一种空间直线重建方法
- 格式:pdf
- 大小:2.48 MB
- 文档页数:3
国土空间生态修复的内涵一、国土空间国土空间生态修复的对象是国土空间,所以首先必须明确何谓国土空间。
国土是指一个主权国家管辖下的地域空间,是国民生存的场所和环境,包括领土、领空、领海和根据《联合国海洋法公约》规定的专属经济区海域的总称(吴次芳等,2003)。
它包括一个国家的陆地、河流、湖泊、内海、领海、岛屿、大陆架,以及这些地区的地下部分和上空。
任何国家管辖的地域空间,都是由土地、水、气、生物、矿产等自然要素和人口、建筑物、工程设施、经济及文化基础等人为要素构成的。
国土是一个国家和人民生活的场所和生产基地,也是这个国家人民赖以生存与发展的物质基础。
关于领土、领海、领空和专属经济区的定义,目前多做以下理解:1)领土。
一般指一个国家位于其国界范围内的空间。
国家对其领土有绝对的管辖权,是这个国家主权的重要组成部分。
2)领海。
指沿海国家自行确定的与其海岸或内水相邻接的一定范围的海域及其海底地下层。
国际上至今对领海的宽度无统一规定,但大多数国家都同意领海的宽度为12海里。
领海以内的大陆架上的资源亦属于同一个国家。
3)领空。
指一个国家的陆地、河流、湖泊以及领海范围内全部地面以上的大气空间。
领空的垂直高度应该是多少,目前国际上尚无统一的规定。
4)专属经济区。
是指在领海以外并邻接领海,具有特定法律规定的区域,其宽度自领海基线量起不超过200海里。
在该区域内,沿海国家享有以勘探和开发、养护和管理自然资源为目的的主权权力,以及对于人工岛屿、设施和结构的建设和使用、海洋科学研究、海洋环境保护和保全的管辖权。
其他国家则享有航行、飞越、铺设海底电缆和管道的自由。
无论从地理位置或法律性质上说,专属经济区都是介于领海和公海之间的第三种海域。
自1982年《联合国海洋法公约》通过以后,200海里专属经济区已为国际社会普遍承认。
国土空间是“区域”在国家意义上的称谓,具有“区域”的基本内涵。
它有着基本的自然地理规定性,是地域分异性规律作用的产物;它也具有一定的社会经济规定性,是社会经济客体和现象的空间聚集规模和聚集形态;它还具有一定的政治规定性,是国家权力对资源进行权威性配置的结果。
空间两直线异面的判定方法空间中两直线的位置关系可以分为三种情况:重合、相交和异面。
判断两直线是否相交比较容易,而判断两直线是否异面则需要一定的数学知识和技巧。
本文将介绍空间中两直线异面的判定方法,希望对读者有所帮助。
一、异面直线的定义空间中的两条直线如果既不重合又不相交,则称它们为异面直线。
两条异面直线之间存在一个平面,这个平面称为它们的公共垂直平面。
1. 向量法向量法是判断异面直线位置关系的一种常见方法。
我们可以用两条直线上的向量来求它们的叉积,如果叉积不为零,就说明两条直线不在同一个平面上,也就是异面。
以空间直角坐标系为例,设两条直线分别为:l1: (x1,y1,z1) + t(a1,b1,c1)t和s为参数。
则l1上的向量为(a1,b1,c1),l2上的向量为(a2,b2,c2)。
这两个向量的叉积为:(a1,b1,c1) × (a2,b2,c2) = [(b1c2-b2c1),(a2c1-a1c2),(a1b2-a2b1)]如果叉积不为零,则说明两条直线不在同一平面上,从而可以判断它们为异面直线。
2. 交点法两条异面直线如果有交点,则交点一定不在任何一个直线所在的平面上。
可以通过求解两条直线的交点来判断它们是否异面。
如果两条直线有交点,则它们一定不是异面的;否则,它们就是异面的。
设两条直线为:它们的交点为P,则有:可以得到一个二元一次方程组:x1 + ta1 = x2 + sa2对它们进行变形,得到:t(b1-sb2)+s(b2-y1)+(y1-y2) = 0写成矩阵形式,有:\begin{bmatrix}a1-sa2 & a2-x1 \\b1-sb2 & b2-y1 \\c1-sc2 & c2-z1 \\\end{bmatrix}\begin{bmatrix}t \\s \\\end{bmatrix}=\begin{bmatrix}x1-x2 \\y1-y2 \\z1-z2 \\\end{bmatrix}如果该方程组有解,则说明两条直线有交点,即不是异面的;否则,就是异面的。
空间直线的点向式方程简介在数学中,空间直线是三维几何中的基本概念之一。
直线可以用多种方法来表示,其中一种方法是点向式方程。
本文将详细介绍空间直线的概念、点向式方程的定义以及如何推导和应用点向式方程。
空间直线的定义空间直线是三维几何中一条无穷延伸的路径,它由无限多个点组成。
直线上的任意两点可以确定一条直线,且直线上的所有点都与给定方向向量垂直。
点向式方程的定义点向式方程是用一条直线上的一个点和方向向量表示直线的一种方法。
它的一般形式可以表示为:r = a + λn,其中r是直线上的一个点的坐标,a是已知点的坐标,λ是一个参数,n是直线的方向向量。
推导点向式方程的步骤推导点向式方程的步骤如下: 1. 确定直线上的一个点和方向向量。
2. 找到直线上另一个点,得到两点的坐标差向量。
3. 将坐标差向量表示为参数的线性组合形式。
4. 将线性组合形式中的参数替换为λ来表示直线上的所有点。
推导示例以直线L: (x, y, z) = (2, 1, -3) + λ(1, -2, 4)为例,推导点向式方程的步骤如下: 1. 已知直线上的一个点为A(2, 1, -3),方向向量为n(1, -2, 4)。
2. 取直线上的另一个点B(x, y, z),得到坐标差向量AB(x-2, y-1, z+3)。
3. 将坐标差向量表示为参数的线性组合形式:(x-2, y-1, z+3) = λ(1, -2, 4)。
4. 将线性组合形式中的参数替换为λ,得到点向式方程:x = 2 + λ, y = 1 - 2λ, z = -3 + 4λ。
点向式方程的性质点向式方程具有以下几个性质: 1. 通过点向式方程可以得到直线上的任意一点的坐标。
2. 点向式方程中的方向向量与直线的方向有关,方向相同的直线具有相同的方向向量。
3. 点向式方程中的参数λ可以取任意实数,因此可以表示整个直线上的所有点。
4. 点向式方程方便进行直线之间的计算,如求两条直线的交点、判断两条直线的关系等。
第10讲用空间向量研究直线、平面的位置关系4种常见方法归类1.理解与掌握直线的方向向量,平面的法向量.2.会用方向向量,法向量证明线线、线面、面面间的平行关系;会用平面法向量证明线面和面面垂直,并能用空间向量这一工具解决与平行、垂直有关的立体几问题.知识点1空间中点、直线和平面的向量表示1.空间直线的向量表示式设A 是直线上一点,a 是直线l 的方向向量,在直线l 上取AB →=a ,设P 是直线l 上任意一点,(1)点P 在直线l 上的充要条件是存在实数t ,使AP →=ta ,即AP →=tAB →.(2)取定空间中的任意一点O ,点P 在直线l 上的充要条件是存在实数t .使OP →=OA →+ta .(3)取定空间中的任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP →=OA →+tAB →.注意点:(1)空间中,一个向量成为直线l 的方向向量,必须具备以下两个条件:①是非零向量;②向量所在的直线与l 平行或重合.(2)直线上任意两个不同的点都可构成直线的方向向量.与直线l 平行的任意非零向量a 都是直线的方向向量,且直线l 的方向向量有无数个.(3)空间任意直线都可以由直线上一点及直线的方向向量唯一确定.2.空间平面的向量表示式①如图,设两条直线相交于点O ,它们的方向向量分别为a 和b ,P 为平面α内任意一点,由平面向量基本定理可知,存在唯一的有序实数对(x ,y ),使得OP →=xa +yb.②如图,取定空间任意一点O ,空间一点P 位于平面ABC 内的充要条件是存在实数x ,y ,使OP →=OA →+xAB →+yAC →.我们把这个式子称为空间平面ABC的向量表示式.③由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.如图,直线l ⊥α,取直线l 的方向向量a ,我们称向量a 为平面α的法向量.给定一个点A 和一个向量a ,那么过点A ,且以向量a 为法向量的平面完全确定,可以表示为集合{P |a ·AP →=0}.注意点:(1)平面α的一个法向量垂直于平面α内的所有向量.(2)一个平面的法向量有无限多个,它们相互平行.易错辨析:(1)空间中给定一个点A 和一个方向向量能唯一确定一条直线吗?答案:能(2)一个定点和两个定方向向量能否确定一个平面?答案:不一定,若两个定方向向量共线时不能确定,若两个定方向向量不共线能确定.(3)由空间点A 和直线l 的方向向量能表示直线上的任意一点?答案:能知识点2空间平行、垂直关系的向量表示1、理解直线方向向量的概念(1)直线上任意两个不同的点都可构成直线的方向向量.(2)直线的方向向量不唯一.2、利用待定系数法求法向量的步骤3、求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量(2)取特值:在求n的坐标时,可令x,y,z中一个为一特殊值得另两个值,就是平面的一个法向量(3)注意0:提前假定法向量n=(x,y,z)的某个坐标为某特定值时一定要注意这个坐标不为04、用空间向量证明平行的方法(1)线线平行:证明两直线的方向向量共线.(2)线面平行:①证明直线的方向向量与平面内任意两个不共线的向量共面,即可用平面内的一组基底表示.②证明直线的方向向量与平面内某一向量共线,转化为线线平行,利用线面平行判定定理得证.③先求直线的方向向量,然后求平面的法向量,证明直线的方向向量与平面的法向量垂直.在证明线面平行时,需注意说明直线不在平面内.(3)面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题.5、用空间向量证明垂直的方法(1)线线垂直:证明两直线的方向向量互相垂直,即证明它们的数量积为零.(2)线面垂直:①基向量法:选取基向量,用基向量表示直线所在的向量,证明直线所在向量与两个不共线向量的数量积均为零,从而证得结论.②坐标法:建立空间直角坐标系,求出直线方向向量的坐标,证明直线的方向向量与两个不共线向量的数量积均为零,从而证得结论.③法向量法:建立空间直角坐标系,求出直线方向向量的坐标以及平面法向量的坐标,然后说明直线方向向量与平面法向量共线,从而证得结论.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.考点一:求直线的方向向量例1.(2023春·高二课时练习)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点,AB =AP =1,AD PC 的一个方向向量.【答案】1)-【分析】建立如图所示的空间直角坐标系,根据方向向量的定义可得.【详解】如图所示,建立空间直角坐标系A -xyz ,则(0,0,1)P ,C ,所以1)PC =-即为直线PC 的一个方向向量.变式1.(2023春·高二课时练习)已知直线1l 的一个方向向量为()5,3,2-,另一个方向向量为(),,8x y ,则x =________,y =________.【答案】-2012【分析】由直线的方向向量平行的性质即可求解.【详解】∵直线的方向向量平行,∴8532x y ==-,∴20,12x y =-=,故答案为:20-;12.变式2.(2022秋·广西钦州·高二校考阶段练习)已知直线l 的一个法向量是)n =,则l 的倾斜角的大小是()A .π3B .2π3C .π6D .π2【答案】A【分析】设直线l 的倾斜角为θ,[)0,πθ∈,直线l 的方向向量为(),u x y =,根据直线方向向量与法向量的关系得到得到y =,即可求解.【详解】设直线l 的倾斜角为θ,[)0,πθ∈,直线l 的方向向量为(),u x y =.则0u n y ⋅=-=,即y =,则tan y xθ==又[)0,πθ∈,解得π3θ=,故选:A.变式3.【多选】(2022秋·湖北十堰·高二校联考阶段练习)如图,在正方体1111ABCD A B C D -中,E 为棱1CC 上不与1C ,C 重合的任意一点,则能作为直线1AA 的方向向量的是()A .1AA B .1C EC .ABD .1A A【答案】ABD【分析】结合立体图形,得到平行关系,从而确定答案.【详解】因为111////C E AA A A ,所以1AA ,1C E ,1A A都可作为直线1AA 的方向向量.故选:ABD.变式4.(2023春·江苏常州·高二校联考期中)已知直线l 的一个方向向量()2,1,3m =-,且直线l 过A (0,y ,3)和B (-1,2,z )两点,则y -z 等于()A .0B .1C .2D .3【答案】A【分析】根据//m AB求解即可.【详解】由题知:()1,2,3AB y z =---,因为//m AB ,所以213123y z -==---,解得33,22y z ==,所以0y z -=.故选:A考点二:求平面的法向量例2.(2023春·四川成都·高二四川省成都市新都一中校联考期中)已知(2,0,0)A ,(0,2,0)B ,(0,0,2)C ,则平面ABC 的一个法向量可以是()A .(1,1,1)---B .(1,1,1)-C .(1,1,1)-D .(1,1,1)-【答案】A【分析】代入法向量的计算公式,即可求解.【详解】(2,2,0)AB =- ,(2,0,2)AC =- ,令法向量为(,,)m x y z = ,则220220x y x z -+=⎧⎨-+=⎩,y z x ∴==,可取(1,1,1)m =---.故选:A.变式1.(2023春·高二课时练习)已知()()()1,1,0,1,0,1,0,1,1A B C ,则平面ABC 的一个单位法向量是()A .()1,1,1B.C .111(,,)333D.(,)333-【答案】B【分析】待定系数法设平面ABC 的一个法向量为n,由法向量的性质建立方程组解出分析即可.【详解】设平面ABC 的一个法向量为(),,n x y z =,又()()0,1,1,1,1,0AB BC =-=- ,由0000AB n AB n y z x y BC n BC n ⎧⎧⊥⋅=-+=⎧⎪⎪⇒⇒⎨⎨⎨-+=⊥⋅=⎩⎪⎪⎩⎩ ,即x y z ==,又因为单位向量的模为1,所以B 选项正确,故选:B.变式2.(2023春·福建龙岩·高二校联考期中)《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.在鳖臑A BCD -中,AB ⊥平面BCD ,=90BDC ∠︒,BD AB CD ==.若建立如图所示的“空间直角坐标系,则平面ACD 的一个法向量为()A .()0,1,0B .()0,1,1C .()1,1,1D .()1,1,0【答案】B【分析】根据题意,设1BD AB CD ===,可得A 、C 、D 的坐标,由此可得向量DC 、AD的坐标,由此可得关于x 、y 、z 的方程组,利用特殊值求出x 、y 、z 的值,即可得答案.【详解】根据题意,设1BD AB CD ===,则()0,1,0D ,()1,1,0C ,()0,0,1A ,则()1,0,0DC = ,()0,1,1AD =- ,设平面ACD 的一个法向量为(),,m x y z=,则有00DC m x AD m y z ⎧⋅==⎪⎨⋅=-=⎪⎩ ,令1y =,可得1z =,则()0,1,1m = .故选:B .变式3.(2023秋·高二课时练习)在如图所示的坐标系中,1111ABCD A B C D -为正方体,给出下列结论:①直线1DD 的一个方向向量为(0,0,1);②直线1BC 的一个方向向量为(0,1,1);③平面11ABB A 的一个法向量为(0,1,0);④平面1B CD 的一个法向量为(1,1,1).其中正确的个数为()A .1个B .2个C .3个D .4个【答案】C【分析】根据空间直线的方向向量的概念以及平面的法向量的定义判断可得答案.【详解】设正方体的棱长为a ,则(0,,0)D a ,1(0,,)D a a ,1(0,0,)DD a = ,则1DD与(0,0,1)平行,故直线1DD 的一个方向向量为(0,0,1),故①正确;因为(,0,0)B a ,1(,,)C a a a ,所以1(0,,)BC a a = ,因为1BC与(0,1,1)平行,所以直线1BC 的一个方向向量为(0,1,1),故②正确;因为(0,0,0)A ,(0,,0)D a ,所以(0,,0)AD a = ,因为AD 是平面11ABB A 的一个法向量,且AD与(0,1,0)平行,所以平面11ABB A 的一个法向量为(0,1,0),故③正确;因为(,,0)C a a ,(0,,0)D a ,所以(,0,0)CD a =-,因为(1,1,1)(,0,0)(1,1,1)0CD a a ⋅=-⋅=-≠ ,所以CD与(1,1,1)不垂直,所以(1,1,1)不是平面1B CD 的一个法向量,故④不正确.故选:C变式4.(2023·全国·高三专题练习)放置于空间直角坐标系中的棱长为2的正四面体ABCD 中,H 是底面中心,DH ⊥平面ABC ,写出:平面BHD 的一个法向量___________;【答案】()(答案不唯一)【分析】利用向量法得出平面BHD的一个法向量.【详解】由题意可知23CH OC DH===,则(),0,1,0,0,,333H B D⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭0,0,3HD⎛⎫= ⎪⎪⎝⎭,1,3BH⎛⎫=- ⎪⎪⎝⎭.设(),,n x y z=为平面BHD的一个法向量,则3n HD zn BH x y⎧⋅==⎪⎪⎨⎪⋅=-=⎪⎩,不妨设1x=,则()n=.故平面BHD的一个法向量为().故答案为:()(答案不唯一)变式5.(2023春·高二课时练习)在棱长为2的正方体1111ABCD A B C D-中,E,F分别为棱1111,A D A B的中点,在如图所示的空间直角坐标系中,求:(1)平面11BDD B的一个法向量;(2)平面BDEF的一个法向量.【答案】(1)(2,2,0)=-AC(答案不唯一)(2)(2,2,1)n=--(答案不唯一)【分析】(1)利用线面垂直的判定定理求解法向量;(2)利用空间向量的坐标运算求平面的法向量.【详解】(1)由题意,可得()()()()()0,0,0,2,2,0,2,0,0,0,2,0,1,0,2D B A C E ,连接AC ,因为底面为正方形,所以AC BD ⊥,又因为1DD ⊥平面ABCD ,AC ⊂平面ABCD ,所以1DD AC ⊥,且1BD DD D = ,则AC ⊥平面11BDD B ,∴(2,2,0)=-AC 为平面11BDD B 的一个法向量.(答案不唯一).(2)(2,2,0),(1,0,2).DB DE ==设平面BDEF 的一个法向量为(,,)n x y z =,则,0220,,120,.02y x n DB x y x z z x n DE =-⎧⎧⋅=+=⎧⎪⎪∴∴⎨⎨⎨+=-⋅=⎩⎪⎪⎩⎩令2x =,得2, 1.y z =-=-∴(2,2,1)n =--即为平面BDEF 的一个法向量.(答案不唯一).变式6.【多选】(2023春·福建宁德·高二校联考期中)已知空间中三个向量()2,1,0AB = ,()1,2,1AC =- ,()3,1,1BC =-,则下列说法正确的是()A .AB与AC 是共线向量B .与AB同向的单位向量是,55⎛⎫ ⎪ ⎪⎝⎭C .BC 在AB方向上的投影向量是()2,1,0--D .平面ABC 的一个法向量是()1,2,5-【答案】BCD【分析】A :由向量共线定理,应用坐标运算判断是否存在R λ∈使AB AC λ= ;B :与AB同向的单位向量是||ABAB 即可判断;C :由投影向量的定义可解;D :应用平面法向量的求法求平面ABC 的一个法向量,即可判断.【详解】A :若AB与AC 共线,存在R λ∈使AB AC λ= ,则2120λλλ=-⎧⎪=⎨⎪=⎩无解,故不共线,错误;B :与AB同向的单位向量是||AB AB ==,正确;C:由cos ,11||||AB BCAB BC AB BC ⋅==-,则BC 在AB方向上的投影向量是()cos ,2,1,0AB BC AB BC AB ⎛=⨯-- ⎝⎭,正确;D :若(,,)m x y z = 是面ABC 的一个法向量,则2020m AB x y m AC x y z ⎧⋅=+=⎪⎨⋅=-++=⎪⎩ ,令=2y -,则(1,2,5)m =- ,正确.故选:BCD变式7.(2023春·四川成都·高二成都市锦江区嘉祥外国语高级中学校考期中)已知()2,0,2a =,()3,0,0= b 分别是平面α,β的法向量,则平面α,β交线的方向向量可以是()A .()1,0,0B .()0,1,0C .()0,0,1D .()1,1,1【答案】B【分析】根据平面的交线都与两个平面的法向量垂直求解.【详解】因为四个选项中,只有()()()0,1,02,0,20,1,00⋅=⋅=a ,()()()0,1,03,0,00,1,00⋅=⋅=b ,所以平面α,β交线的方向向量可以是()0,1,0故选:B变式8.(2023秋·福建南平·高二统考期末)已知四面体ABCD 的顶点坐标分别为()0,0,2A ,()2,2,0B ,()1,2,1C ,()2,2,2D .(1)若M 是BD 的中点,求直线CM 与平面ACD 所成的角的正弦值;(2)若P ,A ,C ,D 四点共面,且BP ⊥平面ACD ,求点P 的坐标.【答案】3(2)482,,333⎛⎫ ⎪⎝⎭【分析】(1)由题意分别求出向量()1,0,0CM = 和平面ACD 的一个法向量()1,1,1n =--,再用直线与平面所成的角的正弦值公式代入计算即可;(2)由题意,(),,BP n λλλλ==--,于是点P 的坐标为()2,2,λλλ+--,由P ,A ,C ,D 四点共面,可设AP xAD y AC =+ ,将,AP AD AC ,坐标分别代入即可解得23λ=-,从而求得点P 的坐标.【详解】(1)由题意,()1,2,1AC =- ,()2,2,0AD = ,()2,2,1M ,()1,0,0CM =,可设平面ACD 的法向量(),,n x y z =,则00n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即20220x y z x y +-=⎧⎨+=⎩,化简得z xy x=-⎧⎨=-⎩.令1x =,则1y =-,1z =-,可得平面ACD 的一个法向量()1,1,1n =--,设直线CM 与平面ACD ,则sin 3CM n CM n θ⋅===⋅ ,即直线CM 与平面ACD(2)由题意,(),,BP n λλλλ==-- ,于是点P 的坐标为()2,2,λλλ+--,又P ,A ,C ,D 四点共面,可设AP xAD y AC =+,即()()()2,2,22,2,01,2,1x y λλλ+---=+-,即222222x y x y y λλλ+=+⎧⎪-=+⎨⎪--=-⎩,解得23λ=-,所以所求点P 的坐标为482,,333⎛⎫⎪⎝⎭.变式9.(2023春·湖北·高二校联考阶段练习)已知点()2,6,2A -在平面α内,()3,1,2=n 是平面α的一个法向量,则下列点P 中,在平面α内的是()A .()1,1,1P -B .31,3,2P ⎛⎫ ⎪⎝⎭C .31,3,2P ⎛⎫- ⎪⎝⎭D .31,3,4P ⎛⎫--- ⎪⎝⎭【答案】A【分析】根据每个选项中P 点的坐标,求出AP的坐标,计算AP n ⋅ ,根据结果是否等于0,结合线面垂直的性质,即可判断点P 是否在平面α内.【详解】对于选项A ,()1,5,1AP =-- ,所以1351120AP n ⋅=-⨯+⨯-⨯= ,根据线面垂直的性质可知AP α⊂,故()1,1,1P -在平面α内;对于选项B ,11,9,2AP ⎛⎫=-- ⎪⎝⎭ ,则11391202AP n ⋅=-⨯+⨯+⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,2P ⎛⎫ ⎪⎝⎭不在平面α内;对于选项C ,11,3,2AP ⎛⎫=-- ⎪⎝⎭ ,则11331202AP n ⋅=-⨯+⨯-⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,2P ⎛⎫- ⎪⎝⎭不在平面α内;对于选项D ,113,3,4AP ⎛⎫=-- ⎪⎝⎭ ,则113331204AP n ⋅=-⨯+⨯-⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,4P ⎛⎫--- ⎪⎝⎭不在平面α内;故选:A变式10.(2023春·河南·高二临颍县第一高级中学校联考开学考试)已知点()01,2,3P -在平面α内,平面{}00P n P P α=⋅= ∣,其中()1,1,1n =-是平面α的一个法向量,则下列各点在平面α内的是()A .()2,4,8-B .()3,8,5C .()2,3,4-D .()3,4,1-【答案】B【分析】由法向量的定义结合数量积运算确定y =x+z ,再判断选项.【详解】设(),,P x y z 是平面α内的一点,则()01,2,3P P x y z =+--,所以()()()1230x y z +--+-=,即y =x+z ,选项B 满足.故选:B考点三:用空间向量证明平行问题(一)判断直线、平面的位置关系例3.(2023秋·湖北黄石·高二校考阶段练习)若直线l 的一个方向向量为()257,,a = ,平面α的一个法向量为()111,,u →=-,则()A .l ∥α或l ⊂αB .l ⊥αC .l ⊂αD .l 与α斜交【答案】A【分析】直线的一个方向向量()257,,a = ,平面α的一个法向量为()111,,u →=-,计算数量积,即可判断出结论.【详解】 直线的一个方向向量为()257,,a = ,平面α的一个法向量为()111,,u →=-,2570a u →→∴⋅=+-=,∴a u →→⊥,l α∴∥或l ⊂α,故选:A变式1.(2023春·高二单元测试)若平面α与β的法向量分别是()1,0,2a =-,()1,0,2b =-r,则平面α与β的位置关系是()A .平行B .垂直C .相交不垂直D .无法判断【答案】A【分析】利用平面法向量的位置关系,即可判断两平面的位置关系.【详解】因为()1,0,2a =- ,()1,0,2b =-r是平面α与β的法向量,则a b =-,所以两法向量平行,则平面α与β平行.故选:A变式2.(2023春·山东菏泽·高二统考期末)已知平面α与平面ABC 是不重合的两个平面,若平面α的法向量为(2,1,4)m =-,且(2,0,1)AB =- ,(1,6,1)AC = ,则平面α与平面ABC 的位置关系是________.【答案】平行【分析】分别计算AB m ⋅ ,AC m ⋅ ,可得0m AB ⋅= ,0m AC =⋅ ,从而可知m AB ⊥ ,m AC ⊥ ,m ⊥平面ABC ,所以可得平面α与平面ABC 平行.【详解】平面α的法向量为(2,1,4)m =-,且(2,0,1)AB =- ,(1,6,1)AC = ,()220410AB m =⨯⨯=⋅++- ,()2116410AC m =⨯+-⨯+⨯=⋅,所以m AB ⊥ ,m AC ⊥ ,m ⊥平面ABC ,平面ABC 的一个法向量为(2,1,4)m =-,又因为平面α与平面ABC 是不重合的两个平面所以平面α与平面ABC 平行.故答案为:平行.变式3.(2023秋·陕西宝鸡·高二统考期末)在长方体ABCD A B C D -''''中,222AA AB AD '===,以点D 为坐标原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴建立空间直角坐标系,设对角面ACD '所在法向量为(,,)x y z ,则::x y z =__________.【答案】2:2:1【分析】利用法向量的求法进行求解即可【详解】由题意得()1,0,0A ,()0,1,0C ,()0,0,2D ',()1,1,0AC =- ,()1,0,2AD '=-,因为平面ACD '的法向量为(),,n x y z = ,则00AC n AD n '⎧⋅=⎪⎨⋅=⎪⎩,即020x y x z -+=⎧⎨-+=⎩,取()20x k k =≠,则2,y k z k ==,故::2:2:1x y z =故答案为:2:2:1变式4.【多选】(2023春·甘肃张掖·高二高台县第一中学校考期中)下列利用方向向量、法向量判断线、面位置关系的结论中正确的是()A .若两条不重合直线1l ,2l 的方向向量分别是()2,3,1a =- ,()2,3,1b =--,则12//l l B .若直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0μ=-,则l //αC .若两个不同平面α,β的法向量分别为()12,1,0n =- ,()24,2,0n =-,则//αβD .若平面α经过三点()1,0,1A -,()0,1,0B ,()1,2,0C -,向量()11,,n u t =是平面α的法向量,则1u t +=【答案】ACD【分析】利用空间向量共线定理判断A 即可;由,a μ的关系式即可判断B ;由12,n n 的关系即可判断选项C,利用平面内法向量的性质即可判断D.【详解】因为两条不重合直线1l ,2l 的方向向量分别是()2,3,1a =- ,()2,3,1b =--,所以a b =-,所以,a b 共线,又直线1l ,2l 不重合,所以12//l l ,故A 正确;因为直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0μ=-且53a μ=-,所以l α⊥,故B 不正确;两个不同平面α,β的法向量分别为()12,1,0n =- ,()24,2,0n =-,则有212n n =-,所以//αβ,故C 正确;平面α经过三点()1,0,1A -,()0,1,0B ,()1,2,0C -,所以()(),,1,1,11,1,0B B A C --==又向量()11,,n u t = 是平面α的法向量,所以1111010100AB n AB n u t u BC n BC n ⎧⎧⊥⋅=-++=⎧⎪⎪⇒⇒⎨⎨⎨-+=⊥⊥=⎩⎪⎪⎩⎩则1u t +=,故D 正确,故选:ACD.(二)已知直线、平面的平行关系求参数例4.(2022秋·广东广州·高二广州市第九十七中学校考阶段练习)直线l 的方向向量是()1,1,1s =- ,平面α的法向量()222,,n x x x =+-,若直线//l 平面α,则x =______.【答案】2【分析】线面平行时,直线的方向向量垂直于平面的法向量,即它们的数量积为零,根据数量积的坐标表示列出方程求解即可.【详解】解:若直线//l 平面α,则0s n ⋅=,22220x x x x ∴-++-=-=,解得2x =,故答案为:2.变式1.(2023秋·上海浦东新·高二上海南汇中学校考期末)已知直线l 的一个方向向量为(1,2,1)d =-,平面α的一个法向量(,4,2)n x =-,若//l α,则实数x =_______.【答案】10【分析】根据直线与平面平行,得到直线的方向向量与平面的法向量垂直,进而利用空间向量数量积为0列出方程,求出x 的值.【详解】因为//l α,所以直线l 的方向向量与平面α的法向量垂直,即(,4,2)(1,2,1)820n d x x ⋅=-⋅-=--=,解得:10x =.故答案为:10变式2.(2022秋·天津蓟州·高二校考期中)直线l 的方向向量是()1,1,1s →=,平面α的法向量()21,,n x x x →=--,若直线l α∥,则x =___________.【答案】1【分析】结合已知条件可得s n →→⊥,然后利用垂直向量的数量积为0即可求解.【详解】由题意可知,s n →→⊥,因为()1,1,1s →=,()21,,n x x x →=--,从而210s n x x x →→⋅=+--=,解得1x =.故答案为:1.变式3.(2023春·上海·高二校联考阶段练习)已知平面α的一个法向量为()11,2,3n =-,平面β的一个法向量为()22,4,n k =--,若//αβ,则k 的值为______【答案】6【分析】因为法向量定义,把//αβ转化为12//n n,可得k 的值.【详解】因为平面α的一个法向量为()11,2,3n =- ,平面β的一个法向量为()22,4,n k =--,又因为//αβ,所以12//n n,可得()()342k -⨯-=,即得6k =.故答案为:6.(三)证明直线、平面的平行问题例5.(2022春·江苏镇江·高二江苏省镇江第一中学校联考期末)如图,三棱柱11ABC AB C -中侧棱与底面垂直,且AB =AC =2,AA 1=4,AB ⊥AC ,M ,N ,P ,D 分别为CC 1,BC ,AB ,11B C 的中点.求证:PN ∥面ACC 1A 1;【解析】以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()10,0,4A ,()2,0,0B ,()0,2,2M ,()1,1,0N ,()1,0,4P .取向量()2,0,0AB = 为平面11ACC A 的一个法向量,()0,1,4PN =-,∴()0210400PN AB ⋅=⨯++-=⨯⨯,∴PN AB ⊥ .又∵PN ⊄平面11ACC A ,∴PN ∥平面11ACC A .变式1.(2023·天津和平·耀华中学校考二模)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形,线段AD 的中点为O 且PO ⊥底面ABCD ,112AB BC AD ===,π2BAD ABC ∠==∠,E 是PD 的中点.证明:CE ∥平面PAB ;【解析】连接OC ,因为//,AO BC AO BC =,所以四边形OABC 为平行四边形,所以//AB OC ,所以OC AD ⊥,以OC ,OD ,OP 分别为x ,y ,z轴建立空间直角坐标系,则(P ,()0,1,0A -,()1,1,0B -,()1,0,0C.11,22CE ⎛⎫=- ⎪ ⎪⎝⎭,(0,1,PA =-,(1,1,PB =- ,设平面PAB 的一个法向量为()1,,n x y z =,则1100PA n y PB n x y ⎧⋅=--=⎪⎨⋅=--=⎪⎩ ,则0x =,令1z =-,y =平面PAB的一个法向量()11n =-,1022CE n ⋅== ,则1CE n ⊥ ,又CE ⊄平面PAB ,所以//CE 平面PAB .变式2.(2023·湖北黄冈·浠水县第一中学校考模拟预测)如图,在三棱柱111ABC A B C -中,1BB ⊥平面ABC ,D ,E 分别为棱AB ,11B C 的中点,2BC =,AB =114AC =.证明://DE 平面11ACC A ;【解析】证明:在三棱柱111ABC A B C -中,1BB ⊥平面ABC ,2BC =,AB =114AC =.所以114AC AC ==,则222AC AB BC =+,则AB BC ⊥,则如下图,以B 为原点,1BC BA BB ,,为x y z ,,轴建立空间直角坐标系,设1BB h =,则()()()00000200A B C ,,,,,,,,()()()()()111000200010A h B h C h D E h ,,,,,,,,,,,,所以()1DE h =,()()12000AC AA h =-=,,,,,设平面11ACC A 的一个法向量为()n x y z =,,,所以1200AC n x AA n hz ⎧⋅=-=⎪⎨⋅==⎪⎩ ,令1y =,则0x z ==,即)0n =,,所以())1000DE n h ⋅=⋅==,,得DE n ⊥,又DE ⊄平面11ACC A ,所以//DE 平面11ACC A ;变式3.(2023春·江苏盐城·高二盐城市大丰区南阳中学校考阶段练习)如图,在三棱锥-P ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,2PA AC ==,1AB =.求证://MN 平面BDE ;【解析】因为PA ⊥底面ABC ,90BAC ∠=︒,建立空间直角坐标系如图所示,则11(0,0,0),(1,0,0),(0,2,0),(0,0,1),(0,1,1),(0,0,),(,1,0),(0,0,2)22A B C D E M N P ,所以(0,1,0),(1,0,1)DE DB ==-,设(,,)n x y z =为平面BDE 的法向量,则0n DE n DB ⎧⋅=⎪⎨⋅=⎪⎩ ,即00y x z =⎧⎨-=⎩,不妨设1z =,可得(1,0,1)n = ,又11,1,22MN ⎛⎫=- ⎪⎝⎭ ,可得0MN n ⋅=,因为MN ⊄平面BDE ,所以//MN 平面BDE ,变式4.(2023·天津南开·南开中学校考模拟预测)在四棱锥P ABCD -中,PA ⊥底面ABCD ,且2PA =,四边形ABCD 是直角梯形,且AB AD ⊥,//BC AD ,2AD AB ==,4BC =,M 为PC 中点,E 在线段BC 上,且1BE =.求证://DM 平面PAB ;【解析】证明:以A 为坐标原点,AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系,则()0,0,0A ,()2,0,0B ,()0,2,0D ,()002P ,,,()2,4,0C ,()1,2,1M ,()2,1,0E ,()1,0,1DM =,易知平面PAB 的一个法向量为()0,2,0AD = ,故0DM AD ⋅=,则DM AD ⊥ ,又DM ⊂/平面PAB ,故//DM 平面PAB .变式5.(2023·四川成都·校考一模)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,AD MN ⊥,2AB =,4AD AP ==,M ,N 分别是BC ,PD 的中点.求证:MN ∥平面PAB ;【解析】(1)由题意,在矩形ABCD 中,2AB =,4AD AP ==,AB AD ⊥,M ,N 分别是BC ,PD 的中点,∴11222BM CM BC AD ====,2AB CD ==,在四棱锥P ABCD -中,面PAD ⊥平面ABCD ,面PAD ⋂面ABCD AD =,AB AD ⊥,∴AB ⊥面PAD ,PA ⊂面PAD ,∴PA AB ⊥,取AP 中点E ,连接BE ,由几何知识得BE MN ∥,∵AD MN ⊥,∴AD BE ⊥,AD AB⊥∵BE ⊂面PAB ,AB ⊂面PAB ,AB BE B = ∴AD ⊥面PAB ,∴PA AD⊥以AB 、AD 、AP 为x 、y 、z 轴建立空间直角坐标系如下图所示,∴()()()()()()()0,0,0,2,0,0,2,4,0,0,4,0,0,0,4,2,2,0,0,2,2A B C D P M N ,∴()2,0,2MN =- ,面PAB 的一个法向量为()0,4,0AD =,∵2004200MN AD ⋅=-⨯+⨯+⨯=,∴MN ∥平面PAB .变式6.(2021·高二课时练习)如图,在长方体1111ABCD A B C D -中,点E ,F ,G 分别在棱1A A ,11A B ,11A D 上,1111A E A F AG ===;点P ,Q ,R 分别在棱1CC ,CD ,CB 上,1CP CQ CR ===.求证:平面//EFG 平面PQR .【答案】证明见解析【分析】构建以D 为原点,1,,DA DC DD为x 、y 、z 轴正方向的空间直角坐标系,令1,,AB a BC b BB c ===写出EF 、EG uu ur 、PQ 、PR ,进而求面EFG 、面PQR 的法向量m 、n ,根据所得法向量的关系即可证结论.【详解】构建以D 为原点,1,,DA DC DD为x 、y 、z轴正方向的空间直角坐标系,如下图示,设1,,AB a BC b BB c ===(,,1)a b c >,又1111A E A F AG ===,1CP CQ CR ===,∴(,0,1)E b c -,(,1,)F b c ,(1,0,)G b c -,(0,,1)P a ,(0,1,0)Q a -,(1,,0)R a ,∴(0,1,1)EF = ,(1,0,1)EG =- ,(0,1,1)PQ =--,(1,0,1)PR =- ,设(,,)m x y z = 是面EFG 的一个法向量,则00EF m y z EG m z x ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,令1x =,(1,1,1)m =- ,设(,,)n i j k = 是面PQR 的一个法向量,则00PQ n j k PR n i k ⎧⋅=--=⎪⎨⋅=-=⎪⎩ ,令1i =,(1,1,1)n =- ,∴面EFG 、面PQR 的法向量共线,故平面//EFG 平面PQR ,得证.变式7.(2023·上海普陀·ABCD ﹣A 1B 1C 1D 1的底面边长1,侧棱长4,AA 1中点为E ,CC 1中点为F.求证:平面BDE ∥平面B 1D 1F ;【解析】(1)以A 为原点,AB ,AD ,AA 1所在直线为坐标轴,建立空间直角坐标系,如图则B (1,0,0),D (0,1,0),E (0,0,2),B 1(1,0,4),D 1(0,1,4),F (1,1,2),∵()10,1,2DE FB ==-,∴DE ∥FB 1,1//,DE FB DE ⊄ 平面11B D F ,1FB ⊂平面11B D F ,//DE ∴平面11B D F ,同理//BD 平面11B D F ,∵BD ⊂平面BDE ,DE ⊂平面BDE ,BD DE D ⋂=平面BDE ,∴平面//BDE 平面11B D F .考点四:利用空间向量证明垂直问题(一)判断直线、平面的位置关系例6.(2021秋·北京·高二校考期中)直线12,l l 的方向向量分别为(1,3,1),(8,2,2)a b =--=,则()A .12l l ⊥B .1l ∥2l C .1l 与2l 相交不平行D .1l 与2l 重合【答案】A【分析】由题意可得0a b ⋅= ,即得a b ⊥,从而得12l l ⊥,即得答案.【详解】解:因为直线12,l l 的方向向量分别为(1,3,1),(8,2,2)a b =--=,(1,3,1)(8,2,2)8620a b ⋅=--⋅=--=所以a b ⊥ ,即12l l ⊥.故选:A.变式1.(2022秋·北京·高二校考阶段练习)若直线l 的方向向量为e (2,3,1)=-,平面α的法向量为311,,22n ⎛⎫=-- ⎪⎝⎭ ,则直线l 和平面α位置关系是()A .l α⊥B .//l αC .l α⊂D .不确定【答案】A【分析】根据题意判断直线l 的方向向量和平面α的法向量的关系,即可判断直线l 和平面α位置关系.【详解】由题意直线l 的方向向量为e (2,3,1)=- ,平面α的法向量为311,,22n ⎛⎫=-- ⎪⎝⎭ ,可知e 2n =-,故l α⊥,故选:A变式2.【多选】(2022秋·广东珠海·高二珠海市斗门区第一中学校考期末)已知v为直线l 的方向向量,12,n n 分别为平面α,β的法向量(α,β不重合),那么下列说法中正确的有().A .12n n αβ⇔∥∥B .12n n αβ⊥⇔⊥C .1v n l ⇔ α∥∥D .1v n l ⊥⇔⊥ α【答案】AB【分析】根据法线面垂直平行的性质及法向量、方向向量的概念即可选出选项.【详解】解:若12n n∥,因为α,β不重合,所以αβ∥,若αβ∥,则12,n n 共线,即12n n∥,故选项A 正确;若12n n ⊥,则平面α与平面β所成角为直角,故αβ⊥,若αβ⊥,则有12n n ⊥,故选项B 正确;若1v n ∥,则l α⊥,故选项C 错误;若1v n ⊥,则l α∥或l ⊂α,故选项D 错误.故选:AB变式3.(2023春·江苏·高二南师大二附中校联考阶段练习)下列利用方向向量、法向量判断线、面位置关系的结论中,正确的是()A .两条不重合直线12,l l 的方向向量分别是()()2,3,1,2,3,1a b =-=--,则12l l ∥B .直线l 的方向向量()112a ,,=- ,平面α的法向量是()6,4,1u =-,则l α⊥C .两个不同的平面,αβ的法向量分别是()()2,2,1,3,4,2u v =-=-,则αβ⊥D .直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0u =-,则l α∥【答案】AC【分析】根据条件,利用方向向量、法向量的定义与性质,结合空间向量的平行和垂直,对各选项逐项判断即可.【详解】解:对于A ,两条不重合直线1l ,2l 的方向向量分别是(2,3,1),(2,3,1)a b =-=--,则b a =-,所以//a b ,即12l l //,故A 正确;对于C ,两个不同的平面α,β的法向量分别是(2,2,1),(3,4,2)u v =-=-,则0u v =⋅,所以αβ⊥,故C 正确;对于B ,直线l 的方向向量(1,1,2)a =- ,平面α的法向量是(6,4,1)u =-,则16142(1)0a u ⋅=⨯-⨯+⨯-= ,所以a u ⊥,即//l α或l ⊂α,故B 错误;对于D ,直线l 的方向向量(0,3,0)a = ,平面a 的法向量是(0,5,0)u =-,则53u a =-,所以//μα ,即l α⊥,故D 错误.故选:AC .变式4.【多选】(2022·高二课时练习)下列命题是真命题的有()A .A ,B ,M ,N 是空间四点,若,,BA BM BN不能构成空间的一个基底,那么A ,B ,M ,N 共面B .直线l 的方向向量为()1,1,2a =- ,直线m 的方向向量12,1,2b ⎛⎫=- ⎪⎝⎭r 为,则l 与m 垂直C .直线l 的方向向量为()1,1,2a =- ,平面α的法向量为10,1,2n ⎛⎫= ⎪⎝⎭ ,则l ⊥αD .平面α经过三点()()()1,0,1,0,1,0,1,2,0A B C --,()1,,=rn u t 是平面α的法向量,则u +t =1【答案】ABD【分析】由基底的概念以及空间位置关系的向量证明依次判断4个选项即可.【详解】解:对于A ,A ,B ,M ,N 是空间四点,若,,BA BM BN不能构成空间的一个基底,则,,BA BM BN共面,可得A ,B ,M ,N 共面,故A 正确;对于B ,2110a b ⋅=--=,故a ⊥ ,可得l 与m 垂直,故B 正确;对于C ,0110a n ⋅=-+= ,故a n ⊥,可得在α内或l ∥α,故C 错误;对于D ,()1,1,1AB =- ,易知AB n ⊥,故﹣1+u +t =0,故u +t =1,故D 正确.故选:ABD .(二)已知直线、平面的垂直关系求参数例7.(2023春·北京海淀·高二中央民族大学附属中学校考开学考试)已知平面α的法向量为()1,2,0n = ,直线l 的方向向量为v,则下列选项中使得l α⊥的是()A .()2,1,0v =-B .()2,1,0v =C .()2,4,0v =D .()1,2,0v =-【答案】C【分析】根据法向量与方向向量的定义,即可求得本题答案.【详解】若l α⊥,则直线l 的方向向量v垂直于平面α,所以v与平面α的法向量()1,2,0n = 平行,显然只有选项C 中2v n = 满足.故选:C变式1.(江苏省扬州市2022-2023学年高二下学期6月期末数学试题)已知直线l 的方向向量为()2,1,2e =-,平面α的法向量为()()2,,,n a b a b a b =--+∈R.若l α⊥,则3a b +的值为()A .5-B .2-C .1D .4【答案】A【分析】根据题意得到//e n ,进而得到方程组12a b a b -=⎧⎨+=-⎩,求得,a b 的值,即可求解.【详解】由直线l 的方向向量为()2,1,2e =-,平面α的法向量为()2,,n a b a b =--+ ,因为l α⊥,可得//e n ,所以2212a b a b--+==-,即12a b a b -=⎧⎨+=-⎩,解得13,22a b =-=-,所以193522a b +=--=-.故选:A.变式2.(2023春·高二课时练习)已知()()3,,,R u a b a b a b =-+∈ 是直线l 的方向向量,()1,2,4n =r是平面α的法向量.若l α⊥,则ab =______.【答案】27【分析】根据线面垂直的概念,结合法向量的性质可得u n ∥,进而求得,a b ,即得.【详解】∵l α⊥,∴//u n ,∴3124a b a b-+==,故612a b a b -=⎧⎨+=⎩,解得93a b =⎧⎨=⎩,∴27ab =.故答案为:27.变式3.(2022秋·广东珠海·高二珠海市实验中学校考阶段练习)若直线l 方向向量为()2,1,m ,平面α的法向量为11,,22⎛⎫⎪⎝⎭,且l α⊥,则m 为()A .1B .2C .4D .54-【答案】C【分析】由l α⊥可知l 的方向向量为与平面α的法向量平行,再利用向量共线定理即可得出.【详解】l α⊥ ,l ∴的方向向量为()2,1,m 与平面α的法向量11,,22⎛⎫⎪⎝⎭平行,∴1(2,1,)(1,,2)2m λ=.∴21122m λλλ=⎧⎪⎪=⎨⎪=⎪⎩,解得4m =.故选:C .变式4.(2023春·江苏盐城·高二江苏省响水中学校考阶段练习)如图,在正三棱锥D -ABC中,AB =,2DA =,O 为底面ABC 的中心,点P 在线段DO 上,且PO DO λ=uu u r uuu r,若PA ⊥平面PBC ,则实数λ=()A .12B .13-C.4D.6【答案】D【分析】由正棱锥的结构特征构建空间直角坐标系,根据已知条件确定相关点坐标并求出面PBC 的法向量,结合线面平行及向量共线定理求参数λ即可.【详解】由题设,△ABC2DA DB DC ===,等边△ABC32=,在正棱锥中,以O 为原点,平行CB 为x 轴,垂直CB 为y 轴,OD 为z 轴,如上图示,则11(0,1,0),(,,0),(,,0),2222A B C D --,且)P ,所以)AP =,1,)2PB =,CB = ,若(,,)m x y z = 为面PBC的法向量,则1020PB m y z CB m ⎧⋅=+=⎪⎨⎪⋅==⎩ ,令1z =,则(0,,1)m = ,又PA ⊥平面PBC ,则AP km = 且k为实数,101k k λ⎧=⎪⎪=⎨⎪≤≤⎪⎩,故λ=.故选:D(三)证明直线、平面的垂直问题例8.(2023春·高二课时练习)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3,试证明AM ⊥平面BMC .。
空间直线参数方程转化标准形式概述及解释说明1. 引言1.1 概述在几何学中,空间直线是一个基本的概念。
直线的参数方程是描述直线上各点位置关系的一种表达方式。
然而,参数方程可能不够简洁和明确,因此需要将其转化为标准形式来更好地理解和应用。
1.2 文章结构本文将首先介绍空间直线参数方程的定义和表示方法(第2节)。
接着,探讨转化为标准形式的方法及其重要性和应用领域(第3节)。
随后,阐述标准形式的含义、特点以及参数的物理意义和限制条件(第4节)。
最后,详细介绍了实际转换过程中的步骤及相关示例演示与讲解(第5节)。
文章最后通过总结归纳说明了空间直线参数方程转化为标准形式的价值和意义,并指出了研究中存在的问题及后续工作展望。
1.3 目的本文旨在全面理解和解释空间直线参数方程转化为标准形式的过程,并展示其在数学和几何领域中的重要性和应用。
通过对比分析不同方法以及具体示例演示,读者将能够更清晰地理解和应用这一概念。
此外,本文也旨在揭示研究中存在的问题,并为相关领域的进一步研究提供展望和思路。
2. 空间直线参数方程:2.1 定义和表示:空间直线是指在三维坐标系中的一条无限延伸的曲线,由于其在三维空间中存在无数个点,所以需要使用参数方程来表示。
空间直线的参数方程通常用以下形式表示:x = x₀+ aty = y₀+ btz = z₀+ ct其中,(x, y, z) 表示直线上任意一点的坐标,(x₀, y₀, z₀) 是直线上的一个已知点坐标,a、b、c 是参数,t 是一个实数。
2.2 转化为标准形式的方法:将空间直线参数方程转化为标准形式可以更好地描述和分析直线在三维空间中的性质和特点。
标准形式的空间直线方程通常采用以下形式表示:(x - x₁) / a = (y - y₁) / b = (z - z₁) / c其中,(x₁, y₁, z₁) 是直线上的另一个已知点坐标。
要将参数方程转化为标准形式,可以按照以下步骤进行:1)根据两个已知点坐标得到方向向量:用第二个已知点坐标减去第一个已知点坐标得到一个向量(d, e, f),即(d, e, f) = (x₁- x₀, y₁- y₀, z₁- z₀)。
空间直线方程的几种形式空间几何学是数学中一个重要的分支,它研究的是物理空间中的几何形状。
在空间几何中,直线方程是一种表达空间几何图形的数学方法。
它是一种描述空间几何形状的方法,可以用来表示空间中的线段、直线和曲线等图形。
本文将讨论空间直线方程的几种形式,以便读者对空间直线方程有更深入的了解。
空间中的直线方程可以用一元二次方程式、点斜式、参数方程式、直角坐标方程式和矢量方程式等形式表示。
一、一元二次方程式一元二次方程式是一种描述一维空间几何形状的方程,是由二次项的系数决定的一维方程。
它的一般形式是:ax2 + bx + c = 0。
在这个方程中,a、b和c是实数系数,它们控制着函数的形状。
如果a=0,则该方程的解是一个实数;如果a≠0,则该方程的解是两个实数。
二、点斜式点斜式是一种表达空间直线方程的方法,它是根据直线上两点和斜率表达出来的。
它的一般形式是:(x - x1) / (x2 - x1) = (y - y1) / (y2 - y1),其中(x1, y1)和(x2, y2)是直线上的两点,m是斜率。
三、参数方程式参数方程式是描述空间图形的一种方式,它是根据某条直线上的所有点来表达出来的,它的一般形式是:x = x0 + at,其中x0为给定的一点,a和t分别为直线的斜率和参数。
四、直角坐标方程式直角坐标方程式是根据直线与XY轴的交点和斜率表达出来的,它的一般形式是:y = kx + b,其中k是斜率,b是Y轴上的截距。
五、矢量方程式矢量方程式是根据两个空间向量来表达的,它的一般形式是:(x, y, z) = (x1, y1, z1) + t(a, b, c),其中(x1, y1, z1)是一个给定的点,t是参数,(a, b, c)是直线上的矢量方向。
以上就是空间直线方程的几种形式,从中可以看出,它们是根据不同的情况而有不同的表达方式。
它们的使用范围也有所不同,可以根据实际情况来选择最合适的方程式。
空间直线方程的几种形式空间直线是三维空间中的一条直线,它可以用不同的形式来表示。
本文将介绍空间直线的几种常见的表示方法。
1. 参数式表示法在三维空间中,一条直线可以由一个点和一个方向向量唯一确定。
因此,我们可以用参数式表示法来表示空间直线。
假设直线上有一点P0(x0, y0, z0),方向向量为v(a, b, c),则该直线的参数式表示为:x = x0 + aty = y0 + btz = z0 + ct其中t为参数,可以取任意实数。
这个参数式表示法比较容易理解,也比较方便使用。
2. 点向式表示法点向式表示法是一种简单的直线表示方法,它只需要知道直线上的两个点和一个方向向量。
假设直线上有两个点P1(x1, y1, z1)和P2(x2, y2, z2),方向向量为v(a, b, c),则该直线的点向式表示为:r = P1 + t(P2 - P1)其中r为直线上的任意一点,t为参数,可以取任意实数。
这个表示法比较简洁,但是需要知道直线上的两个点。
3. 一般式表示法一般式表示法是一种比较复杂的直线表示方法,它可以表示任意一条直线。
假设直线的一般式方程为Ax + By + Cz + D = 0,则该直线的一般式表示为:x = x0 + aty = y0 + btz = z0 + ct其中t为参数,可以取任意实数。
这个表示法比较复杂,但是可以表示任意一条直线。
4. 交点式表示法交点式表示法是一种比较特殊的直线表示方法,它适用于两条直线的交点。
假设两条直线分别为L1和L2,它们的参数式方程分别为: L1: x = x1 + a1t1, y = y1 + b1t1, z = z1 + c1t1L2: x = x2 + a2t2, y = y2 + b2t2, z = z2 + c2t2 则L1和L2的交点可以用交点式表示为:x = x1 + a1t1 = x2 + a2t2y = y1 + b1t1 = y2 + b2t2z = z1 + c1t1 = z2 + c2t2这个表示法只适用于两条直线的交点,但是在实际问题中也比较常见。
空间直线在平面上投影的求解方法
在几何学中,直线是一种最基本的几何形状,平面是一个两维空间,它的两个轴是纵轴和横轴。
因此,投影是把空间中的直线投射到平面上的一种技术。
投射的原理是将某一点的空间坐标投射到平面的某一点的坐标,从而形成一条投影线。
投影的方式可以根据所投影的平面,分为水平投影和垂直投影。
水平投影是将空间中的直线投射到水平平面上,例如把一条直线投射到XOZ平面上,就是水平投影。
垂直投影是将
空间中的直线投射到垂直平面上,例如把一条直线投射到
YOZ平面上,就是垂直投影。
求解空间直线在平面上投影的方法有很多,但最常用的是三角形法。
三角形法的基本原理是建立空间直线与平面的关系,然后在平面上建立三角形,以空间直线与平面的交点和平面上的任意一点作为顶点,三角形的边为空间直线在平面上的投影线。
三角形法的求解步骤如下:
1. 在平面上选择一个点A作为空间直线与平面的交点,
另外选择一点B作为平面上的另外一点。
2. 用空间直线与平面的交点A和平面上的另外一点B构
成一个三角形,三角形的边就是空间直线在平面上的投影线。
3. 建立完成三角形后,就可以通过计算三角形的面积来求得空间直线在平面上的投影线的长度。
通过上述三角形法,可以计算出空间直线在平面上的投影线,从而获得空间直线在平面上的投影。
在实际应用中,投影技术可以用来解决各种几何问题,如计算两点之间的距离,计算多边形的面积,确定多边形的重心等。
因此,投影技术对几何学研究和实际应用具有重要的意义。
空间直线的三种表示方法
空间直线是几何学中一种最基本的图形,它通常用来指一对点沿着一个方向构成的无限长的线。
由于空间直线的简单性,它可以用多种不同的方法来表示。
在本文中,我将介绍3种最常用的表示空间直线的方法。
首先,最简单的表示方法是通过点斜式方程。
这种方法就是将空间直线上两个不同的点连接起来构成一个点斜式方程,如:3x + y - 2 = 0。
这里,3x + y - 2就是这条直线的方程,它能够表示
一条具有斜率3和截距-2的直线。
其次,也是最常用的一种表示方法是通过用坐标方程表示。
所谓坐标方程就是将空间直线的所有点的横纵坐标表示出来。
例如,如果有一条直线上有两个点坐标分别为(1,2)和(3,6),那么这条直线的坐标方程就是y = 2x + 4。
最后,也是最实用的表示方法是用参数方程表示。
这种方法利用一条空间直线上的一个点,以及空间直线上任意一点到它所在直线上的某一点构成的向量,来构成一条直线的参数方程,如:x = 2 + t,y = 4+ 2t,z = 6 + 3t,其中t是任意常数。
以上就是空间直线的三种表示方法,可以看出每种方法都有其自身的优缺点。
点斜式方程最简单,但不易求直线上任意一点的坐标;坐标方程可以表示出直线上任意一点的坐标,但要求空间直线上有两个不同的点;参数方程最灵活,但使用起来有一定的难度。
根据不同的实际问题,选择合适的表示方法是非常重要的。
总之,本文介绍了空间直线的三种表示方法,包括用点斜式方程、坐标方程和参数方程表示。
每种方法都有其自身的优缺点,用户在选择时必须根据实际情况灵活选择。