金属材料扭转试验报告
- 格式:doc
- 大小:12.25 MB
- 文档页数:7
金属扭转实验报告金属扭转实验报告引言:金属材料是工业生产中最常用的材料之一,其力学性能对于产品的质量和可靠性至关重要。
在金属材料力学性能研究中,扭转实验是一种常用的实验方法,通过对金属试样进行扭转加载,可以获取材料的扭转强度、塑性变形能力和疲劳性能等重要参数。
本实验旨在通过对不同金属试样的扭转实验,探究金属材料的力学性能特点。
实验方法:1. 实验材料选择:本次实验选用了三种不同类型的金属材料,分别为铝合金、钢材和铜材。
这三种材料在工业中应用广泛,具有不同的力学性能特点。
每种材料都制备了10个相同尺寸的试样。
2. 实验装置:扭转实验使用扭转试验机进行,试验机具有精确的力和位移测量系统,能够准确记录试样在加载过程中的力学性能变化。
试样通过夹具固定在试验机上,然后扭转加载。
3. 实验步骤:(1) 将试样固定在夹具上,确保试样的中心轴与扭转试验机的转轴一致。
(2) 设置试验机的加载速度和加载范围,确保实验过程的可控性。
(3) 开始加载,记录试样的扭转力和位移数据。
(4) 当试样发生破坏或达到预设的加载条件时,停止加载,并记录试样的破坏形态。
实验结果与分析:1. 铝合金试样的扭转强度较低,破坏形态为断裂。
铝合金具有较好的塑性变形能力,在扭转过程中能够发生较大的变形,但其强度较低,容易发生断裂。
2. 钢材试样的扭转强度较高,破坏形态为塑性变形。
钢材具有较高的强度和较好的塑性变形能力,在扭转过程中能够承受较大的载荷而不发生断裂。
3. 铜材试样的扭转强度介于铝合金和钢材之间,破坏形态为塑性变形。
铜材具有较好的强度和塑性变形能力,但相对于钢材而言,其强度较低。
结论:通过本次实验,我们对铝合金、钢材和铜材的扭转性能进行了研究。
实验结果表明,不同类型的金属材料具有不同的力学性能特点。
铝合金具有较好的塑性变形能力,但强度较低;钢材具有较高的强度和塑性变形能力;铜材介于两者之间。
这些实验结果对于金属材料的选择和应用具有重要的指导意义,有助于提高产品的质量和可靠性。
低碳钢和铸铁扭转实验报告低碳钢和铸铁扭转实验报告引言:在现代工业中,钢和铸铁是最常用的金属材料之一。
它们在建筑、汽车制造、航空航天等领域扮演着重要的角色。
本实验旨在比较低碳钢和铸铁的力学性能,特别是在扭转试验中的表现。
实验设计:本实验使用了一台扭转试验机,通过施加扭矩来测试不同材料的扭转强度和变形能力。
实验中使用了相同的试样尺寸和几何形状,并确保试样表面的光洁度一致。
实验过程:1. 准备工作:清洁和标记试样,确保试样表面无杂质和损伤。
2. 安装试样:将试样固定在扭转试验机上,确保试样与扭转轴线平行。
3. 施加负载:逐渐增加扭矩,记录每个扭矩值下的变形情况。
4. 测量数据:使用应变计和位移传感器等设备,测量试样的应变和位移。
实验结果:通过对低碳钢和铸铁试样进行扭转实验,得到了以下结果:1. 扭转强度:低碳钢表现出较高的扭转强度,能够承受更大的扭矩而不发生破坏。
相比之下,铸铁的扭转强度较低,容易发生塑性变形和断裂。
2. 变形能力:低碳钢在扭转过程中表现出较好的变形能力,能够经受较大的扭转角度而不失去其原有形状。
而铸铁则在受到较小扭矩时就会发生明显的变形和断裂。
3. 韧性:低碳钢具有较高的韧性,能够在扭转过程中吸收更多的能量。
而铸铁的韧性较低,容易发生脆性断裂。
实验讨论:以上实验结果表明,低碳钢在扭转试验中表现出更好的力学性能。
这可以归因于低碳钢的晶格结构和化学成分。
低碳钢由铁和少量碳组成,碳的存在使得钢具有更好的强度和塑性。
相比之下,铸铁中的碳含量较高,导致其较低的强度和韧性。
然而,需要注意的是,实验结果可能受到一些因素的影响。
例如,试样的制备和处理过程可能存在差异,这可能导致实验结果的偏差。
此外,实验中只考虑了扭转加载情况下的性能比较,而在实际应用中,材料还需要满足其他力学要求,如拉伸和压缩等。
结论:通过本实验,我们对低碳钢和铸铁在扭转试验中的性能进行了比较。
结果显示,低碳钢具有更高的扭转强度和变形能力,以及更好的韧性。
金属材料扭转实验一、 实验目的1. 测定低碳钢材料的剪切屈服极限s τ及剪切强度极限b τ。
2. 测定铸铁材料的剪切强度极限b τ。
3. 观察低碳钢和铸铁扭转变形过程中各种现象,比较两种材料试样断口破坏特性。
二、 实验仪器设备CTT500 微机控制扭转试验机、游标卡尺、低碳钢扭转试样和铸铁扭转试样 三、 实验原理将材料试样装夹在扭转试验机的夹头上,实验时,扭转试验机的一个夹头固定不转,另一个夹头绕轴转动,从而对材料试样施加扭转载荷,使试样发生扭转变形,同时绘制出试样承受的扭矩T 与发生的变形扭转角φ的关系曲线(T –φ曲线)。
1. 低碳钢扭转实验图 2-1-2 所示为低碳钢试样在扭转变形过程中的 T –φ关系曲线。
由该曲线可得到低碳钢材料在整个扭转过程中所表现出来的力学性能,其主要特征如下:在弹性变形的OA直线段。
试样截面上扭矩T与扭转角φ成正比例关系,材料服从切变虎克定律,在该阶段可测定材料的切变模量G,试样横截面上剪应力沿半径线性分布如图 2-1-3(a)所示。
拉伸时有明显屈服现象的金属材料在扭转时同样存在屈服现象,只是由于扭转时试样截面上的应力分布不均匀,当试样表面材料屈服时,内部材料并未出现屈服,因此载荷的下降不是突然发生,故无拉伸时的初始瞬时效应。
当扭矩保持恒定或在小范围内波动,而扭转角仍持续增加(曲线出现平台)时的扭矩称为屈服扭矩。
上屈服扭矩:屈服阶段中扭矩首次下降前的最大扭矩,称为上屈服扭T,如图 2-2-2 中所示。
矩,记为suT,如下屈服扭矩:屈服阶段中的最小扭矩称为下屈服扭矩,记为sL图 2-2-2中所示。
本次实验中测定下屈服扭矩作为低碳钢扭转时的屈服扭矩 Ts,根据τ。
实验中测得的屈服扭矩 Ts数值,即可计算出低碳钢的剪切屈服极限s低碳钢扭转试样横截面上剪应力线性分布如图 2-1-3 所示,随着 Tτ,而且塑性区逐的增大,横截面边缘处的剪应力首先达到剪切屈服极限s渐向圆心扩展,形成环形塑性区,如图 2-1-3(b)所示,直到整个截面几乎都是塑性区,如图 2-1-3(c)所示,在 T–φ曲线上出现屈服平台。
低碳钢和铸铁扭转实验报告一、实验目的。
本实验旨在通过对低碳钢和铸铁材料进行扭转实验,探究它们在受力情况下的性能差异,为工程材料的选择和设计提供参考依据。
二、实验原理。
扭转实验是通过在材料上施加扭转力,来研究材料在扭转作用下的变形和破坏性能。
通过测量扭转角度和扭转力,可以得出材料的剪切模量和屈服强度等参数。
三、实验装置和材料。
本次实验所用的实验装置包括扭转试验机、扭转力传感器和扭转角度测量仪。
实验材料为一块低碳钢试样和一块铸铁试样。
四、实验步骤。
1. 将低碳钢试样和铸铁试样依次固定在扭转试验机上;2. 通过扭转试验机施加相同的扭转力,记录下扭转力和扭转角度的变化;3. 当试样发生破坏时,立即停止施加扭转力,并记录下此时的扭转力和扭转角度。
五、实验数据和分析。
通过实验数据的记录和分析,得出以下结论:1. 低碳钢试样在扭转作用下表现出较高的屈服强度和较小的扭转角度,具有较好的抗扭转性能;2. 铸铁试样在扭转作用下表现出较低的屈服强度和较大的扭转角度,具有较差的抗扭转性能;3. 通过对比两种材料的实验数据,可以得出低碳钢具有较好的抗扭转性能,适用于需要承受扭转作用的工程设计。
六、结论。
通过本次实验,我们得出了低碳钢和铸铁在扭转作用下的性能差异,并为工程材料的选择和设计提供了参考依据。
低碳钢具有较好的抗扭转性能,适用于需要承受扭转作用的工程设计,而铸铁的抗扭转性能相对较差。
七、实验总结。
本次实验通过扭转实验研究了低碳钢和铸铁在扭转作用下的性能表现,为工程材料的选择和设计提供了重要参考。
在今后的工程实践中,我们应根据实际需要选择合适的材料,以确保工程结构的安全和可靠性。
八、参考文献。
[1] 材料力学实验教程。
[2] 张三,李四. 金属材料力学性能测试与分析. 北京,机械工业出版社,2008.以上就是本次低碳钢和铸铁扭转实验的报告内容,希望对大家有所帮助。
低碳钢扭转破坏试验实验报告黄冬2015-10-29低碳钢和铸铁扭转破坏试验一、实验目的和要求1.测定低碳钢的剪切屈服点s τ、抗剪强度b τ和铸铁的抗剪强度b τ,观察扭矩—扭转角曲线(T -φ曲线)。
2.观察两类材料试样扭转破坏断口形貌,并进行比较和分析。
3.测定低碳钢的切变模量G 。
4.验证圆截面杆扭转变形的胡克定律(p /GI Tl =Φ)。
二、实验设备和仪器1.微机控制扭转试验机。
2.游标卡尺。
3. 装夹工具。
三、实验原理和方法遵照国家标准(GB/T10128—1988)采用圆截面试样的扭转试验,可以测定各种工程材料在纯剪切情况下的力学性能。
如材料的剪切屈服点s τ和抗剪强度b τ等。
圆截面试样须按上述国家标准制成(如图4-1所示)。
试样两端的夹持段铣削为平面,这样可以有效地防止试验时试样在试验机卡头中打滑。
图 4-1试验机软件的绘图系统可绘制扭矩一扭转角曲线,简称扭转曲线(图4-2a 、b 中的T —φ曲线)。
从图4-2a 可以看到,低碳钢试样的扭转试验曲线由弹性阶段(oa 段)、屈服阶段(ab 段)和强化阶段(cd 段)构成,但屈服阶段和强化阶段均不像拉伸试验曲线中那么明显。
由于强化阶段的过程很长,图中只绘出其开始阶段和最后阶段,破坏时试验段的扭转角可达π10以上。
a )低碳钢 b) 铸铁图 4-2图4-2b 所示的铸铁试样扭转曲线可近似地视为直线(与拉伸曲线相似,没有明显的直线段),试样破坏时的扭转变形比拉伸破坏时的变形要明显得多。
从扭转试验机上可以读取试样的屈服扭矩T s 和破坏扭矩T b 。
由T s s /W T =τ和T b b /W T =τ计算材料的剪切屈服点s τ和抗剪强度b τ,式中:16/30T d W π=为试样截面的抗扭截面系数。
需要指出的是,对于塑性材料,采用实心圆截面试样测量得到的剪切屈服点s τ和抗剪强度b τ,高于薄壁圆环截面试样的测量值,这是因为实心圆截面试样扭转时横截面切应力分布不均匀所致。
低碳钢铸铁的扭转破坏实验报告低碳钢和铸铁是常见的金属材料,在工业生产和日常生活中广泛应用。
本次实验旨在通过扭转破坏试验比较两种材料的力学性能和强度差异。
1.实验目的:(1)了解低碳钢和铸铁的力学性能;(2)比较低碳钢和铸铁在扭转加载下的强度差异。
2.实验仪器和试件:(1)扭转试验机:用于施加扭转力;(2) 低碳钢试件:长度为200mm,直径为10mm;(3) 铸铁试件:长度为200mm,直径为10mm。
3.实验步骤:(1)准备两组试件,分别为低碳钢和铸铁试件;(2)将试件固定在扭转试验机上,保证试件端部垂直于扭转轴线;(3)施加扭转负荷,并记录扭转力和扭转角度;(4)当试件出现破坏时停止加载,记录破坏负荷和扭转角度。
4.数据记录与结果分析:(1)记录低碳钢和铸铁试件的初始长度、破坏负荷和扭转角度;(2)根据实验数据计算两组试件的强度、延伸率等力学性能参数;(3)对比分析两组试件的性能差异,并解释可能的原因;(4)结合实验数据和结果进行讨论和总结。
5.实验注意事项:(1)在加载过程中,避免超过试件的承载能力,以防止试件破坏过程过快或损坏设备;(2)实验后及时清理和维护实验设备,确保下次实验的可靠性。
6.实验结论:通过对低碳钢和铸铁试件进行扭转破坏实验,可以得出以下结论:(1)低碳钢的强度和延伸率较铸铁更高;(2)铸铁的强度较低,容易发生断裂;(3)低碳钢在扭转加载下具有更好的抗拉强度和延展性。
根据实验结果和分析,可以得出结论:在使用其中一种材料时,根据工程要求和所需力学性能的不同,可以选择合适的金属材料,如低碳钢或铸铁。
一、实验目的1. 通过金属扭转试验,了解金属在扭转过程中的力学性能变化。
2. 测定金属材料的剪切屈服极限、剪切强度极限和切变模量。
3. 比较不同金属材料的扭转性能,分析其差异。
二、实验原理金属扭转试验是研究金属材料扭转性能的重要方法。
在扭转过程中,试样受到一对大小相等、方向相反的力矩作用,使试样产生扭转变形。
根据胡克定律和剪切应力与切变应力的关系,可以推导出金属材料的扭转力学性能指标。
三、实验设备与材料1. 实验设备:扭转试验机、游标卡尺、扭矩传感器、计算机等。
2. 实验材料:低碳钢、灰铸铁、铝等金属材料。
四、实验步骤1. 准备工作:检查实验设备是否完好,准备实验材料。
2. 试样制备:按照国家标准GB10128-2007《金属室温扭转试验方法》,制备圆形截面试样。
3. 试样测量:使用游标卡尺测量试样直径,计算试样抗扭截面系数。
4. 实验操作:a. 将试样安装在扭转试验机上,调整扭矩传感器,连接计算机。
b. 输入实验参数,如试样直径、材料类型等。
c. 启动实验,缓慢加载扭矩,观察试样变形情况。
d. 记录扭矩、扭转角等数据。
5. 实验结束:试样扭断后,取下试样,测量断口尺寸,计算剪切强度极限。
五、实验数据与处理1. 实验数据:记录扭矩、扭转角、试样直径、抗扭截面系数等数据。
2. 数据处理:a. 绘制扭矩-扭转角曲线,分析金属材料的扭转性能。
b. 计算剪切屈服极限、剪切强度极限和切变模量。
c. 比较不同金属材料的扭转性能,分析其差异。
六、实验结果与分析1. 实验结果:a. 低碳钢的剪切屈服极限为XXX MPa,剪切强度极限为XXX MPa,切变模量为XXX GPa。
b. 灰铸铁的剪切屈服极限为XXX MPa,剪切强度极限为XXX MPa,切变模量为XXX GPa。
c. 铝的剪切屈服极限为XXX MPa,剪切强度极限为XXX MPa,切变模量为XXX GPa。
2. 分析:a. 低碳钢的扭转性能较好,剪切屈服极限和剪切强度极限较高,切变模量较大。
实验二 扭转实验
一、实验目的
1.测定低碳钢扭转时的强度性能指标:扭转屈服应力s τ和抗扭强度b τ。
2.测定灰铸铁扭转时的强度性能指标:抗扭强度b τ。
3.绘制低碳钢和灰铸铁的扭转图,比较低碳钢和灰铸铁的扭转破坏形式。
二、实验设备和仪器
1.扭转试验机。
2.计算机
3.游标卡尺。
三、实验试样
按照国家标准GB10128—88《金属室温扭转试验方法》,金属扭转试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样和管形截面试样两种。
其中最常用的是圆形截面试样,如图1-1a 所示。
通常,圆形截面试样的直径mm 10=d ,标距d l 5=或d l 10=,平行部分的长度为mm 20+l 。
若采用其它直径的试样,其平行部分的长度应为标距加上两倍直径。
试样头部的形状和尺寸应适合扭转试验机的夹头夹持。
由于扭转试验时,试样表面的切应力最大,试样表面的缺陷将敏感地影响试验结果,所以,对扭转试样的表面粗糙度的要求要比拉伸试样的高。
对扭转试样的加工技术要求参见国家标准GB10128—88。
四、实验原理与方法
1. 测定低碳钢扭转时的强度性能指标
试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。
随着外力偶
矩的增加,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩es M ,低碳钢的扭转屈服应力为
p
es
s 43W M =
τ 式中:16/3p d W π=为试样在标距内的抗扭截面系数。
在测出屈服扭矩s T 后,改用电动加载,直到试样被扭断为止。
测矩盘上的从动指针所指示的外力偶矩数值即为最大力偶矩eb M ,低碳钢的抗扭强度为
p
eb
b 43W M =
τ 对上述两公式的来源说明如下:
低碳钢试样在扭转变形过程中,利用机上的自动绘图装置绘出的ϕ-e M 图如图1-6所示。
当达到图中A 点时,e M 与ϕ成正比的关系开始破坏,这时,试样表面处的切应力达到了材料的扭转屈服应力s τ,如能测得此时相应的外力偶矩
ep M ,如图1-7a 所示,则扭转屈服应力为
p
ep s W M =
τ
经过A 点后,横截面上出现了一个环状的塑性区,如图1-7b 所示。
若材料的塑性很好,且当塑性区扩展到接近中心时,横截面周边上各点的切应力仍未超过扭转屈服应力,此时的切应力分布可简化成图1-7c 所示的情况,对应的扭矩s T 为
图1-6 低碳钢的扭转图
s
s
s
(a ) (b ) (c )
图1-7 低碳钢圆柱形试样扭转时横截面上的切应力分布
(a )p T T =;(b )s p T T T <<;(c )s T T =
s p s 3
d/2
2
s d/2
0 s s 3
4
12
d 2d 2ττπρρπτρπρρτW d T ==
==⎰
⎰
由于es s M T =,因此,由上式可以得到
p
es
s 43W M =
τ 从计算机所绘出的曲线来看,A 点的位置不易精确判定,而B 点的位置则较为明显。
因此,一般均根据由B 点测定的es M 来求扭转切应力s τ。
当然这种计算方法也有缺陷,只有当实际的应力分布与图1-7c 完全相符合时才是正确的,对塑性较小的材料差异是比较大的。
从图1-6可以看出,当外力偶矩超过es M 后,扭转角ϕ增加很快,而外力偶矩e M 增加很小,BC 近似于一条直线。
因此,可认为横截面上的切应力分布如图1-7c 所示,只是切应力值比s τ大。
根据测定的试样在断裂时的外力偶矩eb M ,可求得抗扭强度为
p
eb b 43W M =
τ
2.测定灰铸铁扭转时的强度性能指标
对于灰铸铁试样,只需测出其承受的最大外力偶矩eb M (方法同2),抗扭强
p
eb
b W M =
τ 由上述扭转破坏的试样可以看出:低碳钢试样的断口与轴线垂直,表明破坏是由切应力引起的;而灰铸铁试样的断口则沿螺旋线方向与轴线约成 45角,表明破坏是由拉应力引起的。
五、实验步骤
1. 测定低碳钢扭转时的强度性能指标
(1)测量试样的直径(方法与拉伸试验相同)。
(2)将试样安装到扭转试验机上。
(3)计算机数据调整为“0”。
(4)改用快速加载,直至试样被扭断为止,关闭扭转试验机,从计算机中读取最大外力偶矩eb M 。
3.测定灰铸铁扭转时的强度性能指标
(1)测量试样的直径(方法与拉伸试验相同)。
(2)将试样安装到扭转试验机上,计算机数据调整为“0”,
(3)确定速度,直至试样被扭断为止,关闭扭转试验机,由从计算机中读取最大外力偶矩eb M 。
六、实验数据记录与计算
1.测定低碳钢和灰铸铁扭转时的强度性能指标
表1-7 测定低碳钢和灰铸铁扭转时的强度性能指标试验的数据记录与计算
六、思考题
1.比较低碳钢与灰铸铁试样的扭转破坏断口,并分析它们的破坏原因。
2.根据拉伸、压缩和扭转三种试验结果,比较低碳钢与灰铸铁的力学性能及破坏形式,并分析原因。