。
半导体激光器是一种利用半导体材料的电特性和光特性相互作用产生激光的器件。
其基本原理是通过施加电流,使半导体材料中的载流子在PN结区域发生复合,从而产生光子的放射,形成激光。
而光纤则是一种用来传输光信号的导光介质,具有高带宽、低损耗、抗电磁干扰等优点。
将半导体激光器与光纤耦合在一起,可以实现激光信号的高效传输和控制。
光纤耦合半导体激光器的结构包括激光器芯片、耦合透镜、光纤和光纤连接部件等。
激光器芯片是半导体激光器的核心部件,它由P 型、N型和活性层等材料组成,并通过电极进行电流的注入。
耦合透镜用于将激光器芯片中的激光束聚焦到光纤的末端,实现激光与光纤之间的耦合。
光纤连接部件则用于固定和保护光纤,以及保证光信号的稳定传输。
光纤耦合半导体激光器的应用非常广泛。
首先,在通信领域,光纤耦合半导体激光器可以用于光纤通信系统中的光源,实现高速、远距离的光信号传输。
其次,在工业应用中,光纤耦合半导体激光器可以用于激光加工、激光打标等领域,实现精确、高效的激光加工。
此外,在医疗领域,光纤耦合半导体激光器可以用于激光治疗、激光手术等,实现非接触式的医疗操作。
光纤耦合半导体激光器相比其他激光器具有许多优点。
首先,由于光纤的导光特性,光纤耦合半导体激光器可以实现长距离的光信号传输,同时光纤的柔性和抗干扰性也使得激光信号的传输更加稳定可靠。
其次,光纤耦合半导体激光器的结构简单紧凑,易于集成和应用。
此外,激光器芯片的制造工艺成熟,生产成本相对较低。
总结起来,光纤耦合半导体激光器是一种将激光器与光纤相结合的器件,利用光纤对激光的传输特性进行耦合,实现高效的光纤传输。
该器件具有结构简单、性能稳定、应用广泛等优点,被广泛应用于通信、工业、医疗等领域。
大功率半导体激光器光纤耦合技术调研报告摘要:随着激光器技术的不断发展,大功率半导体激光器光纤耦合技术得到了越来越广泛的应用。
本调研报告主要介绍了大功率半导体激光器光纤耦合技术的原理和优势,同时探讨了在工业、医疗以及通信等领域的应用前景。
通过系统的研究和分析,本报告对大功率半导体激光器光纤耦合技术的发展和未来趋势进行了预测。
1. 引言大功率半导体激光器是一种高效率、高亮度的激光器,被广泛应用于工业加工、医疗器械以及通信领域。
然而,传统的大功率半导体激光器在传输过程中会因为自发辐射和散焦而产生能量损耗和光束质量的下降。
为了克服这些问题,研究人员提出了光纤耦合技术,可以有效地将激光器的输出光束耦合到光纤中,提高能量传输效率并保持光束质量。
2. 大功率半导体激光器光纤耦合技术原理大功率半导体激光器光纤耦合技术利用光学器件实现激光器与光纤的耦合。
通常采用的耦合方式包括球透镜耦合、非球透镜耦合和光纤末端直接耦合等。
其中,球透镜耦合是较为常见的耦合方式。
它通过选择适当的球透镜、调整透镜距离和角度等参数,将激光器的输出光束聚焦到光纤的进口端,使得光能量更加集中和高效的传输进入光纤。
3. 大功率半导体激光器光纤耦合技术优势大功率半导体激光器光纤耦合技术具有以下几个优势:3.1 提高能量传输效率:光纤可以有效地将激光器的输出能量耦合并传输到目标位置,避免了能量损耗和衰减的问题。
3.2 保持光束质量:光纤的耦合使得激光器的输出光束保持高质量,不易受到自发辐射和散焦的影响,保证了传输的稳定性和精准性。
3.3 灵活性和便携性:光纤的使用使得激光器的输出可以灵活地传输到需要的位置,增加了设备的可移动性和应用的灵活性。
4. 大功率半导体激光器光纤耦合技术应用前景4.1 工业加工:大功率半导体激光器光纤耦合技术在工业加工领域具有广泛应用,可以用于激光切割、激光打标、激光焊接等工艺,提高加工速度和精度。
4.2 医疗器械:大功率半导体激光器光纤耦合技术可以用于医疗器械中的激光治疗和激光手术,如激光美容、激光矫正等治疗方式。
电子测置大功率半导体激光器空间耦合技术作者/刘小文、任浩、王伟,中国电子科技集团公司第十三研究所摘要:本文应用空间及偏振耦合技术,优化光束空间分布,研制成功大功率半导体激光器光纤耦合模块,实现输出功率234.6W ,耦合效 率为60%,光纤芯径400|jm ,NA 为0.22。
关键词:光纤耦合;半导体激光器;空间耦合引言大功率半导体激光器光纤耦合模块,具有光电转换效率 高、寿命长、体积小、功率密度高等优点[1]。
随着耦合效率 及出纤功率不断提高,使其在医疗、材料加工、医药、航空 航天、光纤激光器泵浦等方面有了更加广阔的应用前景。
然而, 半导体激光器由于其结构特点,存在光束发散角较大,耦合 效率偏低的问题,给实际应用带来很大困难[2]。
通过光束整 形和空间合束是提高半导体光纤耦合模块输出功率的有效途 径,国内外已有很多公司进行了相关研究。
目前德国Dilas 公司有相关产品面世,40〇nm 光纤可实现200W 功率输出。
本文根据理论设计,通过采用微光学透镜系统对光束进 行准直整形、变换和合束,研制成功大功率半导体激光器光 纤耦合模块,有效实现了大功率、高密度输出。
1•理论分析对于大功率半导体激光器光纤耦合模块,为得到最佳的 耦合效率,不仅要考虑特征参量匹配的问题,即多模光纤芯 径、数值孔径N A 与激光器的发光面积、发散角、输出功率 等参量的匹配问题,还要考虑光纤端面、光学整形透镜、耦 合透镜等封装工艺实现问题[3]。
通常大功率激光二极管线列阵有19或25个发光单元, 发光周期一般为150/500n m 或200 /400|im ,如图1所示。
由于半导体激光器特殊的波导谐振腔结构,线列阵各发光单 元的辐射远场光强的分布极不对称,光斑呈狭长的椭圆形, 如图2所示。
光束在垂直于P N 结平面方向(快轴方向)的 发散角FWHM 01通常为30°〜40°,远远大于其在平行于 P N 结平面方向(慢轴方向)的发散角FWHM 0 〃,0 〃通常为6。