传热学
- 格式:doc
- 大小:80.50 KB
- 文档页数:12
第一章§1-1 “三个W”§1-2 热量传递的三种基本方式§1-3 传热过程和传热系数要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。
作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。
本章重点:1.传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法2.热量传递的三种基本方式(1).导热:依靠微观粒子的热运动而产生的热量传递。
传热学重点研究的是在宏观温差作用下所发生的热量传递。
傅立叶导热公式:(2).对流换热:当流体流过物体表面时所发生的热量传递过程。
牛顿冷却公式:(3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。
由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。
黑体热辐射公式:实际物体热辐射:3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。
最简单的传热过程由三个环节串联组成。
4.传热学研究的基础傅立叶定律能量守恒定律+ 牛顿冷却公式+ 质量动量守恒定律四次方定律本章难点1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。
2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。
思考题:1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。
为什么?2.试分析室内暖气片的散热过程。
3.冬天住在新建的居民楼比住旧楼房感觉更冷。
试用传热学观点解释原因。
4.从教材表1-1给出的几种h数值,你可以得到什么结论?5.夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。
4. 非稳态导热4.1 知识结构1. 非稳态导热的特点;2. (恒温介质、第三类边界条件)一维分析解求解方法(分离变量,特解叠加)及解的形式(无穷级数求和);3. 解的准则方程形式,各准则(无量纲过余温度、无量纲尺度、傅里叶准则、毕渥准则)的定义式及其物理涵义; 4. 查诺谟图求解方法;5. 多维问题的解(几个一维问题解(无量纲过余温度)的乘积);6. 集总参数法应用的条件和解的形式;7. 半无限大物体的非稳态导热。
4.2 重点内容剖析4.2.1 概述在设备启动、停车、或间歇运行等过程中,温度场随时间发生变化,热流也随时间发生变化,这样的过程称为非稳态导热。
一.过程特点分类1. 周期性非稳态导热(比较复杂,本书不做研究) 如地球表面受日照的情况 (周期为24小时)对于内燃机气缸壁受燃气冲刷的情况,周期为几分之一秒,温度波动只在很浅的表层,一般作为稳态处理。
2. 非周期性非稳态导热:(趋于稳态的过程,非稳态 稳态) 例子:如图4-1,一个无限大平板,初始温度均匀,某一时刻左壁面突然受到一恒温热源的加热,分析平壁内非稳态温度场的变化过程: (1) 存在两个阶段初始阶段:温度变化到达右壁面之前(如曲线A-C-D ),右侧不参与换热,此时物体内分为两个区间,非稳态导热规律控制区A-C 和初始温度区C-D 。
正规状况阶段:温度变化到达右壁面之后,右侧参与换热,初始温度分布的tx1t 0t ABCDEF图4-1 非稳态导热过程的温度变化影响逐渐消失。
(2) 热流方向上热流量处处不等因为物体各处温度随时间变化而引起内能的变化,在热量传递路径中,一部分热量要用于(或来源于)这些内能,所以热流方向上的热流量处处不等。
二. 研究任务1. 确定物体内部某点达到预定温度所需时间以及该期间所需供给或取走的热量,以便合理拟定加热和冷却的工艺条件,正确选择传热工质;2. 计算某一时刻物体内的温度场及温度场随时间和空间的变化率,以便校核部件所承受的热应力,并根据它制定热工设备的快速启动与安全操作规程。
传热学的名词解释传热学是研究热量从一个物体传递到另一个物体的学科。
它是热力学和流体力学的重要分支,关注的是热量在固体、液体和气体等物质之间的传递过程。
在工程领域中,传热学起着至关重要的作用,它涉及到许多重要的名词和概念,本文将对一些传热学的重要名词进行解释和阐述。
热量传递的方式有三种基本形式:传导、对流和辐射。
1. 传导:传导是热量通过物质内部的分子热传导而进行的传热过程。
当物体的一部分被加热时,其分子会通过碰撞将热量传递给相邻的分子,从而使整个物体升温。
传导过程中,物质的导热性质起着重要作用,表示物质导热能力的物理量称为热导率。
热导率越大,热量传导速度就越快。
常见物质如金属具有较高的热导率,而绝缘材料则较低。
2. 对流:对流是热量通过流体内部的传热过程。
当一个物体加热时,沿着其表面流动的流体会受热膨胀,形成对流循环。
对流过程中,流体的热量由热源处传递到周围环境。
对流传热现象在自然界常见,如自然对流中的空气循环、大气环流等。
对流传热与流体的性质有关,如流体的黏性、密度等。
3. 辐射:辐射是热量通过热辐射而进行的传热过程。
热辐射是处于高温的物体向低温物体传递热量的一种无需媒介的方式。
辐射传热与物体的温度及其表面的发射率有关。
发射率是指物体辐射出的热量与理论上能辐射出的最大热量之比。
不同物质的发射率不同,黑体的发射率为1。
当两个物体表面温度存在差异时,高温物体会以辐射的形式向低温物体传递热量。
在实际应用中,我们经常会遇到一些与传热学相关的重要概念。
1. 热扩散:热扩散是指热量通过物体内部的传导方式进行传递的现象。
当一个物体的一部分受热时,其分子振动加剧,相邻分子通过碰撞传递热量,从而使得整个物体均匀升温。
热扩散现象在许多工程和科学领域中具有重要的影响,例如材料加工、电子器件散热等。
2. 导热方程:导热方程是描述物体内部温度分布随时间变化的偏微分方程。
它基于热扩散的传导机制,可以用来模拟和计算物体内部的温度变化。
概念汇总1.绪论1.传热学:研究热量传递规律的科学。
2.热量传递的基本方式:导热、对流、辐射。
3.热传导(导热):物体的各部分之间不发生相对位移,依靠微观粒子的热运动产生的热量传递现象。
4.纯粹的导热只能发生在不透明的固体之中。
5.热流密度:通过单位面积的热流量(W╱m2)。
6.热对流:由于流体各部分之间发生相对位移而产生的热量传递现象。
7.热对流只发生在流体之中,并伴随有导热现象。
8.自然对流:由于流体密度差引起的相对运动。
9.强制对流:由于机械作用或其他压差作用引起的相对运动。
10.对流换热:流体流过固体壁面时,由于对流和导热的联合作用,使流体与固体壁面间产生热量传递的过程。
11.辐射:物体通过电磁波传播能量的方式。
12.热辐射:由于热的原因,物体的内能转变成电磁波的能量而进行的辐射过程。
13.辐射换热:不直接接触的物体之间,由于各自辐射与吸收的综合结果所产生的热量传递现象。
14.传热过程:热流体通过固体壁面将热量传给另一侧流体的过程。
15.传热系数:表征传热过程强烈程度的尺寸,数值上等于冷热流体温差1K时所产生的热流密度[W╱(m2•K)]16.单位面积上的{传热热阻:R k=1k。
导热热阻:Rλ=δλ。
对流换热热阻:R h=1h。
17.热流量:单位时间内所传递的热量。
18.对比串联热阻大小就可以找到强化传热的主要环节。
19.单位:物理量的度量标尺。
20.基本单位:基本物理量的单位。
21.导出单位:由物理含义导出,以基本单位组成的单位。
22.单位制:基本单位与导出单位的总和。
23.导热系数,表面传热系数和传热系数之间的区别:导热系数是表征材料导热性能优劣的参数,即是一种物性参数。
不同材料的导热系数值不同,即使是同一种材料,导热系数值还与温度等因素有关。
表面传热系数是表征对流换热强弱的参数,它不仅取决于流体的物性以及换热表面的形状、大小与布置,而且还与流速有密切的关系,是取决于多种因素的复杂函数。
传热学知识点总结本文将围绕传热学的基本概念、传热方式、传热方程、传热实验和应用等方面进行详细的介绍和总结,以便读者更好地了解传热学的相关知识。
一、传热学的基本概念1. 热量传递热量传递是指物体内部或物体之间由于温度差异而产生的热量的传递过程。
热量的传递方式主要有传导、对流和辐射三种。
2. 传热方程传热方程描述了物体内部或物体之间热量传递的数学关系,是传热学的基础理论。
传热方程一般包括传热率、温度差和传热面积等参数,可以用来计算热量传递的速率和大小。
3. 传热系数传热系数是描述物体材料对热量传递率影响的重要参数,通常用符号h表示。
在物质传热过程中,传热系数的大小直接影响热量的传递速率。
4. 传热表面积传热表面积是指在热量传递过程中热量流经的表面积,是计算热传递速率的重要参数。
传热表面积的大小与物体的形状和大小有关,也与传热方式和传热系数有关。
5. 热传导热传导是一种物质内部热量传递的方式,指的是热量通过物质内部原子、分子之间相互作用的传递过程。
热传导是传热学的基本概念之一。
6. 热对流热对流是一种物体表面热量传递的方式,指的是热量通过流体传递到物体表面,然后再由物体表面传递到其它介质的传热过程。
7. 热辐射热辐射是一种通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
热辐射是传热学的另一个基本概念之一。
二、传热方式1. 传导传热传导传热是指热量通过物质内部的原子、分子的直接作用而传递的方式。
在传导传热过程中,热量的传递是从高温区向低温区进行的,其传热速率与温度差和物质的传热系数有关。
2. 对流传热对流传热是指流体传热传递的方式,包括自然对流和强制对流两种。
在对流传热过程中,流体的流动是热量传递的主要形式,其传热速率与流体的流速、温度差和传热面积有关。
3. 辐射传热辐射传热是通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。
在辐射传热过程中,热量的传递不依赖于介质,而是通过电磁波的辐射进行的。
传热学第一章绪论1.传热学的定义: 研究由于温度差而引起的热能传递规律的科学.2.热流量(heat transfer rate):单位时间内通过某一给定面积A的热量,记为Φ,单位为 W3.热流密度(或称面积热流量):通过单位面积的热流量,记为q,单位是 W/m24.稳态过程与非稳态过程稳态过程:热量传递系统中各点温度不随时间而改变的过程非稳态过程:各点温度随时间而改变的过程5.热传导的定义:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子热运动而产生的热量传递过程1)导热是物质的固有属性2)固、液、气等均具有一定的导热能力3)纯导热只发生在密实的固体和静止的流体中导热现象的判断?1)有温差;2)密实固体或静止流体6.模型一平壁稳态导热.影响因素:平壁面积,厚度,温差平壁稳态导热的计算公式:7.λ —热导率,又称导热系数.单位:W/(m·K) (热物理参数)8.热对流:流体中温度不同的各部分发生相互混合的宏观运动而引起的热量传递现象特点: 1)发生在流体中2)流体内部必须存在温差3)流体必须有宏观运动4)伴随着热传导9.对流传热:流动的流体与温度不同的固体壁面间的热量传递过程.(热对流的一种方式,传热学研究方式).分类:按流体流动的起因:1)自然对流、自由对流:流体冷、热各部分密度不同而引起的2)受迫对流、强迫对流:流体的流动是在外力(在泵或风机)作用下产生的技巧:给出流体速度的为强迫对流按流体有无相变:1)无相变的对流传热2)有相变的对流传热:沸腾换热、凝结换热10.如何判断对流传热1)发生在壁面和流体之间:参与物质类型2)壁面和流体存在温差:热量传递的前提3)流体要运动:速度体现一定不要遗漏自然对流11.对流传热的计算—牛顿冷却公式(对流传热的热量传递速率方程)当流体被加热时:当流体被冷却时:h-表面传热系数(过程量),W/(m2·K)13.热辐射:由于自身温度(热)的原因而发出辐射能的现象(heat radiation)1)辐射传热:物体之间因为相互辐射、相互吸收而引起的热量传递过程2)理想物体:绝对黑体,简称黑体(能够全部吸收投射到其表面上辐射能的物体)14.黑体辐射的斯忒藩-玻耳兹曼(Stefan-Boltamann)定律实际物体的辐射能力:注意:1)σ—斯忒藩-玻耳兹曼常数,5.67×10-8W/(m2·K4) 2)ε—发射率(emissivity),习惯上也称为黑度,物性参数15.理想模型2—两平行黑体平板间的辐射传热(相距很近,表面间充满了透明介质)16.理想模型3—非凹表面1包容在面积很大的空腔2中注意:1)辐射传热必须采用热力学温度2)注意公式的使用条件3)“动态平衡”的含义(p8)17.导热、对流与辐射的辨析:1)导热、对流只在有物质存在的条件下才能实现;热辐射不需中间介质(非接触性传热)2)辐射不仅有能量的转移,而且伴随能量形式的转换;3)辐射换热是一种双向热流同时存在的换热过程;4)辐射能力与其温度有关,导热、对流与温差有关;导热与对流的辨析:气、液、固均具有导热能力,纯导热只发生在静止的流体中;对流只发生在流动的流体中;18.传热过程:热量由固体一侧的高温流体通过固体壁面传给另一侧低温流体的热量传递过程 。
(完整PPT)传热学contents •传热学基本概念与原理•导热现象与规律•对流换热原理及应用•辐射换热基础与特性•传热过程数值计算方法•传热学实验技术与设备•传热学在工程领域应用案例目录01传热学基本概念与原理03热辐射通过电磁波传递热量的方式,不需要介质,可在真空中传播。
01热传导物体内部或两个直接接触物体之间的热量传递,由温度梯度驱动。
02热对流流体中由于温度差异引起的热量传递,包括自然对流和强制对流。
热量传递方式传热过程及机理稳态传热系统内的温度分布不随时间变化,热量传递速率保持恒定。
非稳态传热系统内的温度分布随时间变化,热量传递速率也随时间变化。
传热机理包括导热、对流和辐射三种基本传热方式的单独作用或相互耦合作用。
生物医学工程研究生物体内的热量传递和温度调节机制,为医学诊断和治疗提供理论支持。
解决高速飞行时的高温问题,保证航空航天器的安全运行。
机械工程用于优化机械设备的散热设计,提高设备运行效率和可靠性。
能源工程用于提高能源利用效率和开发新能源技术,如太阳能、地热能等。
建筑工程在建筑设计中考虑保温、隔热和通风等因素,提高建筑能效。
传热学应用领域02导热现象与规律导热基本概念及定律导热定义物体内部或物体之间由于温度差异引起的热量传递现象。
热流密度单位时间内通过单位面积的热流量,表示热量传递的强度和方向。
热传导定律描述导热过程中热流密度与温度梯度之间关系的定律,即傅里叶定律。
导热系数影响因素材料性质不同材料的导热系数差异较大,如金属通常具有较高的导热系数,而绝缘材料则具有较低的导热系数。
温度温度对导热系数的影响因材料而异,一般情况下,随着温度的升高,导热系数会增加。
压力对于某些材料,如气体,压力的变化会对导热系数产生显著影响。
稳态与非稳态导热过程稳态导热物体内部各点温度不随时间变化而变化的导热过程。
在稳态导热过程中,热流密度和温度分布保持恒定。
非稳态导热物体内部各点温度随时间变化而变化的导热过程。
传热学第一章、绪论1.导热:物体的各个部分之间不发生相对位移时,依靠分子,原子及自由电子等微观粒子的热运动而产生的热能传递称为热传导,简称导热。
2.热流量:单位时间内通过某一给定面积的热量称为热流量。
3.热流密度:通过单位面积的热流量称为热流密度。
4.热对流:由于流体的宏观运动而引起的流体各部分之间发生相对位移、冷热流体相互掺混所导致的热量传递过程。
5.对流传热:流体流过一个物体表面时流体与物体表面间的热量传递过程。
6.热辐射:因热的原因而发出的辐射的想象称为热辐射。
7.传热系数:传热系数树枝上等于冷热流体见温差℃1=∆t ,传热面积21m A =时的热流量值,是表征传热过程强度的标尺。
8.传热过程:我们将热量由壁面一侧流体通过壁面传递到另一侧流体的过程。
第二章、导热基本定律及稳态导热1.温度场:各个时刻物体中各点温度所组成的集合,又称为温度分布。
2.等温面:温度场中同一瞬间温度相同的各点连成的面。
3.傅里叶定律的文字表达:在导热过程中,单位时间内通过给定截面积的导热量,正比于垂直该界面方向上的温度变化率和截面面积,而热量的传递方向则与温度升高的方向相反。
4.热流线:热流线是一组与等温面处处垂直的的曲线,通过平面上人一点的热流线与改点热流密度矢量相切。
5.内热源:内热源值表示在单位时间内单位体积中产生或消耗的热量。
6.第一类边界条件:规定了边界点上的温度值。
第二类边界条件:规定了边界上的热流密度值。
.第三类边界条件:规定了边界上物体与周围流体间的表面传热系数h 及周围流体的温度ft 7.热扩散率a :ca ρλ=,a 越大,表示物体内部温度扯平的能力越大;a 越大,表示材料中温度变化传播的越迅速。
8.肋片:肋片是依附于基础表面上的扩展表面。
第三章、非稳态导热1.非稳态导热:物体的温度随时间的变化而变化的导热过程称为非稳态导热。
2.非正规状况阶段:温度分布主要受出事温度分布的控制,称为非稳态导热。
第1章绪论热量传递过程由导热、对流、辐射3三种基本方式组成。
一导热导热又称热传导,是指温度不同的物体各部分无相对位移或不同温度的各部分直接紧密接触时,依靠物质内部分子、原子及自由电子等微观粒子的热运动而进行热量传递的现象。
1、傅里叶公式(W)λ——导热系数,。
(物理意义:单位厚度的物体具有单位温度差时,在单位时间内其单位面积上的导热量。
)2、热流密度(W/m2)二热对流热对流,依靠流体的运动,把热量从一处传递到另一处的现象。
1、对流换热对流换热:流体与温度不同的固体壁面接触时所发生的传热过程。
区别2、牛顿冷却公式h——对流换热系数,W/(m2·)。
(物理意义:流体与壁面的温差为1时,单位时间通过单位面积传递的热量。
)三热辐射物体表面通过电磁波(或光子)来传递热量的过程。
1、特点辐射能可以通过真空自由地传播而无需任何中间介质。
一切物体只要具有温度(高于0K)就能持续地发射和吸收辐射能。
不仅具有能量传递,还有能量的转换:热能——电磁波——热能。
2、辐射换热:依靠辐射进行的热量传递过程。
3、辐射力物体表面每单位面积在单位时间内对外辐射的全部能量。
(W/m2)C b——辐射系数,C b=5.67W/(m2·K4)。
4、辐射量计算四传热过程1、总阻2、总热流密度第2章导热问题的数学描述一基本概念及傅里叶定律1、基本概念等温面:由温度场中同一瞬间温度相同点所组成的面。
等温线:等温面上的线,一般指等温面与某一平面的交线。
热流线:处处与等温面(线)垂直的线。
2、傅里叶定律(试验定律)3、各向热流密度二导热系数1、定义式2、实现机理气体:依靠分子热运动和相互碰撞来传递热量。
非导电固体:通过晶体结构的振动来传递热量。
液体:依靠不规则的弹性振动传递热量。
3、比较同种物质:不同物质:4、温度线性函数三导热微分方程及定解条件1、导热微分方程拉普拉算子。
——热扩散率,。
分子代表导热能力,分母代表容热能力。
传热学概念汇总
传热学是研究热量如何在物体之间传递的科学领域。
以下是一些传热学中常见的概念:
1. 热传导:热量通过物质内部的分子或原子振动传递的过程。
2. 热对流:热量通过流体介质(如气体或液体)的流动传递的过程。
3. 热辐射:热量通过电磁辐射传递的过程,可以在真空中进行。
4. 热传导率:物质的热导性能的度量,表示在单位时间内,单位温度梯度下传导的热量。
5. 热传递:热量从高温区域传递到低温区域的过程。
6. 热平衡:当热量传递停止时,两个物体之间达到的温度差为零,达到了热平衡。
7. 热传递方程:描述热传递过程的数学方程,如热传导方程、对流传热方程等。
8. 热导率:物质的热传导性能的度量,表示在单位时间内,单位面积上通过物质传导的热量。
9. 热传递系数:描述物体表面传热能力的量,表示单位时间内,单位面积上通过辐射、对流等方式传递的热量。
10. 热容:物质单位质量在温度变化时所吸收或释放的热量。
这些概念是传热学中的基本概念,用于描述热量传递的过程和性质。
1、傅里叶定律P35:在导热的过程中,单位时间内通过给定截面的导热量,正比于垂直该截面方向上的变化率和截面面积,而热量传递的方向则与温度升高的方向相反。
2、热导率(导热系数)P6、P37:表征材料导热性能优劣的参数,即是一种热物性参数,单位W/(m·k)。
数值上,其定义为单位温度梯度(在1m长度内温度降低1K)在单位时间内经单位导热面所传递的热量。
3、绝对黑体P9:简称黑体,是指能吸收投入到其表面上的所有热辐射能量的物体。
4、传热系数P13:数值上,它等于冷、热流体间温差△t=1°C、传热面积A=1m ²时热流量的值,是表征传热过程强烈程度的标尺。
5、热扩散率P45:定义式为a=λ/ρc,它表示物体在加热或冷却中,温度趋于均匀一致的能力。
这个综合物性参数对稳态导热没有影响,但是在非稳态导热过程中,它是一个非常重要的参数。
6、接触热阻P67:在未接触的界面之间的间隙常常充满了空气,与两个固体便面完全接触相比,增加了附加的传递阻力,称为接触热阻。
7、肋效率P62:表征肋片散热的有效程度。
肋片的实际散热量与其整个肋片都处于肋基温度下得散热量之比.8、第一类边界条件P44:规定了边界上的温度值,称为第一类边界条件。
9、第二类边界条件P44:规定了边界上的热流密度值,称为第二类边界条件。
10、第三类边界条件P44:规定了边界上的物体与周围流体间的表面传热系数h 及周围流体的温度tf,称为第三类边界条件。
11、集中参数法P117:当固体内部的导热热阻小于其表面的换热热阻时,固体内部的温度趋于一致,近似认为固体内部的温度t仅是时间τ的一元函数而与空间坐标无关,这种忽略物体内部导热热阻的简化方法称为集中参数法。
12、当量直径:定义:把水利半径相等的圆管直径定义为非圆管的当量直径。
13、混合对流P273:当0.1≤Gr/Re2≤10时称混合对流。
14、定性温度:定性温度为流体的平均温度。
传热学定律
传热学定律是指热量传递的基本规律,主要包括以下几个方面:1. 傅里叶定律:指出在导热过程中,单位时间内通过给定面积的热量,正比于该处的温度梯度,而方向与温度梯度相反。
傅里叶定律是传热学的基本定律之一,也是热力学第一定律在导热过程中的具体表现。
2. 牛顿冷却定律:指出当物体表面与周围环境温差为1℃时,每秒钟通过单位面积所传递的热量为一个常数,称为热流密度或热流量。
该定律适用于所有物体的冷却过程,包括气体、液体和固体。
3. 普朗特数:普朗特数是一个无量纲数,它表示流体的动量扩散能力与热量扩散能力的比值。
普朗特数是流体力学和传热学中的一个重要参数,对于研究流体流动和传热问题具有重要意义。
4. 斯蒂芬-玻尔兹曼定律:指出黑体的辐射能力与其表面温度的四次方成正比。
该定律是黑体辐射理论的重要基础之一,也被广泛应用于工程热力学和辐射测量学等领域。
5. 基尔霍夫定律:指出在任一给定温度下,从任一黑体中发射出的辐射能,与从同一黑体中吸收的辐射能之比,等于该温度下黑体的吸收率。
该定律是辐射换热学的基本定律之一,对于研究辐射换热问题具有重要意义。
这些传热学定律是传热学的基础理论,对于研究热量传递和热交换问题具有重要意义。
名词解释1、热流量:单位时间内通过某一给定面积的热量。
2、热对流:由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷热流体相互掺混所导致的热量传递。
3、速度边界层:在固体表面附近流体速度发生剧烈变化的薄层。
4、相似现象:两个同类的物理现象,如果在相应时刻和相应位置与现象有关的各同名物理量一一对应成比例,则称此两现象彼此相似。
5、集中参数法:固体内部的导热热阻远小于其表面的换热热阻时,任何时刻固体内部的温度场都趋于一致,以致可以认为整个固体在同一瞬间均处于同一温度下,此时需要解释的温度只是时间的一元函数,这种忽略物体内部导热热阻的简化分析法称为集中参数法。
6、对流换热:发生在流体和与之接触的固体壁面之间的热量传递过程,是宏观对流与微观的热传导的综合传热过程。
7、热辐射:因热的原因而发出辐射能的现象。
物体电磁波方式向外界传递能量的过程。
8、传热系数:数值上等于冷热流体之间温差1度时,单位传热面积的热流量的值,是表征传热过程强烈程度的指标。
9、热传导:物体各部分之间不发生相对位移,依靠分子原子自由电子等微观粒子的热运动而产生的热能传递。
10.有效辐射:单位时间内离开表面单位的总辐射能。
11、温度场:各个时刻物体内部各点温度分布的总称。
12、定性温度:用以确定特征数中流体物性的温度。
13、黑体:能吸收投入到其表面上的所有热辐射能量的物体。
14、非稳态导热:物体的温度随时间变化的导热。
15、投入辐射:单位时间内从外界投入到物体的单位表面积上的辐射能。
16、吸收比:投入辐射中被吸收的百分数。
17、反射比:投入辐射中被反射的百分比数。
18、穿透比:投入辐射中穿透物体能量的百分数。
19、灰体:在辐射分析中,把光谱吸收比与波长无关的物体称为灰体。
,20、发射率(黑体):实际物体的辐射力E总是小于同温度下黑体的辐射力Eb 两者的比值称为实际物体的发射率。
21、辐射力:单位时间内单位面积向其上的半球空间的所有方向辐射出去的全部波长范围内的能量。