微波电路与系统(09)网络基础
- 格式:ppt
- 大小:2.38 MB
- 文档页数:40
微波网络基础低频电路中,线路的尺寸与工作波长相比很小,从麦克斯韦方程组可推出在两根或多根导线周围存在的电磁场所满足的准静态解,进而引入电路理论中的基尔霍夫电压和电流定律,以及阻抗的概念等等。
低频电路技术一般来说不能直接应用于微波电路。
为了用电路这种简单而直观的概念来分析微波问题,需要把电路理论中电路和网络的概念加以推广,构建出微波电路和系统的等效电路模型和分析方法,即微波网络方法。
微波网络分析的基本过程:首先用场分析和麦克斯韦方程组处理一些基础性的标准问题,包括各种规则导行系统的等效电路,以及导行系统接头过渡的不连续性的等效电路,从而建立起等效微波网络。
定义描述微波网络工作特性的各种微波网络参数,并用于微波网络的分析。
对于TEM 导行系统(如同轴线、带状线),有明确的电压和电流的概念。
正导体相对于负导体的电压为:⎰-+⋅=l d E U,积分路径从正导体到负导体,由于两根导体之间的横向场具有静电场的性质,上式定义的电压是唯一的,且与积分路径的形状无关。
由安培定律可得在正导体上的总电流为:⎰+⋅=C l d H I,其中+C 积分回路为包围正导体的任意闭合路径。
对于非TEM 导行系统(如波导),可定义等效电压、等效电流和等效阻抗的概念,通常考虑如下思路:● 电压和电流仅对特定的波导模式定义,且定义电压与横向电场成正比,电流与横向磁场成正比。
● 为了按类似于电路理论中的电压和电流的方式使用,等效电压和等效电流的乘积应当等于该模式的功率流。
● 单一行波的电压和电流之比应等于该传输线的特性阻抗。
例题:求矩形波导TE 10模的等效电压和电流。
矩形波导TE 10模的横向场分量和功率流,以及TE 10模的等效传输线模型分别列在下表中由入射功率相等可得:*+++--++--++*++++==⇒⎪⎪⎭⎪⎪⎬⎫======21210221102214214C C A Z A ab P A I A I C AU A U C I U Z Aab P TE TE ⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎭⎪⎪⎬⎫===*21221021100212110abZ C ab C Z Z C C C C Z ab TE TE TE 所以等效电压和电流为:zj z j e A ab e A ab U ββ--++=22 zj TE z j TE e A ab Z e A ab Z I ββ--+-=21211010 电压和电流写成入射波和反射波之和:)()()(z U z U z U r i +=)]()([1)()()(0z U z U Z z I z I z I r i r i -=+= 归一化电压:0)()(~Z z U z U i i =(归一化入射波电压),0)()(~Z z U z U r r =(归一化反射波电压) 所以:)](~)(~[)(0z U z U Z z U r i +=, )](~)(~[1)(0z U z U Z z I r i -=)]()([21)()(~000z I Z Z z U Z z U z U i i +==,)]()([21)()(~000z I Z Z z U Z z U z U r r -== 反射系数:)()()()]()([21)]()([21)()()()()(~)(~00000z Z z Z Z z Z z I Z Z z U z I Z Z z U z U z U Z z U Z z U z U z U i i i i r i r i r Γ=+-=+-=== 传输的平均功率:[]⎪⎭⎫ ⎝⎛-==*22)(~)(~21)()(Re 21z U z U z I z U P r i L研究微波网络需先确定网络的参考面,随参考面选取不同,网络参数也随之改变。
第五章微波网络基础§5-1 引言前面讲述的微波传输线理论,都是指均匀传输线,其横截面形状和尺寸沿轴线方向保持不变。
但是,实际上的微波系统并不是仅由规则的均匀传输线组成,实际情况要复杂得多。
图5-1-1和图5-1-2分别是一个雷达高频系统和微波测试系统的构成图。
图5-1-1 雷达高频系统图5-1-2 微波测试系统由此二图可见,一般的微波系统都可概括为图5-1-3所示的结构形式,即整个系统由下面几部分组成:(1)能激励起电磁波的区段,称为信号源;(2)能吸收电磁波的区段,称为负载;(3)不均匀区段,称为微波元、器件;(4)连接上述三种区段的部分,称为均匀传输线。
图5-1-3 微波系统方框图对一微波系统主要的研究信号和能量两大问题。
信号问题主要是研究幅频和相频特性;能量问题主要是研究能量如何有效地传输问题。
关于均交系统中的信号和能量传输问题已系统地论述过,那么有“不均匀区”介入系统之后,由于边界条件变得异常复杂,因此不仅出现主模式的反射,还将产生许多高次模,所谓“不均匀区”是指其边界条件或其中状态不同于传输系统的均匀部分布出现某种变化的区域。
对于这灯问题,原则上仍可采用场解的方法。
即把不均匀区和与之相连的均匀传输线作为一个整体,按给定的边界条件求解麦克斯韦方程。
它不仅可以给出均匀区(远离不均匀性)波的相对幅度和相位关系,连不均匀区与其附近的复杂场分布也可给出,这当然是一种严格的理论分析方法。
但遗憾的是,即使对于最简单的波导不均匀区,上述的严格场解也是非常复杂的;即使求出解来,其结果也是很繁琐的。
因此,这种方法不适宜工程设计需要。
工程上要求一种简便易行的分析方法,这就是微波网络方法。
微波网络法就是等效电路法。
这是一个近似然而却是有效的方法。
其基本思想,是把本来属于电磁场的问题,在一定条件下,化为一个与之等效的电路问题。
就是说,当用微波网络法研究传输系统时,可以把每个不均匀区(微波元件)看成一个网络,其对外特性可用一组网络参量表示;把均匀传输线也看成一个网络(波导等效为长线),其网络参量由传输参量和长度决定。