21.5二元二次方程和方程组
- 格式:ppt
- 大小:301.50 KB
- 文档页数:13
八年级数学下册21.5二元二次方程和方程组教学设计沪教版五四制一. 教材分析《沪教版八年级数学下册》21.5节主要讲述二元二次方程和方程组的概念、性质及其解法。
通过本节课的学习,学生能够理解二元二次方程和方程组在实际问题中的应用,掌握求解二元二次方程组的方法,提高解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了二元一次方程和方程组的相关知识,具备了一定的数学思维能力。
但部分学生对二次项的理解和运用还不够熟练,对于如何将实际问题转化为二元二次方程组可能还存在一定的困难。
三. 教学目标1.知识与技能:理解二元二次方程和方程组的概念,掌握求解二元二次方程组的方法。
2.过程与方法:通过实例分析,培养学生将实际问题转化为二元二次方程组的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:二元二次方程和方程组的概念、性质及其解法。
2.难点:如何将实际问题转化为二元二次方程组,以及求解过程中的计算和分析。
五. 教学方法采用问题驱动法、案例分析法、合作学习法和引导发现法进行教学。
通过设置问题情境,引导学生主动探究,合作交流,发现和总结二元二次方程和方程组的解法,提高学生解决实际问题的能力。
六. 教学准备1.教学PPT:制作包含二元二次方程和方程组概念、性质、解法及相关实例的PPT。
2.练习题:准备一定数量的练习题,用于巩固所学知识。
3.教学素材:收集一些实际问题,用于引导学生将问题转化为二元二次方程组。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题引出二元二次方程和方程组的概念,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT展示二元二次方程和方程组的概念、性质,并通过实例进行分析,让学生理解二元二次方程组在实际问题中的应用。
3.操练(10分钟)让学生分组合作,解决一些简单的二元二次方程组问题,培养学生的团队合作意识和解决问题的能力。
21。
6(2)二元二次方程组的解法教学目标1、掌握用“因式分解法”解由两个二元二次方程组成的方程组;2、在学习过程中体会解此类特殊二元二次方程组的基本思路是“降次”;3、通过对二元二次方程组解法的剖析,领悟事物间可以相互转化的数学思想; 教学重点及难点会用“因式分解法"解由两个二元二次方程组成的方程组;正确分析方程组的特点,从而找到合理的解法.教学媒体:多媒体教学过程设计一、 复习引入我们已经会用代入消元法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组练习:解方程组:⎩⎨⎧-=-=+124322y x y x 这节课我们将学习由两个二元二次方程组成的二元二次方程组的解法。
二、学习新课1、观察:方程组222232=0 (1)5 (2)x xy y x y ⎧-+⎪⎨+=⎪⎩ (1)能直接使用“代入消元法”解答吗?(2)方程组中的两个方程有什么特点?学生思考作答,教师进行指导和补充。
【说明】前一节课有对特殊方程进行因式分解的例子,所以在直接用“代入法"解决未果的情况下,学生会想到将方程(1)进行因式分解,但后面的操作就需要教师的指导和教授了。
解:将(1)左边分解因式,可变形为 ()()20x y x y --=,得0 20x y x y -=-=或,将它们与(2)分别组成方程组,得2222020 (1) (2)55x y x y x y x y -=-=⎧⎧⎨⎨+=+=⎩⎩或 解方程组(1)得1212; .x x y y ⎧⎧==⎪⎪⎪⎪⎨⎨⎪⎪==⎪⎪⎩⎩解方程组(2)得 343422; .11x x y y ==-⎧⎧⎨⎨==-⎩⎩ 所以原方程组的解是1212; ;x x y y ⎧⎧==⎪⎪⎪⎪⎨⎨⎪⎪==⎪⎪⎩⎩ 343422; .11x x y y ==-⎧⎧⎨⎨==-⎩⎩小结:如果二元二次方程组中有一个方程可变形为两个一次因式的乘积等于零的形式,那么解这个方程组的问题可转化为解由一个二元一次方程和一个二元二次方程所组成的方程组.这种解特殊的二元二次方程组的方法是“因式分解法"。
上海市沪教版八年级数学上册知识点梳理第十六章 二次根式第一节 二次根式的概念和性质16.1 二次根式1. 二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或0。
2. 二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a b a b a 16.2 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a3.二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:≥0) ).0,0(≥≥=⋅b a ab b a=a ≥0,b>0) n ≥0)第十七章 一元二次方程17.1 一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2.一般形式y=ax ²+bx+c (a ≠0),称为一元二次方程的一般式,ax 叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项17.2 一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式2b x a -±=:1222b b x x a a---= , = ;△=24b ac -≥0 17.3 一元二次方程的判别式1.一元二次方程20(0)ax bx c a ++=≠:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也是成立的17.4 一元二次方程的应用1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得2ax bx c ++=12()()a x x x x --;1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的根2.把二次三项式分解因式时;如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3. 实际问题:设,列,解,答第十八章 正比例函数和反比例函数18.1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学是自称为函数解析式()y f x =4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值18.2 正比例函数1. 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2.正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数3.对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4.一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =5. 正比例函数y kx =(0)k k ≠是常数且有如下性质:(1)当k <0时,正比例函数的图像经过一、三象限,自变量x 的值逐渐增大时,y 的值也随着逐渐增大(2)当k <0时 ,正比例函数的图像经过二、四象限,自变量x 的值逐渐增大时,y 的值则随着逐渐减小18.3 反比例函数1.如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2.解析式形如(0)k y k k x=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数 反比例函数的定义域是不等于零的一切实数 3.反比例函数(0)k y k k x =≠是常数,有如下性质: (1)当k >0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x 的值逐渐增大时,y 的值则随着逐渐减小(2)当k <0时 ,函数图像的两支分别在第二、四象限,在每一个象限内。
上海沪教版初中数学教材目录六年级第一章数的整除第一节整数和整除1.1整数和整除的意义1.2因数和倍数1.3能被2、5整除的数第二节分解质因数1.4素数、合数与分解质因数1.5公因数与最大公因数1.6公倍数与最小公倍数第二章分数第一节分数的意义和性质2.1分数与除法2.2分数的基本性质2.3分数的大小比较第二节分数的运算2.4分数的加减法2.5分数的乘法2.6分数的除法2.7分数与小数的互化第三章比和比例第一节比和比例3.1比的意义3.2比的基本性质3.3比例第二节百分比3.4百分比的意义3.5百分比的应用3.6等可能事件第四章圆和扇形第一节圆的周长和弧长4.1圆的周长4.2弧长第二节圆和扇形的面积4.3圆的面积4.4扇形的面积六年级下册第五章有理数第一节有理数5.1有理数的意义5.2数轴5.3绝对值第二节有理数的运算5.4有理数的加法5.5有理数的减法5.6有理数的乘法5.7有理数的除法5.8有理数的乘方5.9有理数的混合运算5.10科学记数法第六章一次方程(组)和一次不等式第一节方程与方程的解6.1列方程6.2方程的解第二节一元一次方程6.3一元一次方程及其解法6.4一元一次方程的应用第三节一元一次不等式(组)6.5不等式及其性质6.6一元一次不等式的解法6.7一元一次不等式组第四节一次方程组6.8二元一次方程6.9二元一次方程组及其解法6.10三元一次方程组及其解法6.11一次方程组的应用第七章线段与角的画法第一节线段的相等与和、差、倍7.1线段的大小的比较7.2画线段的和、差、倍第二节角7.3角的概念与表示7.4角的大小的比较、画相等的角7.5画角的和、差、倍7.6余角、补角第八章长方体的再认识第一节长方体的元素第二节长方体直观图的画法第三节长方体中棱与棱的位置关系第四节长方体中棱与平面的位置关系第五节长方体中平面与平面的位置关系七年级上册第九章整式第一节整式的概念9.1字母表示数9.2代数式9.3代数式的值9.4整式第二节整式的加减9.5合并同类项9.6整式的加减第三节整式的乘法9.7同底数幂的乘法9.8积的乘方9.9幂的乘方9.10整式的乘法第四节乘法公式9.11平方差公式9.12完全平方公式第五节因式分解9.13提取公因式法9.14公式法9.15十字相乘法9.16分组分解法第六节整式的除法9.17单项式除以单项式9.18同底数幂的除法9.19多项式除以单项式第十章分式第一节分式10.1分式的意义10.2分式的基本性质第二节分式的运算10.3分式的乘除10.4分式的加减10.5可化为一元一次方程的分式方程10.6整数指数幂及其运算第十一章图形的运动第一节图形的平移平移第二节图形的旋转11.2旋转11.3旋转对称图形与中心对称图形11.4中心对称第三节图形的翻折11.5翻折与轴对称图形11.6轴对称七年级下册第十二章实数第一节实数的概念实数的概念第二节数的开方12.2平方根和开平方12.3立方根和开立方12.4n次方根第三节实数的运算12.5用数轴上的点表示数12.6实数的运算第四节分数指数幂分数指数幂第十三章相交线平行线第一节相交线13.1邻补角、对顶角13.2垂线13.3同位角、内错角、同旁内角第二节平行线13.4平行线的判定13.5平行线的性质第十四章三角形第一节三角形的有关概念与性质14.1三角形的有关概念14.2三角形的内角和第二节全等三角形14.3全等三角形的概念与性质14.4全等三角形的判定第三节等腰三角形14.5等腰三角形的性质14.6等腰三角形的判定14.7等边三角形第十五章平面直角坐标系第一节平面直角坐标系平面直角坐标系第二节直角坐标平面内点运动直角坐标平面内点运动八年级上册第十六章二次根式第一节二次根式的概念和性质16.1二次根式16.2最简二次根式和同类二次根式第二节二次根式的运算二次根式的运算第十七章一元二次方程第一节一元二次方程的概念一元二次方程的概念第二节一元二次方程的解法17.2一元二次方程的解法17.3一元二次方程的判别式第三节一元二次方程的应用一元二次方程的应用第十八章正比例函数和反比例函数第一节正比例函数18.1函数的概念18.2正比例函数第二节反比例函数反比例函数第三节函数的表示法函数的表示法第十九章几何证明第一节几何证明19.1命题和证明19.2证明举例第二节线段的垂直平分线与角的平分线19.3逆命题和逆定理19.4线段的垂直平分线19.5角的平分线19.6轨迹第三节直角三角形19.7直角三角形全等的判定19.8直角三角形的性质19.9勾股定理19.10两点的距离公式八年级下册第二十章一次函数第一节一次函数的概念一次函数的概念第二节一次函数的图像与性质一次函数的图像一次函数的性质第三节一次函数的应用20.4一次函数的应用阅读材料直线型经验公式第二十一章代数方程第一节整式方程21.1一元整式方程21.2二项方程第二节分式方程可化为一元二次方程的分式方程第三节无理方程无理方程第四节二元二次方程组21.5二元二次方程和方程组21.6二元二次方程组的解法第五节列方程(组)解应用题列方程(组)解应用题阅读材料一些特殊的一元高次方程的解法第二十二章四边形第一节多边形多边形第二节平行四边形22.2平行四边形22.3特殊的平行四边形第三节梯形22.4梯形22.5等腰梯形22.6三角形、梯形的中位线第四节平面向量及其加减运算22.7平面向量22.8平面向量的加法22.9平面向量的减法阅读材料用向量方法证明几何问题第二十三章概率初步第一节事件及其发生的可能性23.1确定事件和随机事件23.2事件发生的可能性第二节事件的概率23.3事件的概率23.4概率计算举例探究活动 杨辉三角与路径问题 九年级上册第二十四章 相似三角形第一节 相似形放缩与相似形第二节 比例线段24.2 比例线段24.3 三角形一边的平行线第三节 相似三角形24.4 相似三角形的判定24.5 相似三角形的性质第四节 平面向量的线性运算24.6 实数与向量相乘24.7 平面向量的分解第二十五章 锐角的三角比第一节 锐角的三角比25.1 锐角的三角比的意义25.2 求锐角的三角比的值第二节 解直角三角形25.3 解直角三角形25.4 解直角三角形的应用第二十六章 二次函数第一节 二次函数的概念二次函数的概念第二节 二次函数的图像26.2 特殊二次函数的图像26.3 二次函数2()y a x m k =++的图像 九年级下册第二十七章 圆与正多边形第一节圆的基本性质圆的确定圆心角、弧、弦、弦心距之间的关系垂径定理第二节直线与圆、圆与圆的位置关系直线与圆的位置关系圆与圆的位置关系第三节正多边形与圆正多边形与圆第二十八章统计初步第一节统计的意义数据整理与表示统计的意义第二节基本的统计量表示一组数据平均水平的量表示一组数据波动程度的量表示一组数据发布的量统计实习。
沪教版初中数学教材版本目录大纲七年级(上)第九章整式第1节整式的概念9.1 字母表示数9.2 代数式9.3 代数式的值9.4 整式第2节整式的加减9.5 合并同类项9.6 整式的加减第3节整式的乘法9.7 同底数幂的乘法9.9 积的乘方9.8 幂的乘方9.10 整式的乘法第4节乘法公式9.11 平方差公式9.12 完全平方公式第5节因式分解9.13 提取公因式法9.14 公式法9.15 十字相乘法9.16 分组分解法第6节整式的除法9.18 单项式除以单项式9.17 同底数幂的除法9.19 多项式除以单项式本章小结第十章分式第1节分式10.1 分式的意义10.2 分式的基本性质第2节分式的运算10.3 分式的乘除10.4 分式的加减10.5 可以化成一元一次方程的分式方程10.6 整数指数幂及其运算本章小结第十一章图形的运动第1节图形的平移11.1 平移第2节图形的旋转11.2 旋转11.3 旋转对称图形与中心对称图形11.4 中心对称第3节图形的翻折11.5 翻折与轴对称图形11.6 轴对称本章小结七年级(下)第十二章实数第1节实数的概念12.1 实数的概念第2节数的开方12.2 平方根和开平方12.3 立方根和开立方12.4 n次方根第3节实数的运算12.5 用数轴上的点表示实数12.6 实数的运算第4节分数指数幂12.7 分数指数幂第十三章相交线平行线第1节相交线13.1 邻补角、对顶角13.2 垂线13.3 同位角、内错角、同旁内角第2节平行线13.4 平行线的判定13.5 平行线的性质第十四章三角形第1节三角形的有关概念与性质14.1 三角形的有关概念14.2 三角形的内角和第2节全等三角形14.3 全等三角形的概念与性质14.4 全等三角形的判定第3节等腰三角形14.5 等腰三角形的性质14.6 等腰三角形的判定14.7 等边三角形第十五章平面直角坐标系第1节平面直角坐标系15.1 平面直角坐标系第2节直角坐标平面内点运动15.2 直角坐标平面内点运动八年级(上)第十六章二次根式第一节二次根式的概念和性质16.1 二次根式16.2 最简二次根式和同类二次根式第二节二次根式的运算16.3 二次根式的运算本章小结阅读材料二次不尽根与简单连分数第十七章一元二次方程第一节一元二次方程的概念17.1 一元二次方程的概念第二节一元二次方程的解法17.2 一元二次方程的解法17.3 一元二次方程根的判别式第三节一元二次方程的应用17.4 一元二次方程的应用本章小结阅读材料关于一元二次方程的求根公式探究活动数字世界一个“平方和”等式宝塔的构建第十八章正比例和反比例函数第一节正比例函数18.1 函数的概念18.2 正比例函数第二节反比例函数18.3 反比例函数第三节函数的表示法18.4 函数的表示法本章小结探究活动生活中的函数第十九章几何证明第一节几何证明19.1 命题和证明19.2 证明举例第二节线段的垂直平分线与角的平分线19.3 逆命题和逆定理19.4 线段的垂直平分线19.5 角的平分线19.6 轨迹第三节直角三角形19.7 直角三角形全等的判定19.8 直角三角形的性质19.9 勾股定理19.10 两点的距离公式本章小结阅读材料一《几何原本》古今谈阅读材料二勾股定理万花筒八年级(下)第二十章一次函数第一节一次函数的概念第二节一次函数的图像与性质20.2 一次函数的图像20.3 一次函数的性质第三节一次函数的应用第二十一章代数方程第一节整式方程21.1 一元整式方程21.2 二项方程第二节分式方程21.3 可化为一元二次方程的分式方程第三节无理方程第四节二元二次方程组21.5 二元二次方程和方程组21.6 二元二次方程组的解法第五节列方程(组)解应用题第二十二章四边形第一节多边形第二节平行四边形22.2 平行四边形22.3 特殊的平行四边形第三节梯形22.4 梯形22.5 等腰梯形22.6 三角形、梯形的中位线第四节平面向量及其加减运算22.7 平面向量22.8 平面向量的加法22.9 平面向量的减法第二十三章概率初步第一节事件及其发生的可能性23.1 确定事件和随机事件23.2 事件发生的可能性第二节事件的概率23.3 事件的概率23.4 概率计算举例九年级(上)第二十四章相似三角形第一节相似形24.1 放缩与相似形第二节比例线段24.2 比例线段24.3 三角形一边的平行线第三节相似三角形24.4 相似三角形的判定24.5 相似三角形的性质第四节平面向量的线性运算24.6 实数与向量相乘24.7 向量的线性运算第二十五章锐角的三角比第一节锐角的三角比25.1 锐角的三角比的意义25.2 求锐角的三角比的值第二节解直角三角形25.3 解直角三角形25.4 解直角三角形的应用第二十六章二次函数第一节二次函数的概念26.1 二次函数的概念第二节二次函数的图像26.2 特殊二次函数的图像26.3 二次函数y = ax2+bx+c的图像九年级(下)第二十七章圆与正多边形第一节圆的基本性质27.1 圆的确定27.2 圆心角、弧、弦、弦心距之间的关系27.3 垂径定理第二节直线与圆、圆与圆的位置关系27.4 直线与圆的位置关系27.5 圆与圆的位置关系第三节正多边形与圆27.6 正多边形与圆第二十八章统计初步第一节统计的意义28.1 数据整理与表示28.2 统计的意义第二节基本的统计量28.3 表示一组数据平均水平的量28.4 表示一组数据波动程度的量28.5 表示一组数据分布的量28.6 统计实习。
21.5-21.6二元二次方程和方程组及其解法知识梳理+九大例题分析+经典同步练习知识梳理一、二元二次方程1. 定义:仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程.要点:(a 、b 、c 、d 、e 、f 都是常数,且a 、b 、c 中至少有一个不为零),其中叫做这个方程的二次项,a 、b 、c 分别叫做二次项系数,叫做这个方程的一次项,d 、e 分别叫做一次项系数,f 叫做这个方程的常数项.2.二元二次方程的解能使二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程的解.要点:二元二次方程有无数个解;二元二次方程的实数解的个数有多种情况.二、二元二次方程组1.概念:仅含有两个未知数,各方程都是整式方程,并且含有未知数的项的最高次数为2,这样的方程组叫做二元二次方程组.要点:不能认为由两个二元二次方程组成的方程组才叫二元二次方程组,由一个二元一次方程和一个二元二次方程组成的方程组,也是二元二次方程组.2. 二元二次方程组的解:方程组中所含各方程的公共解叫做这个方程组的解.22ax bxy cy dx ey f o +++++=22,,ax bxy cy ,dx ey三、二元二次方程组的解法1.代入消元法代入消元法解“二·一”型二元二次方程组的一般步骤:①把二元一次方程中的一个未知数用另一个未知数的代数式表示; ②把这个代数式代入二元二次方程,得到一个一元二次方程; ③解这个一元二次方程,求得未知数的值; ④把所求得的未知数的值分别代入二元一次方程,求得另一个未知数的值; ⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解;⑥写出原方程组的解.要点:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组;(2)“二·一”型方程组最多有两个解,要防止漏解和增解的错误.2、因式分解法 (1) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解得这两个“二·一”型方程组,所得的解都是原方程组的解. (2) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程组的解.典型例题例题1.在方程①57x y +=;②240-+=x y ;③70+=xy ;④22191+=x y ;⑤2253370+++=x xy y x 中,是二元二次方程的有()A .1个B .2个C .3个D .4个【解析】化简后看含有两个未知数,且未知数的最高次数是2的整式方程有几个即可.解:①含有两个未知数但未知数最高次数是1,是二元一次方程;②含有两个未知数,且未知数的最高次数是2,是二元二次方程;③含有两个未知数,且未知数的最高次数是2,是二元二次方程;④未知数在分母中,是分式方程,不是二元二次方程;⑤含有两个未知数,且未知数的最高次数是2,是二元二次方程.综上所述,有3个二元二次方程.故选:C例题2.下列方程组中,属于二元二次方程组的为( )A.2x yx y+=ìí-=îB.123234x yx yì+=ïïíï-=-ïîC.11xx yì+=ïí+=ïîD.324xxy=ìí=î【答案】D【解析】根据一元一次方程组的定义对A进行判断;根据整式方程组的定义对B、C进行判断;根据二元二次方程组的定义对D进行判断.解:A、两个方程都是二元一次方程,所组成的方程组为二元一次方程组,所以A 选项不正确;B、两个方程都是分式方程,所组成的方程组为分式方程组,所以B选项不正确;C、有一个方程是无理方程,所组成的方程组不是二元二次方程组,所以C选项不正确;D、有一个方程是二元二次方程,另一个是一元一次方程,所组成的方程组为二元二次方程组,所以D选项正确.例题3.已知:方程组îíì-==+)2(1)1(122x y y x ,把(2)代入(1),得到正确的方程是( )x 2+2(1﹣x )=1B .x 2+2(x ﹣1)=1C .x 2+(1﹣x )2=0D .x 2+(1﹣x )2=1【答案】D【解析】运用代入消元法解方程组即可.解:把(2)代入(1)得x 2+(1﹣x )2=1四个答案中只有D 合题意.故选D .例题4.二元二次方程组îíì=-=+1522y x y x 的一个解是( )îíì-=-=21y xB .îíì=-=21y xC .îíì-==21y xD .îíì==21y x 【答案】A【解析】用代入法即可解答,把②化为x=1+y ,代入①得(1+y )2+y 2=求解即可.解:把②化为x=1+y ,代入①得(1+y )2+y 2=5,整理得,2y 2+2y ﹣4=0解得y 1=﹣2,y 2=1,分别代入②得当y 1=﹣2时,x 1=﹣1,当,y 2=1时,x 2=2,故原方程组的解为îíì-=-=2111y x ,îíì==1222y x .故选A .例题5.方程组 îíì-=--=-12122x y x y x 的实数解个数为( )A .0B .1C .2D .4【答案】C 【解析】把方程①变形成x=y+1,代入②即可求得y 的值,进而求得方程组的解,从而判断.解:îíì-=--=-)()(2121122x y x y x 由①得:x=y+1代入方程②得:2(y+1)2﹣y 2﹣(y+1)=﹣1即:y 2+3y+2=0解得:y 1=﹣1,y 2=﹣2把y=﹣1代入①得:x=0把y=﹣2代入①得:x=﹣1则方程组的解是:îíì-==10y x ,和îíì-=-=21y x 只两个解.故选C .例题6.方程组îíì==+022xy y x 的解是( )îíì==0011y x ,ïîïíì==12122y x B .îíì==2011y x ,îíì==0122y x C .îíì==2011y x ,îíì=-=0122y x D .îíì-==2011y x ,îíì==0122y x 【答案】B 【解析】由①得出y=2﹣2x ③,把③代入②得出x (2﹣2x )=0,求出x ,把x 的值分别代入③求出y 即可.解:îíì==+)(20)1(22xy y x ,由①得:y=2﹣2x ③,把③代入②得:x (2﹣2x )=0,x=0,2﹣2x=0,解得:x 1=0,x 2=1,把x 1=0,x 2=1分别代入③得:y 1=2,y 2=0,即原方程组的解为:îíì==2011y x ,îíì==0122y x .故选B .例题7.方程ïîïíì+-=-++=+yx a y x y x a y x 2)(2)(22有解但无不同的解时,a=( )A .1 B .0 C .﹣21 D .﹣1【答案】D【解析】由题意知,原方程组有解,并且有相同的解,由一元二次方程根的判别式可以知道△=0,将原方程组转化成一元二次方程就利用△=0就可以求出a=的值.解:ïîïíì+-=-++=+)2(2)()1(2)(22y x a y x y x a y x 由①﹣②,得4xy=2x4xy ﹣2x=02x (2y ﹣1)=0∴x=0或y=21(与条件不符合,∵y=21时方程①、②不相等)∴当x=0时y 2=a+2y∴y 2﹣2y ﹣a=0∴△=(﹣2)2﹣4(﹣a )=0∴4+4a=0∴a=﹣1.故D 答案正确.故选D .例题8.方程组ïîïíì=+-=+-0||||40||||422x y y y x x 在实数范围内( )1.有1组解B .有2组解C .有4组解D .有多于4组的解【答案】D【解析】根据题意,分析分别就a 、当x≥0、y≥0时;b 、当x≥0、y≤0时;c 、当x≤0、y≥0时;当x≤0、y≤0时四种情况,去掉决定值符号,分解因式联立方程,利用根据与系数的关系即是否符号题意,来判断方程组的解.解:a 、当x≥0、y≥0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=+-=+-)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2﹣5(x+y )=0⇒(x+y )(x ﹣y ﹣5)=0,即x=﹣y 或 x=y+5 ③当x=﹣y 时,解得x=0,y=0,当x=y+5时,②③联立得y 2﹣3y+5=0∵△=9﹣20=﹣11<0,∴无解.b 、当x≥0、y≤0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=++=--)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2﹣5(x+y )=0⇒(x+y )(x ﹣y ﹣5)=0,即x=﹣y 或x=y+5 ③当x=﹣y 时,②③联立得 y 2+3y=0解得 îíì==00y x 或îíì-==33y x 当x=y+5时,②③联立得 y 2﹣3y+5=0∵△=9﹣20=﹣11<0,∴无解.c 、当x≤0、y≥0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=--=++)2(04)1(0422x y y y x x ïîïíì=--=++)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2+5(x+y )=0⇒(x+y )(x ﹣y+5)=0,即x=﹣y 或x=y ﹣5 ③当x=﹣y 时,②③联立得 y 2﹣3y=0解得 îíì==00y x 或îíì=-=33y x ,当x=y ﹣5时,②③联立得 y 2﹣5y+5=0∵△=25﹣20=5>0,∴方程有两解.d 、当x≤0、y≤0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=-+=-+)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2+5(x ﹣y )=0⇒(x ﹣y )(x+y ﹣5)=0,即x=y 或x=﹣y+5③当x=y 时,②③联立得 y 2+3y=0解得 îíì==00y x 或îíì-==33y x (不合题意,舍去)当x=﹣y+5时,②③联立得 y 2+5y ﹣5=0∵△=25+20=45>0,∴方程有两解.综上所述,方程有7个解.故选D .例题9.已知,实数x ,y ,z 满足,则x 4+y 4+z 4=( )A .4B .C .D .以上都不对【答案】C【解析】根据已知条件先求出xy+xz+yz=,再求出xyz=,根据完全平方公式即可求解.解:∵,∴由(1)代入上式得:xy+xz+yz=(4),而x 3+y 3+z 3﹣3xyz=(x+y+z )(x 2+y 2+z 2﹣xy ﹣xz ﹣yz ),把(3)(4)代入上式得:xyz=(5),由(4)平方得:;把(5)代入上式得:,∴.故选C .一、单选题1.下列方程中,判断中错误的是()A .方程20316x x x +-=+是分式方程B .方程3210xy x ++=是二元二次方程C 20+=是无理方程D .方程()()226x x +-=-是一元二次方程【答案】C逐一进行判断即可.A. 方程20316x x x +-=+是分式方程,正确,故该选项不符合题意; B. 方程3210xy x ++=是二元二次方程,正确,故该选项不符合题意;C.20+=是一元二次方程,错误,故该选项符合题意;D. 方程()()226x x +-=-是一元二次方程,正确,故该选项不符合题意;故选:C .【点睛】本题主要考查方程的概念,掌握一元二次方程,分式方程,二元二次方程,无理方程的概念是解题的关键.2.下列方程组中,是二元二次方程组的是( )A .12x y x y +=ìí-=îB .22231310x y x y ì-=ïïíï+=ïîC .21x y xy -=ìí=îD .313x y xy y xì+=í=-î【答案】C【解析】根据二元二次方程组的定义依次判断即可.A 、是二元一次方程组,不是二元二次方程组,故本选项不符合题意;B 、是分式方程组,不是二元二次方程组,故本选项不符合题意;C 、是二元二次方程组,故本选项符合题意;D 、是二元三次方程组,不是二元二次方程组,故本选项不符合题意;故选:C.此题考查二元二次方程组的定义,熟记定义是解题的关键.3.在方程①57x y +=;②240-+=x y ;③70+=xy ;④22191+=x y ;⑤2253370+++=x xy y x 中,是二元二次方程的有()A .1个B .2个C .3个D .4个【答案】C【解析】化简后看含有两个未知数,且未知数的最高次数是2的整式方程有几个即可.解:①含有两个未知数但未知数最高次数是1,是二元一次方程;②含有两个未知数,且未知数的最高次数是2,是二元二次方程;③含有两个未知数,且未知数的最高次数是2,是二元二次方程;④未知数在分母中,是分式方程,不是二元二次方程;⑤含有两个未知数,且未知数的最高次数是2,是二元二次方程.综上所述,有3个二元二次方程.故选:C【点睛】本题考查了对二元二次方程的定义的应用,解题的关键是掌握二元二次方程的定义:含有两个未知数,且未知数的最高次数是2的整式方程是二元二次方程.4.解方程组2222129x y x xy y ì-=í++=î①②的可行方法是( )A .将①式分解因式B .将②式分解因式C .将①②式分解因式D .加减消元【答案】C【解析】由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先因式分解组中的两个二元二次方程,再解答即可.解:∵因式分解①得: ()()1x y x y +-=,因式分解②得:()29x y +=∴3x y +=或3x y +=-,将3x y +=或3x y +=-代入()()1x y x y +-=中得到13x y -=或13x y -=-,得到方程组313x y x y +=ìïí-=ïî或313x y x y +=-ìïí-=-ïî,解得:115343x y ì=ïïíï=ïî,225343x y ì=-ïïíï=-ïî故答案为:C .【点睛】本题考查了二元二次方程组的解法,解题的关键是根据二元二次方程组的特点,进行因式分解.5.方程组2y x y x mì=í=+î有两组不同的实数解,则( )A .m ≥14-B .m >14-C .14-<m <14D .以上答案都不对【答案】B【解析】将y=x²与y=x+m 函数联立,根据解的个数求解即可.方程组2y x y x mì=í=+î有两组不同的实数解,两个方程消去y 得,20x x m --=,需要△>0,即1+4m >0,所以m >14-,故选B.【点睛】本题考查了二元二次方程,用到的知识点是加减消元法解方程组,根的判别式、解一元二次方程等知识,关键是根据根的判别式求出m 的值.6.方程组2211x y ì=í=î的实数解的个数是 ( )A .1B .2C .3D .4【答案】D【解析】根据平方根的性质,正数的平方根有两个,互为相反数即可求解.解:解21x =得1x =±,解21y =得1y =±,∴方程组的解为:11111111x x x x y y y y ===-=-ììììíííí==-==-îîîî,,,,故选D.【点睛】本题考查解二元二次方程组,二元二次方程组通常按照两个方程的组成分为“二•一”型和“二•二”型,又分别成为Ⅰ型和Ⅱ型.“二•一”型是由一个二元二次方程和一个二元一次方程组成的方程组;“二•二”型是由两个二元二次方程组成的方程.7.二元二次方程组的解是A.B.C.D.【答案】C本题可将选项中的四组答案代入检验看是否符合二元二次方程组.也可根据第一个式子,得出与的关系,代入第二个式子求解依题意得=3-∴y=(3-)=-10-2+3+10=02-3-10=0(-5)(+2)=0=5,2=-21∴方程的解为:,故选C8.已知下列四对数值不是方程的解是():A.B.C.D.【答案】A【解析】将各选项代入方程进行验证即可.解:A、当x=-5,y=-2时,左边=(-5)²+(-2)² =29≠13,左边≠右边,故A错误;B、当x=-2,y=3时,左边=(-2)²+3² =13,左边=右边,故B正确;C、当x=2,y=3时,左边=2²+3² =13,左边=右边,故C正确;D、当x=-3,y=2时,左边=(-3)²+2² =13,左边=右边,故D正确;【点睛】本题考查了二元二次方程的解的定义,掌握二元二次方程的解得定义是解题的关键.9.方程组20230x y x x y +=ìí++-=î的解的情况是( )A .有两组相同的实数解B .有两组不同的实数解C .没有实数解D .不能确定【答案】B【解析】首先运用代入法,将方程组进行变形,然后利用根的判别式即可判定.20230x y x x y +=ìí++-=î①②将①代入②,得2230x -=240423240b ac =-=+´´=△>故方程有两组不同的实数解,故选:B.【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.10.如果14x y =ìí=î 是方程组x y a xy b +=ìí=î的一组解,那么这个方程组的另一组解是( )A .41x y =ìí=îB .14x y =-ìí=-îC .41x y =-ìí=-îD .41x y =ìí=-î【答案】A将14x y =ìí=î代入方程组x y a xy b +=ìí=î求得54a b =ìí=î,再解方程组54x y xy +=ìí=î即可得解.将14x y =ìí=î代入方程组x y a xy b +=ìí=î中得:1414a b +=ìí´=î,解得:54a b =ìí=î,则方程组变形为:54x y xy +=ìí=î,由x+y=5得:x=5-y ,将x=5-y 代入方程xy=4中可得:y 2-5y+4=0,解得y=4或y=1,将y=1代入xy=4中可得:x=4,所以方程的另一组解为:41x y =ìí=î.故选A .【点睛】本题考查了高次方程,二元一次方程组的解法,熟记解二元一次方程的解法是解题的关键.11.方程组2220x y m y x ì-=í-=î有四组不同的实数解,则m 的取值范围是( )A .14m <-B .14m >-C .104m -<>D .14m >-,且0m ¹【答案】D首先运用代入法将方程组变形,然后利用根的判别式即可得解.2220x y m y x ì-=í-=î①②由②,得2x y =③将③代入①,得420y y m --=∵方程组有四组不同的实数解,∴()()224141140b ac m m =-=--´´-=+△>且0m ¹∴14m >-,且0m ¹故选:D.【点睛】此题主要考查根据二元二次方程组的解求参数的取值范围,解题关键的利用根的判别式.12.二元二次方程组22220,4 2.x xy y x y ì+-=í+=-î的解的个数是( )A .1B .2C .3D .4【答案】B【解析】由①得x-y=0或x+2y=0,原方程组可变为:2042x y x y -=ìí+=-î③④或22042x y x y +=ìí+=-î⑤⑥,然后用代入消元法求解即可.2222042x xy y x y ì+-=í+=-î①②,由①得(x-y)(x+2y)=0,∴x-y=0或x+2y=0,∴原方程组可变为:2042x y x y -=ìí+=-î③④或22042x y x y +=ìí+=-î⑤⑥,由③得x=y ,把x=y 代入④得y 2+4y=-2,解得,∴1122x y ì=-ïí=-ïî2222x y ì=-+ïí=-ïî;由⑤得x=-2y ,把x=-2y 代入⑥得4y 2+4y+2=0,即2y 2+2y+1=0,∆=4-8=-4<0,∴此时方程无实数根,综上可知,方程组有两组解:1122x y ì=--ïí=-ïî,2222x y ì=-+ïí=-ïî.故选B .【点睛】本题考查了二元二次方程组的解法,熟练掌握代入消元法是解答本题的关键.二、填空题13.12x y =ìí=-î_______方程组22245x y x y -=ìí-=î的解(填“是”或“不是”).【答案】不是【解析】把12x y =ìí=-î代入原方程组的两个方程即可得到答案.解:把12x y =ìí=-î代入原方程组22245x y x y -=ìí-=î中的225x y -=中,方程左边=221(2)143--=-=-¹右边,所以12x y =ìí=-î不是原方程组的解.故答案为:不是.【点睛】本题考查的是方程组的解的含义,掌握方程组的解满足方程组的每一个方程是解题的关键.14.像22121x y x y ì+=-í+=î这样的二元二次方程组,是由一个________方程和一个_________方程组成,可以用________法解这个方程.【答案】二元二次二元一次 代入 【解析】观察方程组,由一个二元二次方程和一个二元一次方程组成,可以用代入法求解.由题意,得该方程组是由一个二元二次方程和一个二元一次方程组成,可以用代入法求解,故答案为:二元二次;二元一次;代入.【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.15.已知12x y =ìí=-î是方程组x y m x y n +=ìí×=î的一个解,那么这个方程组的另一个解是__________.【答案】21x y =-ìí=î.【解析】将12x y =ìí=-î代入原方程组求得12m n =-ìí=-î,所以原方程组是12x y xy +=-ìí=-î,再解此方程组即可.解:将12x y =ìí=-î代入原方程组求得12m n =-ìí=-î,∴原方程组是12x y xy +=-ìí=-î①②,由①,得x=-y-1③,把③代入②式,化简得y 2+y-2=0,解之,得y 1= -2,y 2= 1.把y 1=-2代入x=-y-1,得x 1=1,把y 2=1代入x=-y-1,得x 2=-2.∴原方程组的解为:121212,21x x y y ==-ììíí=-=îî.故答案为:21x y =-ìí=î.【点睛】本题考查了解二元二次方程组,熟练掌握运算法则是解题的关键.16.解方程组24221x y xy +=ìí=-î①② 的解为_______________【答案】121237,7322x x y y =-=ììïïíí==-ïïîî【解析】由①得出x=4-2y ③,把③代入②得:2(4-2y )y=-21,求出y 1 = 72 ,y 2 = - 32,分别代入③,求出x 即可.解: 24221x y xy +=ìí=-î①②由①得:x=4-2y ③,把③代入②得:2(4-2y )y=-21,解得:y 1 =72 ,y 2 = - 32 , 把y 1 = 72代入③得:x 1 =-3, 把y 2 =- 32代入③得:x 2 =7, 即原方程组的解是 121237,7322x x y y =-=ììïïíí==-ïïîî .【点睛】本题考查了解高次方程组的应用,解此题的关键是能正确消元,即把二元变成一元.17.解方程组224422032110x xy y x y x y ì-++--=í+-=î的解为_______________【答案】21129341178x x y y ìì=ïï=ïïíí=ïï=ïïîî【解析】首先把方程②变形为y=1132x -,然后利用代入法消去y ,得到关于x 的一元二次方程,解方程求出x ,然后就可以求出y ,从而求解.解:224422032110x xy y x y x y ì-++--=í+-=î①②,由②得:y=1132x -③ 把③代入①得:x 2-4(113)2x x -+4(1132x -)2+x-2(113)2x --2=0. 整理得:4x 2-21x+27=0∴x 1=3 x 2=94. 把x=3代入③ 得:y=1把x=94代入④ 得:y=178. ∴原方程组的解为: 21129341178x x y y ìì=ïï=ïïíí=ïï=ïïîî【点睛】本题考查了二元二次方程组的解法,解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.18.二元二次方程()()23320x y +-=有__________个解.【答案】无数【解析】根据()()23320x y +-=可得230x +=或320y -=,从而得出当32x =-时,y 可以取任意实数,当23y =,时,x 可以取任意实数,确定方程有无数个解.解:∵()()23320x y +-=∴230x +=或320y -=∴32x =-或23y =,当32x =-时,y 可以取任意实数,当23y =,时,x 可以取任意实数,∴方程有无数个解,故答案为:无数.【点睛】本题考查了方程的因式分解解法,解题的关键是得出当32x =-时,y 可以取任意实数,当23y =,时,x 可以取任意实数.19.解方程组224915235x y x y ì-=í-=î时,采用“_________”的方法,将二元二次方程224915x y -=化为_________方程,这是一种“__________”的策略.【答案】因式分解二元一次 消元降次【解析】观察方程组,由一个二元二次方程和一个二元一次方程组成,其中二元二次方程可以进行因式分解化为二元一次方程,这是采用了“消元降次”的策略.由题意,得该方程组可采用因式分解的方法,将二元二次方程224915x y -=化为二元一次方程,这是一种消元降次策略,故答案为:因式分解;二元一次;消元降次.【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.20.如果222461461,461a a b c b b c a c c a b ì++=+ï++=+íï++=+î,那么a b c ++的值为_________________.【答案】32-【解析】方程组的三个方程轮循环对称,可把组中的三个方程相加,利用完全平方公式和非负数的和先求出a 、b 、c 的值,再计算a b c ++.解:222461461461a a b c b b a c c c a b ì++=+ï++=+íï++=+î①②③①+②+③,得222461461461a a b b c c b c a c a b ++++++++=+++++,整理,得2224414414410a ab bc c ++++++++=所以222(441)(441)(441)0a ab bc c ++++++++=即222(21)(21)(21)0a b c +++++=因为2(21)0a +…,2(21)0b +…,2(21)0c +…,所以210a +=,210b +=,210c +=所以12a =-,12b =-,12c =-,所以32a b c ++=-.故答案为:32-【点睛】本题考查了完全平方公式、非负数的和等知识点.观察题目,发现三个方程的特点是解决本题的关键.三、解答题21.解方程组:22449(1)6(2)x xy y x y ì++=í-=î.【答案】33x y =ìí=-î或51x y =ìí=-î【解析】先降次转化成两个一次方程组,解方程组即可求解.解:224496x xy y x y ì++=í-=î①②,由方程①可得x +2y =﹣3或x +2y =3,则方程组可变为236x y x y +=-ìí-=î或236x y x y +=ìí-=î,解得33x y =ìí=-î或51x y =ìí=-î.【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.22.解方程组:222220560x y x xy y ì+=í-+=î.【答案】1142x y =ìí=î,2242x y =-ìí=-î,33x y ì=ïí=ïî,44x y ì=ïí=ïî【解析】由22560x xy y -+=得()()230x y x y --=,从而得到20x y -=或30x y -=,即2x y =或3x y =;再将2x y =或3x y =分别代入到2220x y +=,通过求解即可得到答案.由22560x xy y -+=得:()()230x y x y --=∴20x y -=或30x y -=∴2x y =或3x y=将2x y =代入2220x y +=,得:22420y y +=∴2y =±∴1142x y =ìí=î,2242x y =-ìí=-î将3x y =代入2220x y +=,得:22920y y +=∴y =∴33x y ì=ïí=ïî,44x y ì=ïí=ïî∴方程组的解是:1142x y =ìí=î,2242x y =-ìí=-î,33x y ì=ïí=ïî,44x y ì=ïí=ïî.【点睛】本题考查了二元二次方程、因式分解、二次根式的知识;解题的关键是熟练掌握因式分解、二元二次方程的性质,从而完成求解.23.解方程组:2220326x xy x xy y ì+=í-+=î①②【答案】11x y ìïí=ïî22x y =ìïí=ïî,3311x y =-ìí=î,4411x y =ìí=-î【解析】解①,用含y 的代数式表示x ,然后代入②求出y ,再求出方程组的解.解:2220326x xy x xy y ì+=í-+=î①②,由①,得()0x x y +=,所以0x =或x y =-.把0x =代入②,得226y =,解得y =.把x y =-代入②,得222326y y y ++=,整理,得21y =,所以1y =±.所以1x =-或1.故原方程组的解为:11x y ìïí=ïî22x y =ìïí=ïî,3311x y =-ìí=î,4411x y =ìí=-î.【点睛】本题考查了高次方程组的解法.变形①用代入法把二元二次方程组转化为一元二次方程,是解决本题的关键.24.2222560112x xy y x x y y ì-+=í++-=î【答案】112515x y ì=-ïïíï=-ïî,2242x y =ìí=î,333515x y ì=-ïïíï=-ïî,4431x y =ìí=î【解析】根据二元二次方程组的解法进行求解即可.解:2222560112x xy y x x y y ì-+=í++-=î①②,由①得:23x y x y=ìí=î,当x=2y 时,代入②可得:25920y y --=,解得:121,25y y =-=,∴122,45x x =-=;当x=3y 时,代入②可得:210820y y --=,解得:341,15y y =-=,∴343,35x x =-=,综上所述:方程组的解为112515x y ì=-ïïíï=-ïî,2242x y =ìí=î,333515x y ì=-ïïíï=-ïî,4431x y =ìí=î.【点睛】本题主要考查二元二次方程方程组的解法,熟练掌握二元二次方程组的解法是解题的关键.25.解方程组:22312230x y x xy y +=ìí--=î【答案】1162x y =ìí=î;2266x y =-ìí=î【解析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.解:22312230x y x xy y +=ìí--=î①②由②得()()30x y x y -+=30x y -=或0x y +=原方程组可化为31230x y x y +=ìí-=î;3120x y x y +=ìí+=î解得1162x y =ìí=î;2266x y =-ìí=î所以原方程组的解是1162x y =ìí=î;2266x y =-ìí=î【点睛】本题考查高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.26.解下列方程(组)(1)33(2019)(2018)1x x -+-=;(2)22222293,19293,19293.192x y xy z yz x z ì=ï+ïï=í+ïï=ï+î【答案】(1)2019或2018;(2)111(,,)333或(0,0,0)【解析】(1)运用换元法的思想令2019,2018m x n x =-=-,联立方程组可得m 和n 的等式,再利用完全平方公式的变形即可得出答案;(2)根据条件易得x=0,y=0,z=0时方程成立,当,,x y z 不为0时,把三个方程相加222111(1)(1)(1)0333x y z-+-+-=,然后根据平方数的非负性可得三个式子分别为零,即可求出结果.解:(1)令2019,2018m x n x =-=-;则3311m n m n +=ìí+=î;∴222()31-+=+-=m mn n m n mn ;∴0mn =即0m =或n=0;∴2019x =或2018;(2)易知(,,)(0,0,0)x y z = 为一组解;若,,x y z 不为0;则222121,93121,93121.93x y yz zx ì+=ïïï+=íïï+=ïî相加得222111(1)(1)(1)0333x y z -+-+-=;∴111(,,)(,,333x y z =;综上:111(,,)(,,333x y z =或()0,0,0.【点睛】本题主要考查方程的解法,灵活利用换元法、乘法公式变形及分类讨论思想是解题的重要环节.27.解下列方程组:(1)222220560x y x xy y ì+=í-+=î(2)217,11 1.x y x y x y x yì-=ï+-ïíï+=-ï+-î 【答案】(1)3124123444,,22x x x x y y y y ìììì===-=-ïïïïíííí==-==ïïïïîîîî(2)112512x y ì=ïïíï=ïî【解析】(1)把原方程组化为:222020x y x y ì+=í-=î或222030x y x y ì+=í-=î再分别解这两个方程组可得答案.(2)把两个方程相加得12x y +=,再代入求得13x y -=-,联立求解并检验可得答案.解:(1)因为222220560x y x xy y ì+=í-+=î把22560x xy y -+=化为:(2)(3)0x y x y --=,即20x y -=或30x y -=原方程组化为:222020x y x y ì+=í-=î或222030x y x y ì+=í-=î因为222020x y x y ì+=í-=î把20x y -=化为2x y =,把2x y =代入2220x y +=中,得24y =,所以2y =± ,所以方程组的解是42x y =ìí=î 或42x y =-ìí=-î同理解222030x y x y ì+=í-=î得方程组的解是x y ì=ïí=ïî或x y ì=ïí=ïî所以原方程组的解是:3124123444,,22x x x x y y y y ìììì===-=-ïïïïíííí==-==ïïïïîîîî(2)因为217,111.x y x y x y x yì-=ï+-ïíï+=-ï+-î①②所以①+②得:36x y=+,所以12x y +=,把12x y +=代入②得:13x y -=-,所以1213x y x y ì+=ïïíï-=-ïî,解得:112512x y ì=ïïíï=ïî 经检验112512x y ì=ïïíï=ïî是原方程组的解,所以原方程的解是112512x y ì=ïïíï=ïî【点睛】本题考查的是二元二次方程组与分式方程组,掌握降次与消元是解题关键,分式方程检验是必须步骤.28.某汽车公司有甲、乙两种货车可供租用,现有一批货物要运往某地,货主准备租用该公司货车,已知甲,乙两种货车运货情况如下表:第一次第二次甲种货车(辆)25乙种货车(辆)36累计运货(吨)1328(1)甲、乙两种货车每辆可装多少吨货物?(2)若某货主共有20吨货物,计划租用该公司的货车,正好(每辆货车都满载)把这批货物运完,则该货主有________种租车方案?(3)王先生要租用该公可的甲、乙两种货车送一批货,如果租用甲种货车数量比乙种货车数量多1辆,而乙种货车每辆的运费是甲种货车的1.4倍,结果甲种货车共付运费800元,乙种货车共付运费980元,试求此次甲、乙两种货车每辆各需运费多少元?【答案】(1)甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物;(2)4种租车方案;(3)甲种货车每辆需运费100元,乙种货车每辆需运费140元【解析】(1)设甲种货车每辆可装x吨货物,乙种货车每辆可装y吨货物,根据第一、二次两种货车运货情况表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用a辆甲种货车,b辆乙种货车,根据货物的总重量为20吨且每辆货车都满载,即可得出关于a,b的二元一次方程,结合a,b均为非负整数,即可得出各租车方案;(3)设甲种货车每辆需运费m元,租用甲种货车n辆,则乙种货车每辆需运费1.4m元,租用乙种货车(n)1-辆,根据总费用=每辆车所需费用´租用该种车的辆数,即可得出关于m,n的二元二次方程组,解之即可得出结论.解:(1)设甲种货车每辆可装x吨货物,乙种货车每辆可装y吨货物,依题意,得:2313 5628 x yx y+=ìí+=î,解得:23 xy=ìí=î.答:甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物.(2)设租用a 辆甲种货车,b 辆乙种货车,依题意,得:2320a b +=,3102a b \=-.a Q ,b 均为非负整数,b \为偶数,\当0b =时,10a =;当2b =时,7a =;当4b =时,4a =;当6b =时,1a =.\共有4种租车方案,方案1:租用10辆甲种货车;方案2:租用7辆甲种货车,2辆乙种货车;方案3:租用4辆甲种货车,4辆乙种货车;方案4:租用1辆甲种货车,6辆乙种货车.(3)设甲种货车每辆需运费m 元,租用甲种货车n 辆,则乙种货车每辆需运费1.4m 元,租用乙种货车(n )1-辆,依题意,得:8001.4(1)980mn m n =ìí-=î,解得:1008m n =ìí=î,1.4140m \=.答:甲种货车每辆需运费100元,乙种货车每辆需运费140元.【点睛】本题考查了二元一次方程组的应用、二元一次方程的应用以及二元二次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程;(3)找准等量关系,正确列出二元二次方程组.。