机械能。功能关系
- 格式:doc
- 大小:1.98 MB
- 文档页数:5
取夺市安慰阳光实验学校第4节功能关系能量守恒定律知识点1 功能关系1.内容(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化.(2)做功的过程一定伴随着能量的转化,而且能量的转化必须通过做功来实现.2.做功对应变化的能量形式(1)合外力的功等于物体的动能的变化.(2)重力做功等于物体重力势能的变化.(3)弹簧弹力做功等于弹性势能的变化.(4)除重力和系统内弹力以外的力做功等于物体机械能的变化.知识点2 能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转化和转移的过程中,能量的总量保持不变.2.适用范围能量守恒定律是贯穿物理学的基本规律,是各种自然现象中普遍适应的一条规律.3.表达式(1)E初=E末,初状态各种能量的总和等于末状态各种能量的总和.(2)ΔE增=ΔE减,增加的那些能量的增加量等于减少的那些能量的减少量.1.正误判断(1)做功的过程一定会有能量转化.(√)(2)力对物体做了多少功,物体就有多少能.(×)(3)力对物体做功,物体的总能量一定增加.(×)(4)能量在转化或转移的过程中,其总量会不断减少.(×)(5)能量的转化和转移具有方向性,且现在可利用的能源有限,故必须节约能源.(√)(6)滑动摩擦力做功时,一定会引起能量的转化.(√)2.[功能关系的理解]自然现象中蕴藏着许多物理知识,如图541所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能( )图541A.增大B.变小C.不变D.不能确定A[人缓慢推水袋,对水袋做正功,由功能关系可知,水的重力势能一定增加,A正确.]3.[摩擦生热的理解]如图542所示,木块A放在木板B的左端上方,用水平恒力F将A拉到B的右端,第一次将B固定在地面上,F做功W1,生热Q1;第二次让B在光滑水平面可自由滑动,F做功W2,生热Q2,则下列关系中正确的是( )【:92492233】图542A. W1<W2,Q1=Q2B.W1=W2,Q1=Q2C.W1<W2,Q1<Q2D.W1=W2,Q1<Q2A[设木板B长s,木块A从木板B左端滑到右端克服摩擦力所做的功W =F f s,因为木板B不固定时木块A的位移要比木板B固定时长,所以W1<W2;摩擦产生的热量Q=F f l相对,两次都从木块B左端滑到右端,相对位移相等,所以Q1=Q2,故选A.]4.[几种常见的功能关系应用](多选)悬崖跳水是一项极具挑战性的极限运动,需要运动员具有非凡的胆量和过硬的技术.跳水运动员进入水中后受到水的阻力而做减速运动,设质量为m的运动员刚入水时的速度为v,水对他的阻力大小恒为F,那么在他减速下降深度为h的过程中,下列说法正确的是(g为当地的重力加速度)( )A.他的动能减少了(F-mg)hB.他的重力势能减少了mgh -12mv2C.他的机械能减少了FhD.他的机械能减少了mghAC[合力做的功等于动能的变化,合力做的功为(F-mg)h,A正确;重力做的功等于重力势能的变化,故重力势能减小了mgh,B错误;重力以外的力做的功等于机械能的变化,故机械能减少了Fh,C正确,D错误.]对功能关系的理解及应用1(1)做功的过程是能量转化的过程.不同形式的能量发生相互转化是通过做功来实现的.(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数量上相等.2.几种常见功能关系的对比各种力做功对应能的变化定量关系合力的功动能变化合力对物体做功等于物体动能的增量W合=E k2-E k1重力的功重力势能变化重力做正功,重力势能减少,重力做负功,重力势能增加,且W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化弹力做正功,弹性势能减少,弹力做负功,弹性1.(多选)(2017·枣庄模拟)如图543所示,取一块长为L的表面粗糙的木板,第一次将其左端垫高,让一小物块从板左端的A点以初速度v0沿板下滑,滑到板右端的B点时速度为v1;第二次保持板右端位置不变,将板放置水平,让同样的小物块从A点正下方的C点也以初速度v0向右滑动,滑到B点时的速度为v2.下列说法正确的是( )图543A.v1一定大于v0B.v1一定大于v2C.第一次的加速度可能比第二次的加速度小D.两个过程中物体损失的机械能相同BCD[物块向下滑动的过程中受到重力、支持力和摩擦力的作用,若重力向下的分力大于摩擦力,则物块做加速运动,若重力向下的分力小于摩擦力,则物块做减速运动.故A错误;斜面的倾角为θ时,物块受到滑动摩擦力:f1=μmg cos θ,物块克服摩擦力做功W1=f1L=μmg cos θ·L.板水平时物块克服摩擦力做功:W2=μmg·L cos θ=W1.两次克服摩擦力做的功相等,所以两个过程中物体损失的机械能相同;第一次有重力做正功.所以由动能定理可知第一次的动能一定比第二次的动能大,v1一定大于v2,故B、D正确.物块向下滑动的过程中受到重力、支持力和摩擦力的作用,若重力向下的分力大于摩擦力,则:a1=mg sin θ-fm,板水平时运动的过程中a2=fm,所以第一次的加速度可能比第二次的加速度小,故C正确.]2.(多选)(2017·青岛模拟)如图544所示,一根原长为L的轻弹簧,下端固定在水平地面上,一个质量为m的小球,在弹簧的正上方从距地面高度为H处由静止下落压缩弹簧.若弹簧的最大压缩量为x,小球下落过程受到的空气阻力恒为F f,则小球从开始下落至最低点的过程( )【:92492234】图544A.小球动能的增量为零B.小球重力势能的增量为mg(H+x-L)C.弹簧弹性势能的增量为(mg-F f)(H+x-L)D.系统机械能减小F f HAC[小球下落的整个过程中,开始时速度为零,结束时速度也为零,所以小球动能的增量为0,故A正确;小球下落的整个过程中,重力做功W G=mgh=mg(H+x-L),根据重力做功量度重力势能的变化W G=-ΔE p得:小球重力势能的增量为-mg(H+x-L),故B错误;根据动能定理得:W G+W f+W弹=0-0=0,所以W弹=-(mg-F f)(H+x-L),根据弹簧弹力做功量度弹性势能的变化W弹=-ΔE p得:弹簧弹性势能的增量为(mg-F f)(H+x-L),故C正确;系统机械能的减少等于重力、弹力以外的力做的功,所以小球从开始下落至最低点的过程,克服阻力做的功为:F f(H+x-L),所以系统机械能减小为:F f(H+x-L),故D 错误.]功能关系的应用技巧1.在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析,W总=ΔE k.2.只涉及重力势能的变化用重力做功与重力势能变化的关系分析,即W G =-ΔE p.3.只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析,即W其他=ΔE.4.只涉及电势能的变化用电场力做功与电势能变化的关系分析,即W电=-ΔE p.对能量守恒定律的理解及应用1(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等.(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.2.能量转化问题的解题思路(1)当涉及滑动摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律.(2)解题时,首先确定初末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE减和增加的能量总和ΔE 增,最后由ΔE减=ΔE增列式求解.[多维探究]●考向1 涉及弹簧的能量守恒定律问题1.如图545所示,两物块A、B通过一轻质弹簧相连,置于光滑的水平面上,开始时A和B均静止.现同时对A、B施加等大反向的水平恒力F1和F2,使两物块开始运动,运动过程中弹簧形变不超过其弹性限度.在两物块开始运动以后的整个过程中,对A、B和弹簧组成的系统,下列说法正确的是( )图545A.由于F1、F2等大反向,系统机械能守恒B.当弹簧弹力与F1、F2大小相等时,A、B两物块的动能最大C.当弹簧伸长量达到最大后,A、B两物块将保持静止状态D.在整个过程中系统机械能不断增加B[在弹簧一直拉伸的时间内,由于F1与A的速度方向均向左而做正功,F2与B的速度方向均向右而做正功,即F1、F2做的总功大于零,系统机械能不守恒,选项A错误;当弹簧对A的弹力与F1平衡时A的动能最大,此时弹簧对B的弹力也与F2平衡,B的动能也最大,选项B正确;弹簧伸长量达到最大时,两物块速度为零,弹簧弹力大于F1、F2,之后两物块将反向运动而不会保持静止状态,F1、F2对系统做负功,系统机械能减少,选项C、D均错误.]2.如图546所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为2m,B的质量为m,初始时物体A到C点的距离为L.现给A、B一初速度v0>gL,使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度为g,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:图546(1)物体A向下运动刚到C点时的速度;(2)弹簧的最大压缩量;(3)弹簧的最大弹性势能.【:92492235】【解析】(1)A与斜面间的滑动摩擦力f=2μmg cos θ,物体从A向下运动到C点的过程中,根据能量守恒定律可得:2mgL sin θ+12·3mv20=12·3mv2+mgL+fL解得v=v20-gL.(2)从物体A接触弹簧,将弹簧压缩到最短后又恰回到C点,对系统应用动能定理-f·2x=0-12×3mv2解得x=v202g-L2.(3)弹簧从压缩到最短到恰好能弹到C点的过程中,对系统根据能量守恒定律可得:E p+mgx=2mgx sin θ+fx所以E p=fx=3mv204-3mgL4.【答案】(1)v20-gL(2)v202g-L2(3)3mv204-3mgL4●考向2 能量守恒定律与图象的综合应用3.将小球以10 m/s 的初速度从地面竖直向上抛出,取地面为零势能面,小球在上升过程中的动能E k 、重力势能E p 与上升高度h 间的关系分别如图547中两直线所示.g 取10 m/s 2,下列说法正确的是( )图547A .小球的质量为0.2 kgB .小球受到的阻力(不包括重力)大小为0.20 NC .小球动能与重力势能相等时的高度为2013 mD .小球上升到2 m 时,动能与重力势能之差为0.5 JD [在最高点,E p =mgh 得m =0.1 kg ,A 项错误;由除重力以外其他力做功E 其=ΔE 可知:-fh =E 高-E 低,E 为机械能,解得f =0.25 N ,B 项错误;设小球动能和重力势能相等时的高度为H ,此时有mgH =12mv 2,由动能定理得:-fH -mgH =12mv 2-12mv 20,解得H =209 m ,故C 项错;当上升h ′=2 m 时,由动能定理得:-fh ′-mgh ′=E k2-12mv 20,解得E k2=2.5 J ,E p2=mgh ′=2 J ,所以动能与重力势能之差为0.5 J ,故D 项正确.]摩擦力做功与能量的转化关系1.(1)从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量. (2)从能量的角度看,是其他形式能量的减少量等于系统内能的增加量. 2.两种摩擦力做功情况比较静摩擦力滑动摩擦力不同点能量的转化方面只有能量的转移,而没有能量的转化既有能量的转移,又有能量的转化一对摩擦力的总功方面一对静摩擦力所做功的代数和等于零一对滑动摩擦力所做功的代数和不为零,总功W =-F f ·l相对,产生的内能Q =F f ·l 相对相同点正功、负功、不做功方面两种摩擦力对物体可以做正功、负功,还可以不做功[电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可看做质点)轻轻放在皮带的底端,经过时间1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2,求:图 5-4-8(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能. 【自主思考】(1)1.9 s 内工件是否一直加速?应如何判断?提示:若工件一直匀加速,由v m 2×t =hsin θ可得:工件的最大速度v m =61.9m/s>v 0,故工件在1.9 s 内应先匀加速运动再匀速运动.(2)工件在上升过程中其所受的摩擦力是否变化? 提示:变化,先是滑动摩擦力,后是静摩擦力.(3)电动机传送工件的过程中多消耗的电能转化成了哪几种能量? 提示:工件的动能、重力势能及因摩擦力做功产生的热量三部分. 【解析】 (1)由题图可知,皮带长x =hsin θ=3 m .工件速度达v 0前,做匀加速运动的位移x 1=v t 1=v 02t 1匀速运动的位移为x -x 1=v 0(t -t 1) 解得加速运动的时间t 1=0.8 s 加速运动的位移x 1=0.8 m所以加速度a =v 0t 1=2.5 m/s 2由牛顿第二定律有:μmg cos θ-mg sin θ=ma解得:μ=32.(2)从能量守恒的观点,显然电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量.在时间t 1内,皮带运动的位移x 皮=v 0t 1=1.6 m在时间t 1内,工件相对皮带的位移x 相=x 皮-x 1=0.8 m在时间t 1内,摩擦生热Q =μmg cos θ·x 相=60 J工件获得的动能E k =12mv 20=20 J工件增加的势能E p =mgh =150 J电动机多消耗的电能W =Q +E k +E p =230 J.【答案】 (1)32 (2)230 J[母题迁移]●迁移1 水平传送带问题1.如图549所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程中,下列说法正确的是( )【:92492236】 图549A .电动机做的功为12mv 2B .摩擦力对物体做的功为mv 2C .传送带克服摩擦力做的功为12mv 2D .电动机增加的功率为μmgvD [由能量守恒可知,电动机做的功等于物体获得的动能和由于摩擦而产生的内能,选项A 错误;对物体受力分析知,仅有摩擦力对物体做功,由动能定理知,其大小应为12mv 2,选项B 错误;传送带克服摩擦力做功等于摩擦力与传送带对地位移的乘积,可知这个位移是物体对地位移的两倍,即W =mv 2,选项C 错误;由功率公式知电动机增加的功率为μmgv ,选项D 正确.]●迁移2 倾斜传送带 逆时针转动 2.(多选)(2017·太原模拟)如图5410所示,与水平面夹角为θ=37°的传送带以恒定速率v =2 m/s沿逆时针方向运动.将质量为m =1 kg 的物块静置在传送带上的A 处,经过1.2 s 到达传送带的B 处.已知物块与传送带间的动摩擦因数为μ=0.5,其他摩擦不计,物块可视为质点,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.下列对物块从传送带A 处运动到B 处过程的相关说法正确的是( )【:92492237】图5410A .物块动能增加2 JB .物块机械能减少11.2 JC .物块与传送带因摩擦产生的热量为4.8 JD .物块对传送带做的功为-12.8 JBC [由题意可知μ<tan 37°,因而物块与传送带速度相同后仍然要加速运动.物块与传送带速度相同前,由牛顿第二定律有mg (sin θ+μcos θ)=ma 1,v =a 1t 1,x 1=12a 1t 21, 解得a 1=10 m/s 2,t 1=0.2 s ,x 1=0.2 m ,物块与传送带速度相同后,由牛顿第二定律有mg (sin θ-μcos θ)=ma 2,v ′=v +a 2t 2,x 2=vt 2+12a 2t 22,而t 1+t 2=1.2 s ,解得a 2=2 m/s 2,v ′=4 m/s ,x 2=3 m ,物块到达B 处时的动能为E k =12mv ′2=8 J ,选项A 错误;由于传送带对物块的摩擦力做功,物块机械能变化,摩擦力做功为W f =μmgx 1cos θ-μmgx 2cos θ=-11.2 J ,故机械能减少11.2 J ,选项B 正确;物块与传送带因摩擦产生的热量为Q =μmg (vt 1-x 1+x 2-vt 2)cos θ=4.8 J ,选项C 正确;物块对传送带做的功为W =-μmgvt 1cos θ+μmgvt 2cos θ=6.4 J ,选项D 错误.]1.水平传送带:共速后不受摩擦力,不再有能量转化.倾斜传送带:共速后仍有静摩擦力,仍有能量转移.2.滑动摩擦力做功,其他形式的能量转化为内能;静摩擦力做功,不产生内能.3.公式Q=F f·l相对中l相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则l相对为总的相对路程.。
机械能知识点总结功一、功1. 功的概念:一个物体受到力的作用,如果在力的方向上发生一段位移,力就对物体做了功。
2. 功的两个不可缺少的因素:力和在力方向发生的位移。
3. 功的计算公式:(1)F 和s 同方向情况:Fs W =(2)F 和s 不同方向的情况:θcos Fs W =(θ为F 与s 的夹角) 解题思想:(1)、可以把力分解到位移的方向上,(2)可以把位移分解到力的方向上 4. 功的单位:焦耳(牛·米),符号J ,(N ·m ) 二、正功和负功1. 功的正负判定方法:功是表示力对空间积累效果的物理量,只有大小没有方向,是标量,功的正负既不是描述方向也不是描述大小而有另外意义。
(说明:+表明力对研究的物体的运动器推动作用,做正功;—表明力对物体的运动起阻碍作用,做负功。
)(1)当︒<≤900θ时,1cos 0≤<θ,W 为正值,力对物体做正功,力对物体的运动起推动作用。
(2)当︒=90θ时,0cos =θ,0=W ,力对物体不做功,力对物体的运动既不推动也不阻碍。
(3)当︒≤<︒18090θ时,0cos 1<≤-θ,W 为负值,力对物体做负功或者说物体克服力F 做功,力对物体的运动起阻碍作用。
2. 在曲线运动中,功的正负判定方法:看力F 与速度v 的夹角θ。
3. 注意:讲“功”,一定要指明是哪个力对那个物体的功,功是标量。
三、总功合力做功(总功)的求法:一种方法是先求出合力再用θcos s F W 合总=求总功,另一种方法是 ++=21W W W 总即总功等于各个力做功的代数和,这两种方法都要求先对物体进行正确的受力分析,后一种方法还要求把各个功的正负号代入运算。
四、变力做功1、恒力做功的求法:θcos s F W ⋅=中的F 是恒力,求恒力所做的功只要找出F 、s 、θ即可。
2、一些变力(指大小不变,方向改变,如滑动摩擦阻力,空气阻力),在物体做曲线运动或往复运动过程中,这些力虽然方向变,但每时每刻与速度反向,此时可化成恒力做功,方法是分段考虑,然后求和。
机械能(一) 功一、基础知识1、功一个物体受到----的作用,如果在力的方向上发生一段-----,这个力就对物体做了功.。
做功的两个不可缺少的因素:---和在力方向上发生的----。
功的公式:-------------;功是------量(填“矢”或“标”)2.正功和负功根据W=FS cosa可知(1)当a=900时,W=0。
即当力F和位移s垂直时,力F对物体不做功。
物体在力的方向上没有位移发生。
(2)当---≤a<------时,W为正。
即当力F和位移s同向或成锐角时,力F对物体做正功,力F为动力,所以动力对物体做正功。
(3)当---<a≤------时,W为负。
即当力F跟位移S反向或成钝角时,力F对物体做负功。
这时力F是阻力,所以阻力对物体做负功。
一个力对物体做负功,又常说成物体——————这个力做功(取绝对值)。
注:1、功的计算:(1)求恒力做的功:根据公式W=Fscosa求解:①如果F、s同向,则W=Fs;如果F、s反向,则W=-Fs;②如果F、s不共线成一夹角a,则W=FS cosa;如果a未知,一般采用正交分解的方法:A.将F 分解在 S所在的直线上得F1和跟S垂直的方向得F2,则W=F1S;B.或将S分解在F所在的直线上得S1和跟F垂直的方向得S2,则则W=FS1(2)求变力F的功:①求一般变力F的功:根据动能定理:W F+W它=⊿E K ;②求特殊变力F的功:A. F的大小一定,方向始终与速度V共线:F、V同向:W=FS 。
(S表示路程);F、V反向:W=-FS。
(S 表示路程);B.F的方向一定,大小均匀变化,则可方便求F 的平均植F平=(F1+F2)/2,则W=F平Scosa;C. F的功率P一定,则W=P t2、讲“功”一定要指明是哪个力对哪个物体做的功。
3、功的正负判断的另一种方法:看力F与速度V的夹角a:①当0≤a<900时,W为正;②当a=900时,W=0,即力F不做功③当900<a<1800时,W为负4、合外力对物体做功,就等于物体所受的各个力对物体做功的代数和(即总功),即:W合=W总=W1+W2+…W n;W合=F合scosa,5、功的正负既不表示方向,也不表示功的大小,正功仅表示动力对物体做功,负功仅表示阻力对物体做功。
功能关系:功和能的关系总结功能关系:功和能的关系:功是能量转化的量度。
(1)做功的过程就是能量转化的过程, 做功的多少决定了能转化的数量,即:功是能量转化的量度强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻相对应。
两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。
(2)动能定理:合外力对物体做的总功等于物体动能的增量.即∑W=E K2—E K1= ΔE K(3)与势能相关力做功导致与之相关的势能变化重力势能的变化重力做功弹性势能的变化弹力做功分子势能的变化分子力做功电势能的变化电场力做功重力、弹簧弹力、分子力、电场力均是势能有关的力,若做正功其对应的势能减少;做负势能增加.即W= E P1—E P2= —ΔE P(4)机械能变化原因除重力(系统内弹簧弹力)以外的的其它力对物体所做的功=物体机械能的增量即W E=E2—E1=ΔE当除重力(或弹簧弹力)以外的力对物体所做的功为零时,即机械能守恒(5)机械能守恒定律在只有重力和弹簧的弹力做功的物体系内,动能和势能可以互相转化,但机械能的总量保持不变.即E K2+E P2 = E K1+E P1,或ΔE K = —ΔE P(6)静摩擦力做功的特点①静摩擦力可以做正功,也可以做负功,还可以不做功;②在静摩擦力做功的过程中,只有机械能的互相转移,而没有机械能与其他形式的能的转化,静摩擦力只起着传递机械能的作用;③相互摩擦的系统内,一对静摩擦力对系统所做功的和总是等于零.(7)滑动摩擦力做功特点:“摩擦所产生的热”①滑动摩擦力可以做正功,也可以做负功,还可以不做功;②相互摩擦的系统内,一对滑动摩擦力对系统所做功的和总表现为负功,其大小为:W= —fS相对=Q 对系统做功的过程中,系统的机械能转化为其他形式的能,(S相对为相互摩擦的物体间的相对位移;若相对运动有往复性,则S相对为相对运动的路程)(8)一对作用力与反作用力做功的特点①作用力做正功时,反作用力可以做正功,也可以做负功,还可以不做功;作用力做负功、不做功时,反作用力亦同样如此.②一对作用力与反作用力对系统所做功的总和可以是正功,也可以是负功,还可以零.周周练《机械能、功能关系》(2012上海)15.质量相等的均质柔软细绳A 、B 平放于水平地面,绳A 较长。
第3讲 机械能守恒定律及其应用重力势能与弹性势能1.重力势能(1)重力做功的特点①重力做功与路径无关,只与始末位置的高度差有关. ②重力做功不引起物体机械能的变化. (2)重力势能①公式:E p =mgh .②矢标性:重力势能是标量,但有正、负,其意义是表示物体的重力势能比它在参考平面上大还是小,这与功的正、负的物理意义不同.③系统性:重力势能是物体和地球共有的.④相对性:重力势能的大小与参考平面的选取有关.重力势能的变化是绝对的,与参考平面的选取无关.(3)重力做功与重力势能变化的关系①定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加.②定量关系:重力对物体做的功等于物体重力势能的减少量.即W G =-(E p2-E p1)=-ΔE p .2.弹性势能(1)大小:弹簧的弹性势能的大小与弹簧的形变量及劲度系数有关.(2)弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小,弹力做负功,弹性势能增加.错误!【针对训练】1.“蹦极”是一项非常刺激的体育运动.如图5-3-1所示,运动员身系弹性绳自高空中Q 点自由下落,图中a 是弹性绳的原长位置,c 是运动员所到达的最低点,b 是运动员静止地悬吊着时的平衡位置.则( )A .由Q 到c 的整个过程中,运动员的动能及重力势能之和守恒B .由a 下降到c 的过程中,运动员的动能一直减小C .由a 下降到c 的过程中,运动员的动能先增大后减小D .由a 下降到c 的过程中,弹性绳的弹性势能一直增大机械能守恒定律 1.内容在只有重力或弹力做功的物体系统内,动能和势能可以互相转化,而总的机械能保持不变.2.机械能守恒的条件 只有重力或弹力做功. 3.守恒表达式 【针对训练】2.如图5-3-2所示,小球从高处下落到竖直放置的轻弹簧上,在将弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的是( )A .重力势能和动能之和总保持不变B .重力势能和弹性势能之和总保持不变C .动能和弹性势能之和总保持不变D .重力势能、弹性势能和动能之和总保持不变机械能守恒条件的理解 观点表达式 守恒观点 E 1=E 2,E k1+E p1=E k2+E p2=恒量 转化观点 ΔE k =-ΔE p 转移观点 ΔE A 减=ΔE B 增1.守恒条件机械能守恒的条件是只有重力、弹力做功,可以从以下三方面理解:(1)只受重力作用,例如在不考虑空气阻力的情况下的各种抛体运动,物体的机械能守恒.(2)受其他力,但其他力不做功,只有重力或弹力做功.(3)弹力做功伴随着弹性势能的变化,并且弹力做的功等于弹性势能的减少量.2.几种常见情况分析(1)水平面上物体做匀速直线运动或匀速圆周运动,其机械能保持不变.(2)光滑斜面上的物体沿斜面匀加速下滑或匀减速上滑时机械能守恒.若物体受摩擦力或其他力作用匀速下滑或匀速上滑,则机械能不守恒.(3)物体在竖直面内的光滑轨道上运动时,轨道支持力不做功,则机械能守恒.(4)细线悬挂的物体在竖直平面内摆动,悬线的拉力不做功,则机械能守恒.(5)抛体运动.如平抛、斜抛,不考虑空气阻力的过程中机械能守恒.(1)物体做匀速直线运动或物体所受合外力为零,不是机械能守恒的条件.(2)如果除重力、弹力外,还有其他力做功,但其他力做功之和为零,该种情况下只能说机械能不变,不能说机械能守恒.(2013届银川一中检测)在如图5-3-3所示的物理过程示意图中,甲图为一端固定有小球的轻杆,从右偏上30°角释放后绕光滑支点摆动;乙图为末端固定有小球的轻质直角架,释放后绕通过直角顶点的固定轴O无摩擦转动;丙图为置于光滑水平面上的A、B 两小车,B静止,A获得一向右的初速度后向右运动,某时刻连接两车的细绳绷紧,然后带动B车运动;丁图为置于光滑水平面上的带有竖直支架的小车,把用细绳悬挂的小球从图示位置释放,小球开始摆动.则关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是()甲乙丙丁A.甲图中小球机械能守恒B.乙图中小球A的机械能守恒C.丙图中两车组成的系统机械能守恒D.丁图中小球的机械能守恒【即学即用】1.(2013届铜川模拟)如图5-3-4所示,斜劈劈尖顶着竖直墙壁静止于水平面上,现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法正确的是()A.斜劈对小球的弹力不做功B.斜劈与小球组成的系统机械能守恒C.斜劈的机械能守恒D.小球重力势能减少量等于斜劈动能的增加量机械能守恒定律的表达式及应用1.三种守恒表达式的比较表达角度表达公式表达意义注意事项守恒观点E k+E p=E k′+E p′系统初状态的机械能的总和与末状态机械能的总和相等转化ΔE k=-ΔE p应用时应选好重力势能观点的零势能面,且初、末状态必须用同一零势能面计算势能表示系统(或物体)机械能守恒时,系统减少(或增加)的重力势能等于系统增加(或减少)的动能 应用时关键在于分清重力势能的增加量或减少量,可不选零势能面而直接计算初、末状态的势能差 转移 观点ΔE 增=ΔE 减若系统由A 、B 两部分组成,则A 部分物体机械能的增加量与B 部分物体机械能的减少量相等常用于解决两个或多个物体组成的系统的机械能守恒问题2.应用机械能守恒的方法步骤(1)选取研究对象⎩⎪⎨⎪⎧单个物体多个物体组成的系统系统内有弹簧(2)根据受力分析和各力做功情况分析,确定是否符合机械能守恒条件.(3)确定初末状态的机械能或运动过程中物体机械能的转化情况. (4)选择合适的表达式列出方程,进行求解. (5)对计算结果进行必要的讨论和说明.(2012·海南高考)如图5-3-5,在竖直平面内有一固定光滑轨道,其中AB 是长为R 的水平直轨道,BCD 是圆心为O 、半径为R 的34圆弧轨道,两轨道相切于B 点.在外力作用下,一小球从A 点由静止开始做匀加速直线运动,到达B 点时撤除外力.已知小球刚好能沿圆轨道经过最高点C ,重力加速度大小为g .求(1)小球在AB 段运动的加速度的大小; (2)小球从D 点运动到A 点所用的时间.【即学即用】2.(2013届渭南模拟)如图5-3-6所示,一固定在竖直平面内的光滑的半圆形轨道ABC ,其半径R =0.5 m ,轨道在C 处与水平地面相切,在C 处放一小物块,给它一水平向左的初速度v 0=5 m/s ,结果它沿CBA 运动,通过A 点,最后落在水平地面上的D 点,求C 、D 的距离x (重力加速度g 取10 m/s 2).多物体系统中的机械能守恒 应用机械能守恒定律解题时,常会遇到由多个物体组成的系统问题,这时应注意选取研究对象,分析研究过程,判断系统的机械能是否守恒,列方程时还要注意分析物体间的速度关系和位移关系.如图5-3-7所示,跨过同一高度处的定滑轮的细线连接着质量相同的物体A和B ,A 套在光滑水平杆上,定滑轮离水平杆的高度h =0.2 m ,开始时让连着A 的细线与水平杆的夹角θ1=37°,由静止释放B ,当细线与水平杆的夹角θ2=53°时,A 的速度为多大?在以后的运动过程中,A 所获得的最大速度为多大?(设B 不会碰到水平杆,sin 37°=0.6,sin 53°=0.8,取g =10 m/s 2)3.(2012·上海高考)如图5-3-8,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上半径为R 的光滑圆柱,A 的质量为B 的两倍.当B 位于地面时,A 恰与圆柱轴心等高.将A 由静止释放,B 上升的最大高度是( )A .2RB .5R /3C .4R /3D .2R /3●重力势能、弹性势能与机械能守恒的判断 1.(2011·新课标全国高考)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是( )A .运动员到达最低点前重力势能始终减小B .蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加C .蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D .蹦极过程中,重力势能的改变与重力势能零点的选取有关 ●机械能守恒与功率的综合2.(2013届徐州模拟)用长度为l 的细绳悬挂一个质量为m 的小球,将小球移至和悬点等高的位置使绳自然伸直.放手后小球在竖直平面内做圆周运动,小球在最低点的势能取作零,则小球运动过程中第一次动能和势能相等时重力的瞬时功率为( )A .mg gl B.12mg glC.12mg 3glD.13mg 3gl ●系统的机械能守恒3.(2013届吴中检测)轻杆AB 长2L ,A 端连在固定轴上,B 端固定一个质量为2m 的小球,中点C 固定一个质量为m 的小球.AB 杆可以绕A 端在竖直平面内自由转动.现将杆置于水平位置,如图5-3-9所示,然后由静止释放,不计各处摩擦与空气阻力,则下列说法正确的是( )A .AB 杆转到竖直位置时,角速度为 10g9LB .AB 杆转到竖直位置的过程中,B 端小球的机械能的增量为49mgLC .AB 杆转动过程中杆CB 对B 球做正功,对C 球做负功,杆AC 对C 球做正功D .AB 杆转动过程中,C 球机械能守恒●机械能守恒定律在平抛运动中的应用4.(2012·大纲全国高考)一探险队员在探险时遇到一山沟,山沟的一侧竖直,另一侧的坡面呈抛物线形状.此队员从山沟的竖直一侧,以速度v 0沿水平方向跳向另一侧坡面.如图5-3-10所示,以沟底的O 点为原点建立坐标系xOy .已知,山沟竖直一侧的高度为2h ,坡面的抛物线方程为y =12hx 2,探险队员的质量为m .人视为质点,忽略空气阻力,重力加速度为g .(1)求此人落到坡面时的动能;(2)此人水平跳出的速度为多大时,他落在坡面时的动能最小?动能的最小值为多少?●弹簧弹性势能与机械能守恒 5.(2011·福建高考)如图5-3-11为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB 是一长为2R 的竖直细管,上半部BC 是半径为R 的四分之一圆弧弯管,管口沿水平方向,AB 管内有一原长为R 、下端固定的轻质弹簧.投饵时,每次总将弹簧长度压缩到0.5R 后锁定,在弹簧上端放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去.设质量为m 的鱼饵到达管口C 时,对管壁的作用力恰好为零.不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能.已知重力加速度为g .求: (1)质量为m 的鱼饵到达管口C 时的速度大小v 1; (2)弹簧压缩到0.5R 时的弹性势能E p .第4讲功能关系能量守恒定律功能关系1.内容(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化.(2)做功的过程一定伴随着能量的转化,而且能量的转化必须通过做功来实现.2.功与对应能量的变化关系合外力做正功动能增加重力做正功重力势能减少弹簧弹力做正功弹性势能减少外力(除重力、弹力)做正功机械能增加滑动摩擦力做功系统内能增加电场力做正功电势能减少分子力做正功分子势能减少【针对训练】1.(2012·海南高考)下列关于功和机械能的说法,正确的是()A.在有阻力作用的情况下,物体重力势能的减少不等于重力对物体所做的功B.合力对物体所做的功等于物体动能的改变量C.物体的重力势能是物体与地球之间的相互作用能,其大小与势能零点的选取有关D.运动物体动能的减少量一定等于其重力势能的增加量能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,其总量保持不变.2.表达式:ΔE减=ΔE增.【针对训练】2.(2013届延安模拟)下列说法正确的是()A.随着科技的发展,第一类永动机是可以制成的B.太阳照射到地球上的光能转化成了其他形式的能量,但照射到宇宙空间的能量都消失了C.“既要马儿跑,又让马儿不吃草”违背了能量转化和守恒定律,因而是不可能的D.有种“全自动”手表,不用上发条,也不用任何形式的电源,却能一直走动,说明能量可以凭空产生功能关系及其理解1.常见的几种功能对应关系(1)合外力做功等于物体动能的改变,即W合=E k2-E k1=ΔE k.(动能定理)(2)重力做功等于物体重力势能的减少量,即W G=E p1-E p2=-ΔE p.(3)弹簧弹力做功等于弹性势能的减少量,即W F=E p1-E p2=-ΔE p.(4)除了重力和弹簧弹力之外的其他力所做的总功,等于物体机械能的改变,即W其他力=E2-E1=ΔE.(功能原理)2.对功能关系的理解(1)不同的力对物体做功会引起不同能量的转化或转移,应根据题中已知和所求,选择合适的功能关系来分析问题.(2)重力势能、弹性势能、电势能的改变量与对应的力做的功数值相等,但符号相反.3.摩擦力做功的特点及其与能量的关系类别比较静摩擦力 滑动摩擦力不 同 点能量的 转化 只有能量的转移,而没有能量的转化 既有能量的转移,又有能量的转化 一对摩擦 力的总功一对静摩擦力所做功的代数总和等于零一对滑动摩擦力所做功的代数和不为零,总功W =-F f ·l 相对,即摩擦时产生的热量相同点 做功的正、负 两种摩擦力对物体可以做正功、负功,还可以不做功(2012·重庆高考)如图5-4-1所示为一种摆式摩擦因数测量仪,可测量轮胎与地面间动摩擦因数,其主要部件有:底部固定有轮胎橡胶片的摆锤和连接摆锤的轻质细杆.摆锤的质量为m ,细杆可绕轴O 在竖直平面内自由转动,摆锤重心到O 点距离为L .测量时,测量仪固定于水平地面,将摆锤从与O 等高的位置处静止释放.摆锤到最低点附近时,橡胶片紧压地面擦过一小段距离s (s ≪L ),之后继续摆至与竖直方向成θ角的最高位置.若摆锤对地面的压力可视为大小为F 的恒力,重力加速度为g ,求(1)摆锤在上述过程中损失的机械能;(2)在上述过程中摩擦力对摆锤所做的功; (3)橡胶片与地面之间的动摩擦因数.【即学即用】1.(2013届陕西师大附中检测)已知货物的质量为m ,在某段时间内起重机将货物以a 的加速度加速升高h ,则在这段时间内,下列叙述正确的是(重力加速度为g )( )A .货物的动能一定增加mah -mghB .货物的机械能一定增加mahC .货物的重力势能一定增加mahD .货物的机械能一定增加mah +mgh对能量守恒定律的理解及应用 1.对能量守恒定律的理解(1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等; 这也是我们列能量守恒定律方程式的两条基本思路. 2.应用能量守恒定律解题的步骤(1)分清有几种形式的能在变化,如动能、势能(包括重力势能、弹性势能、电势能)、内能等.(2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE 减和增加的能量ΔE 增的表达式.(3)列出能量守恒关系式:ΔE 减=ΔE 增. 应用能量守恒定律解决有关问题,关键是准确分析有多少种形式的能量在变化,求出减少的总能量ΔE 减和增加的总能量ΔE 增,然后再依据能量守恒定律列式求解.(2013届长春一中检测)如图5-4-2所示,一物体的质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3 m/s 下滑,A 点距弹簧上端B 的距离AB =4 m .当物体到达B 后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,AD =3 m .挡板及弹簧的质量不计,g 取10 m/s 2,sin 37°=0.6,求:(1)物体与斜面间的动摩擦因数μ. (2)弹簧的最大弹性势能E pm .【即学即用】2.如图5-4-3所示,质量为m 的小车在水平恒力F 推动下,从山坡(粗糙)底部A 处由静止起运动至高为h 的坡顶B ,获得速度为v, AB 之间的水平距离为s ,重力加速度为g .下列说法正确的是( )A .小车克服重力所做的功是mghB .合外力对小车做的功是12m v 2C .推力对小车做的功是12m v 2+mghD .阻力对小车做的功是12m v 2+mgh -Fs传送带问题 模型特点:相对运动.如子弹打木块、物体上下叠在一起运动、物体在传送带上运动的问题是此类问题的典型题型.解题策略:(1)要正确分析物体的运动过程,判断物体是一直匀加速运动还是先匀加速再匀速运动;(2)计算力所做的功时,位移是对地位移;计算因滑动摩擦产生的内能时,常用功能关系Q =F f s ,需注意的是s 为物体之间的相对路程;只有存在滑动摩擦力时才有内能产生.(2013届山师大附中检测)如图5-4-4所示,传送带与水平面之间的夹角θ=30°,其上A 、B 两点间的距离L =5 m ,传送带在电动机的带动下以v =1 m/s 的速度匀速运动.现将一质量m =10 kg 的小物体(可视为质点)轻放在传送带的A 点,已知小物体与传送带之间的动摩擦因数μ=32,在传送带将小物体从A 点传送到B 点的过程中,求:(取g =10 m/s 2)(1)传送带对小物体做的功. (2)电动机做的功.【即学即用】3.(2013届陕西六校联考)如图5-4-5所示,在光滑的水平面上有一个质量为M 的木板B 处于静止状态,现有一个质量为m 的木块A 在B 的左端以初速度v 0开始向右滑动,已知M >m ,用①和②分别表示木块A 和木板B 的图象,在木块A 从B 的左端滑到右端的过程中,下面关于速度v 随时间t 、动能E k 随位移s 的变化图象,其中可能正确的是( )●考查功能关系 1.(2012·安徽高考)如图5-4-6所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( )A .重力做功2mgRB .机械能减少mgRC .合外力做功mgRD .克服摩擦力做功12mgR●考查重力势能、功率、功能关系 2.(2012·福建高考)如图5-4-7所示,表面光滑的固定斜面顶端安装一定滑轮,小物块A 、B 用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A 、B 处于同一高度并恰好处于静止状态.剪断轻绳后A 下落、B 沿斜面下滑,则从剪断轻绳到物块着地,两物块( )A .速率的变化量不同B .机械能的变化量不同C .重力势能的变化量相同D .重力做功的平均功率相同 ●涉及摩擦的功能关系的应用 3.(2010·山东高考)如图5-4-8所示,倾角θ=30°的粗糙斜面固定在地面上,长为l 、质量为m 、粗细均匀、质量分布均匀的软绳置于斜面上,其上端与斜面顶端齐平.用细线将物块与软绳连接,物块由静止释放后向下运动,直到软绳刚好全部离开斜面(此时物块未到达地面),在此过程中( )A .物块的机械能逐渐增加B .软绳重力势能共减少了14mglC .物块重力势能的减少等于软绳克服摩擦力所做的功D .软绳重力势能的减少小于其动能的增加与克服摩擦力所做功之和 ●功能关系的综合应用4.(2013届高新一中检测)如图5-4-9所示,甲、乙两车用轻弹簧相连静止在光滑的水平面上,现在同时对甲、乙两车施加等大反向的水平恒力F 1、F 2,使甲、乙同时由静止开始运动,在整个过程中,对甲、乙两车及弹簧组成的系统(假定整个过程中弹簧均在弹性限度内),说法正确的是( )A .系统受到外力作用,动能不断增大B .弹簧伸长到最长时,系统的机械能最大C .恒力对系统一直做正功,系统的机械能不断增大D .两车的速度减小到零时,弹簧的弹力大小大于外力F 1、F 2的大小 ●能量守恒定律在生活实际中的应用 5.(2011·浙江高考)节能混合动力车是一种可以利用汽油及所储存电能作为动力来源的汽车.有一质量m =1 000 kg 的混合动力轿车,在平直公路上以v 1=90 km/h 匀速行驶,发动机的输出功率为P =50 kW .当驾驶员看到前方有80 km/h 的限速标志时,保持发动机功率不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动L =72 m 后,速度变为v 2=72 km/h.此过程中发动机功率的15用于轿车的牵引,45用于供给发电机工作,发动机输送给发电机的能量最后有50%转化为电池的电能.假设轿车在上述运动过程中所受阻力保持不变.求:(1)轿车以90 km/h 在平直公路上匀速行驶时,所受阻力F 阻的大小; (2)轿车从90 km/h 减速到72 km/h 过程中,获得的电能E 电;(3)轿车仅用其在上述减速过程中获得的电能E 电维持72 km/h 匀速运动的距离L ′.。
模块三力学中的动量能量问题专题06 机械能守恒定律 功能关系1.【答案】 BD【解析】 小球在空中运动的速率v=√v 02+g 2t 2,知v-t 图像不是一条倾斜的直线,A 错误;重力的瞬时功率P=mgv y =mg 2t,知p-t 图像为过原点的直线,B 正确;根据动能定理mgh=E k -E k0,知E k =mgh+E k0,当h=H 时,E k =E k0,C 错误;由于不计空气阻力,小球机械能守恒,机械能E 随小球距地面高度h 的变化无关,E 不变,D 正确. 2. 【答案】 BD【解析】 根据能量守恒定律知,除重力以外的力做功使得物体的机械能变化,0~t 1物体的机械能不变,说明没有其他力做功,但物体的运动可以沿斜面向下或向上,A 错误;t 1~t 2时间内机械能随时间均匀减小,ΔE k =E 0-E=kt,由功能关系ΔE=Fx,则物体的位移关于时间变化x=vt,得物体做匀速直线运动,则需要其他力F=mgsinα,沿斜面向上,又因为机械能减小,所以t 1~t 2物体沿斜面向下做匀速直线运动,此时滑块动能不变,B 正确,C 错误;t 2~t 3时间内,机械能不变,说明撤去外力,物体沿斜面方向由牛顿第二定律得mgsinα=ma,得滑块的加速度为a=gsinα,D 正确. 3.【答案】 BC【解析】 由图可知在0~x 1过程中物体机械能在减小,知拉力在做负功,如果拉力方向向下,则知物体在沿斜面向上运动,这种情况不可能,所以拉力方向向上,则知物体在沿斜面向下运动,根据功能关系ΔE=FΔx,得F=ΔEΔx ,0~x 1过程中图线的斜率逐渐减小到零,知物体的拉力逐渐减小,根据牛顿第二定律mgsinθ-F=ma,可知,加速度逐渐增大,故A 错误,B 正确;在x 1~x 2过程中,拉力F=0,机械能守恒,向下运动,重力势能减小,动能增大,故C 正确;在0~x 1过程中,加速度的方向与速度方向相同,都沿斜面向下,所以物体做加速运动,x 1~x 2过程中F=0,物体做匀加速运动;x 2~x 3过程,机械能增大,拉力做正功,沿斜面向下,故物体继续向下做加速运动,即物体一直沿斜面向下运动.故D 错误. 4.【答案】 C【解析】 当平抛的初速度v≤v 0时,小球均落在斜面上,具有相同的位移偏向角均等于斜面倾角θ,可得tanθ=y x =12gt2vt=gt 2v ,可得平抛时间t=2vtanθg,则小球所受的重力的瞬时功率为P=mg·v y =mg·gt=2mgtanθ·v,可知,P 关于v 构成正比例函数关系;当平抛的初速度v>v 0时,小球均落在水平面上,平抛的竖直高度相同为h,有h=12gt 2,则平抛时间为t=√2hg ,则小球所受的重力的瞬时功率为P=mg·v y =mg·gt=mg √2gh ,可知功率P 为恒定值,C 正确. 5.【答案】 ACD【解析】 设乙物体获得最大的动能为E k ,对整体,由动能定理W-W 1=2E k ,解得乙物体获得最大的动能为W -W 12,故A 正确;对整体,由牛顿第二定律F-2μMg=2Ma,对乙,有Nsinθ-μF N =Ma,Mg+Ncosθ=F N ,解得甲对乙的作用力的大小N=F2(sinθ-μcosθ),故B 错误;撤去水平推力后,两个物体将在摩擦力的作用下做加速度为a=μg 的匀减速直线运动,速度始终相同,故二者之间没有相互作用力,故C正确;撤去水平推力后,对物体甲,由动能定理-μMgs=0-E k ,解得s=W -W12μMg ,故D 正确.6.【答案】 ABD【解析】 由题知,不计一切阻力,则物块和弹簧系统机械能守恒,A 正确;物块从A 点运动到B 点是先加速后减速,到B 点速度刚好为0,弹簧处于伸长状态,此时对物块受力分析可知,弹簧沿斜面向上的分力大于重力沿斜面向下的分力,故物块在B 点时加速度方向由B 指向A,B 正确;物块从A 到C,根据动能定理可知,合力做的功等于动能的增加量,物块从C 到B,根据动能定理可知,物块克服合力做的功等于动能的减少量,而物块在A 点和B 点的速度都为零,故两个过程动能的变化量相等,所以A 到C 过程物块所受合力做的功等于C 到B 过程物块克服合力做的功,C 错误;弹簧的形变量越小,弹簧的弹性势能越小,根据几何关系,可知物块从A 到C 过程的弹簧形变量小于C 到B 过程的弹簧形变量,故物块下滑过程中,弹簧的弹性势能在A 到C 过程的增量小于C 到B 过程的增量,D 正确. 7.【答案】 A【解析】 开始时滑块受向右的拉力F 和向右的摩擦力f 而做加速运动,则动能E k =(F+f)x.若物块在到达最右端之前还未达到与传送带共速,此时图像为C;若F>f,则当物块与传送带共速后还会加速,此时动能增加为ΔEk=(F-f)x,此时图像为D;若F≤f,则当物块与传送带共速后会随传送带一起匀速运动,动能不变,此时图像为B;物块与传送带共速后只能匀速或者加速,不可能做减速,则图像A不可能.选项A正确.8.【答案】AC【解析】对乙施加水平向右的瞬时速度v,对木板甲来说,因为乙对甲的摩擦力μmg小于木板与地面之间的最大静摩擦力2μmg,可知木板甲是不动的,则对乙由动能定理Ek乙=Ek0乙-μmgx;当乙在甲上停止后,此时给甲一初速度v,则乙在摩擦力作用下先做匀加速运动,动能Ek乙=μmgx;而甲做匀减速运动,动能Ek甲=Ek0甲-(μmg+2μmg)x;当甲乙共速后一起做匀减速直至停止,此过程中乙的动能Ek乙=Ek1乙-μmgx,逐渐减小;此过程中甲受地面的摩擦力仍为向后的2μmg,但是乙对甲的静摩擦力变为向前的μmg,则此过程中甲的动能Ek甲=Ek1甲-(2μmg-μmg)x,图像的斜率变小,A、C正确.9.【答案】BD【解析】小球在竖直向上的拉力和竖直向下的重力作用下运动,拉力做功改变小球的机械能,则F拉=ΔEΔx,可知题中机械能—路程图像斜率的大小为拉力的大小;O~x1过程中小球所受拉力竖直向上且减小,拉力做正功,小球的机械能增加,开始时小球从静止开始加速,拉力大于重力,运动过程中拉力逐渐减小,x1之后,拉力竖直向上做负功,小球向下运动,所以x1处速度为零,动能为零,说明O~x1过程中小球先加速后减速,所以在减速阶段拉力小于重力,A错误,B正确;O~x1过程中小球向上运动,重力做负功,重力势能增大,x1~x2过程中小球向下运动,重力做正功,重力势能减小,C错误;x1~x2过程中重力大于拉力,小球向下运动,图像斜率不变,拉力不变,所以小球加速度恒定,向下做匀加速直线运动,D正确.10.【答案】(1)3 N 2 N (2)5 m/s 1 m/s(3)3.5 J【解析】(1)A在涂层Ⅰ上滑动时f A =μ1mg=(0.3×1×10)N=3 N,此时B与地面的弹力FN=2mg,因此f B =μB2mg=(0.1×2×10)N=2 N.(2)A在涂层Ⅰ上滑动时,根据牛顿第二定律可得fA =maA1,代入数据得a A1=3 m/s 2,由f A -f B =ma B1,代入数据得a B1=1 m/s 2,A 离开涂层Ⅰ时与B 的相对位移为L 1,结合匀变速运动公式可得v 0t 1-12a A1t 12-12a B1t 12=L 1,代入数据解得t 1=1 s,则A 的速度v A =v 0-a A1t 1=(8-3)m/s=5 m/s B 的速度v B =a B1t 1=1 m/s.(3)A 在涂层Ⅰ上滑动的t 1时间内,B 对地的位移x B1=12a B1t 12=0.5 m A 在涂层Ⅱ上滑动时,A 和B 的加速度大小分别为a A2=f 'A m =μ2mg m=2 m/s 2,a B2=f 'A -f B m=0A 离开涂层Ⅱ时与B 的相对位移为L 2,结合匀变速运动公式可得 v A t 2-12a A2t 22-v B t 2=L 2 代入数据解得t 2=1 sA 在涂层Ⅱ上滑动的t 2时间内B 对地的位移:x B2=v B t 2=1 m A 离开涂层Ⅱ后,B 与地面的摩擦力变为f'B =μB mg=1 N则B 匀减速的加速度大小为a B3=f 'B m =1 m/s 2B 匀减速至停止的距离为x B3=0.5 mB 运动过程中克服地面的摩擦力所做的功为W=f B x B1+f B x B2+f'B x B3 代入数据得W=3.5 J. 11.【答案】 (1)2mg,L 0+mg k+h (2) 2g,方向竖直向下(3)2mg (h +mg k)【解析】 (1)对系统应用物体平衡条件得F=2mg 对小球B 由物体平衡条件得弹簧弹力F N =mg 由胡克定律得F=kx 弹簧的伸长量x=mg k则A 距离地面的高度h A =h+L 0+mg k.(2)撤去外力F的瞬间,A所受的合力大小为FA合=2mgA的加速度大小aA=2gA的加速度方向为竖直向下.(3)由题意可知,刚开始时弹簧的伸长量和最终静止时弹簧的压缩量是相等的,即初终态时弹簧的弹性势能相等.根据能量转化和守恒得系统损失的机械能|ΔE|=|ΔEpA +ΔEpB|代入数据得|ΔE|=mgh+mg(h+2mgk )=2mg(h+mgk).。