分式应用题组卷解析
- 格式:doc
- 大小:238.00 KB
- 文档页数:16
2024年中考数学真题汇编 专题08 分式方程及其应用+答案详解(试题部分)一、单选题1.(2024·四川德阳·中考真题)分式方程153x x =+的解是( ) A .3B .2C .32D .342.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是x 元,所得方程正确的是( ) A .240240102x x −=+ B .240240102x x −=− C .240240102x x−=− D .240240102x x−=+ 3.(2024·四川广元·中考真题)我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A 、B 两种绿植,已知A 种绿植单价是B 种绿植单价的3倍,用6750元购买的A 种绿植比用3000元购买的B 种绿植少50株.设B 种绿植单价是x 元,则可列方程是( ) A .67503000503x x −= B .30006750503x x −= C .67503000503x x+= D .30006750503x x+= 4.(2024·黑龙江绥化·中考真题)一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为( ) A .5km /hB .6km /hC .7km /hD .8km /h5.(2024·广东省·中考真题)方程233x x=−的解为( ) A .3x =B .9x =−C .9x =D .3x =−6.(2024·四川达州·中考真题)甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x 个零件.可列方程为( ) A .120120301.2x x −= B .120120301.2x x −= C .120120301.260x x −= D .120120301.260x x −=7.(2024·四川泸州·中考真题)分式方程12322x x−=−−的解是( ) A .73x =−B .=1x −C .53x =D .3x =8.(2024·山东·中考真题)为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( ) A .200B .300C .400D .5009.(2024·黑龙江大兴安岭地·中考真题)已知关于x 的分式方程2333x xkx −=−−无解,则k 的值为( ) A .2k =或1k =− B .2k =−C .2k =或1k =D .1k =−10.(2024·黑龙江齐齐哈尔·中考真题)如果关于x 的分式方程101mx x −=+的解是负数,那么实数m 的取值范围是( )A .1m <且0m ≠B .1m <C .1m >D .1m <且1m ≠−11.(2024·四川遂宁·中考真题)分式方程2111mx x =−−−的解为正数,则m 的取值范围( ) A .3m >− B .3m >−且2m ≠− C .3m <D .3m <且2m ≠−二、填空题12.(2024·四川宜宾·中考真题)分式方程1301x x +−=−的解为 . 13.(2024·四川广元·中考真题)若点(),Q x y 满足111x y xy+=,则称点Q 为“美好点”,写出一个“美好点”的坐标 .14.(2024·湖南省·中考真题)分式方程21x +=1的解是 . 15.(2024·湖北武汉·中考真题)分式方程131x x x x +=−−的解是 . 16.(2024·四川达州·中考真题)若关于x 的方程31122kx x x −−=−−无解,则k 的值为 . 17.(2024·北京·中考真题)方程11023x x+=+的解为 . 18.(2024·浙江·中考真题)若211x =−,则x = 19.(2024·四川凉山·中考真题)方程233x x=−的解是 20.(2024·四川成都·中考真题)分式方程132x x=−的解是 .21.(2024·重庆·中考真题)若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪−<+⎩的解集为4x ≤,且关于y 的分式方程8122a yy y −−=++的解均为负整数,则所有满足条件的整数a 的值之和是 . 22.(2024·黑龙江牡丹江·中考真题)若分式方程311x mxx x=−−−的解为正整数,则整数m 的值为 .三、解答题23.(2024·内蒙古包头·中考真题)(1)先化简,再求值:()()2121x x +−+,其中x = (2)解方程:2244x xx x −−=−−. 24.(2024·四川自贡·中考真题)为传承我国传统节日文化,端午节前夕,某校组织了包粽子活动.已知七(3)班甲组同学平均每小时比乙组多包20个粽子,甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同.求甲,乙两组同学平均每小时各包多少个粽子. 25.(2024·广东广州·中考真题)解方程:1325x x=−. 26.(2024·江苏扬州·中考真题)为了提高垃圾处理效率,某垃圾处理厂购进A 、B 两种机器,A 型机器比B 型机器每天多处理40吨垃圾,A 型机器处理500吨垃圾所用天数与B 型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?27.(2024·山东威海·中考真题)某公司为节能环保,安装了一批A 型节能灯,一年用电16000千瓦·时.后购进一批相同数量的B 型节能灯,一年用电9600千瓦·时.一盏A 型节能灯每年的用电量比一盏B 型节能灯每年用电量的2倍少32千瓦·时.求一盏A 型节能灯每年的用电量. 28.(2024·陕西·中考真题)解方程:22111xx x +=−−. 29.(2024·广西·中考真题)综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略. 【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg 水. 浓度关系式:0.50.5d d w=+前后.其中d 前、d 后分别为单次漂洗前、后校服上残留洗衣液浓度;w 为单次漂洗所加清水量(单位:kg )【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.30.(2024·重庆·中考真题)某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A、B两种外墙漆各完成总粉刷任务的一半.据测算需要A、B两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A种外墙漆每千克的价格比B种外墙漆每千克的价格多2元.(1)求A、B两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?31.(2024·云南·中考真题)某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D型车的平均速度.32.(2024·福建·中考真题)解方程:3122xx x+=+−.2024年中考数学真题汇编专题08 分式方程及其应用+答案详解(答案详解)一、单选题1.(2024·四川德阳·中考真题)分式方程153x x=+的解是()A.3B.2C.32D.342.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是x元,所得方程正确的是()A.240240102x x−=+B.240240102x x−=−C.240240102x x−=−D.240240102x x−=+3.(2024·四川广元·中考真题)我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A 、B 两种绿植,已知A 种绿植单价是B 种绿植单价的3倍,用6750元购买的A 种绿植比用3000元购买的B 种绿植少50株.设B 种绿植单价是x 元,则可列方程是( ) A .67503000503x x −= B .30006750503x x −= C .67503000503x x+= D .30006750503x x+=4.(2024·黑龙江绥化·中考真题)一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为( ) A .5km /h B .6km /hC .7km /hD .8km /h5.(2024·广东省·中考真题)方程233x x=−的解为( ) A .3x = B .9x =− C .9x = D .3x =−去分母得:23(3)x x =−, 去括号得:239x x =−, 移项、合并同类项得:9x −=−, 解得:x =9,经检验:x =9是原分式方程的解, 故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.6.(2024·四川达州·中考真题)甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x 个零件.可列方程为( ) A .120120301.2x x −= B .120120301.2x x −= C .120120301.260x x −= D .120120301.260x x −=7.(2024·四川泸州·中考真题)分式方程12322x x−=−−的解是( ) A .73x =−B .=1x −C .53x =D .3x =39x −=−, 3x =,经检验3x =是该方程的解, 故选:D .8.(2024·山东·中考真题)为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( ) A .200 B .300 C .400 D .5009.(2024·黑龙江大兴安岭地·中考真题)已知关于x 的分式方程2333x xkx −=−−无解,则k 的值为( ) A .2k =或1k =− B .2k =− C .2k =或1k = D .1k =−10.(2024·黑龙江齐齐哈尔·中考真题)如果关于x 的分式方程101mx x −=+的解是负数,那么实数m 的取值范围是( )A .1m <且0m ≠B .1m <C .1m >D .1m <且1m ≠−11.(2024·四川遂宁·中考真题)分式方程2111mx x =−−−的解为正数,则m 的取值范围( ) A .3m >− B .3m >−且2m ≠− C .3m < D .3m <且2m ≠−又∵1x ≠, 即31m +≠, ∴2m ≠−,∴m 的取值范围为3m >−且2m ≠−, 故选:B .二、填空题12.(2024·四川宜宾·中考真题)分式方程1301x x +−=−的解为 .13.(2024·四川广元·中考真题)若点(),Q x y 满足x y xy +=,则称点Q 为“美好点”,写出一个“美好点”的坐标 .【答案】()2,1−(答案不唯一)【分析】此题考查了解分式方程,先将方程两边同时乘以xy 后去分母,令x 代入一个数值,得到y 的值,以此为点的坐标即可,正确解分式方程是解题的关键 【详解】解:等式两边都乘以xy ,得1x y +=, 令2x =,则1y =−,∴“美好点”的坐标为()21−,, 故答案为()21−,(答案不唯一) 14.(2024·湖南省·中考真题)分式方程21x +=1的解是 .【答案】x=1【分析】先给方程两边同乘最简公分母x+1,把分式方程转化为整式方程2=x+1,求解后并检验即可.【详解】解:方程的两边同乘x+1,得2=x+1,解得x=1.检验:当x=1时,x+1=2≠0.所以原方程的解为x=1.故答案为:x=1.【点睛】此题考查了解分式方程,掌握解分式方程的一般步骤及方法是解题的关键.15.(2024·湖北武汉·中考真题)分式方程131x xx x+=−−的解是.16.(2024·四川达州·中考真题)若关于x的方程31122kxx x−−=−−无解,则k的值为.17.(2024·北京·中考真题)方程11023x x+=+的解为 .18.(2024·浙江·中考真题)若211x =−,则x = 【答案】3【分析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:21x =−, 移项合并得:3x −=−, 解得:3x =,经检验,3x =是分式方程的解, 故答案为:319.(2024·四川凉山·中考真题)方程233x x=−的解是 【答案】x=9【分析】观察可得最简公分母是x (x -3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【详解】解:方程的两边同乘x (x -3),得 3x -9=2x ,解得x=9.检验:把x=9代入x(x-3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.20.(2024·四川成都·中考真题)分式方程132x x=−的解是.【答案】x=3【详解】试题分析:分式方程去分母转化为整式方程x=3(x﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程21.(2024·重庆·中考真题)若关于x的一元一次不等式组2133423xx x a+⎧≤⎪⎨⎪−<+⎩的解集为4x≤,且关于y的分式方程8122a yy y−−=++的解均为负整数,则所有满足条件的整数a的值之和是.∴210a <<且6a ≠且a 是偶数, ∴满足题意的a 的值可以为4或8,∴所有满足条件的整数a 的值之和是4812+=. 故答案为:12.22.(2024·黑龙江牡丹江·中考真题)若分式方程311x mxx x=−−−的解为正整数,则整数m 的值为 .三、解答题23.(2024·内蒙古包头·中考真题)(1)先化简,再求值:()()2121x x +−+,其中x = (2)解方程:2244x xx x −−=−−. 【答案】(1)21x −,7;(2)3x =【分析】本题考查了整式的运算,二次根式的运算,解分式方程等知识,解题的关键是: (1)先利用完全平方公式、去括号法则化简,然后把x 的值代入计算即可; (2)先去分母,去括号,移项,合并同类项,系数化1,检验,解分式方程即可. 【详解】解:(1)()()2121x x +−+22122x x x =++−−21x =−,24.(2024·四川自贡·中考真题)为传承我国传统节日文化,端午节前夕,某校组织了包粽子活动.已知七(3)班甲组同学平均每小时比乙组多包20个粽子,甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同.求甲,乙两组同学平均每小时各包多少个粽子.25.(2024·广东广州·中考真题)解方程:13 25x x=−.解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.26.(2024·江苏扬州·中考真题)为了提高垃圾处理效率,某垃圾处理厂购进A 、B 两种机器,A 型机器比B 型机器每天多处理40吨垃圾,A 型机器处理500吨垃圾所用天数与B 型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?27.(2024·山东威海·中考真题)某公司为节能环保,安装了一批A 型节能灯,一年用电16000千瓦·时.后购进一批相同数量的B 型节能灯,一年用电9600千瓦·时.一盏A 型节能灯每年的用电量比一盏B 型节能灯每年用电量的2倍少32千瓦·时.求一盏A 型节能灯每年的用电量.28.(2024·陕西·中考真题)解方程:2111x x +=−−. 【答案】3x =−29.(2024·广西·中考真题)综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5ddw=+前后.其中d前、d后分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:kg)【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.30.(2024·重庆·中考真题)某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A、B两种外墙漆各完成总粉刷任务的一半.据测算需要A、B两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A种外墙漆每千克的价格比B种外墙漆每千克的价格多2元.(1)求A、B两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?31.(2024·云南·中考真题)某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D型车的平均速度.32.(2024·福建·中考真题)解方程:3122xx x+=+−.去括号得:22x x x x−+−=+,3642 x=.解得10x=是原方程的根.经检验,10。
初中数学分式方程的应用基础训练1(附答案详解)1.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若在这两次机器人的销售中,该商场全部售完,而且售价都是130元,问该商场总共获利多少元?2.为了在学生中倡导扶危救困的良好社会风尚,营造和谐文明进步的校园环境,某校举行了“爱心永恒,情暖校园”慈善一日捐活动,在本次活动中,某同学对甲.乙两班捐款的情况进行统计,得到如下三条信息:信息一甲班共捐款120元,乙班共捐款88元;信息二乙班平均每人捐款数比甲班平均每人捐款数的0.8倍;信息三甲班比乙班多5人.请你根据以上三条信息,求出甲班平均每人捐款多少元?3.某班要购买一批篮球和足球.已知篮球的单价比足球的单价贵40元,花1500元购买的篮球的个数与花900元购买的足球的个数恰好相等.(1)篮球和足球的单价各是多少元?(2)若该班恰好用完1000元购买的篮球和足球,则购买的方案有哪几种?4.一个批发兼零售的文具店规定:凡一次购买铅笔300支以上(不包括300支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,小明来该店购买铅笔,如果给学校九年级学生每人购买1支,那么只能按零售价付款,需用150元;如果多购买60支,那么可以按批发价付款,同样需用150元.(1)这个学校九年级的学生总数在什么范围内?(2)如果按批发价购买360支与按零售价购买300支所付款相同,那么这个学校九年级学生有多少人?5.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?6.张丘建,我国南北朝时期(约公元5世纪)著名的数学家,著有《张丘建算经》.一次宴会上,张丘建出了一道题:“现有一只鹿向西跑,当猎人追至A处时,与鹿所在的B处还差36步(古代:1里=300步);鹿突然向北跑,此时骑马的猎人就沿着AD追去,追了50步至D处与鹿所在的位置C处还差10步(点A、C、D在同一直线上).如果此鹿不向北转,而继续向西跑,猎人需要追多远才能追上此鹿?”,已知单位时间内鹿跑的路程和猎人骑马追赶的路程的比值是定值,请解答这个问题.7.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?8.某单位在疫情期间用3000元购进A、B两种口罩1100个,购买A种口罩与购买B 种口罩的费用相同,且A种口罩的单价是B种口罩单价的1.2倍;(1)求A,B两种口罩的单价各是多少元?(2)若计划用不超过7000元的资金再次购进A、B两种口罩共2600个,已知A、B两种口罩的进价不变,求A种口罩最多能购进多少个?9.某校八年级学生到离学校25km处的时思社会实践基地进行社会实践活动,部分同学骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,求自行车的速度?10.列方程解应用题:为充实学校图书馆,某校购进《人类简史》和《未来简史》若干本,其中每本《人类简史》的价格比每本《未来简史》的价格多5元,用1600元购买《人类简史》的套数是用700元购买《未来简史》套数的2倍,求每本《人类简史》的价格.11.货车行驶25千米与汽车行驶35千米所用时间相同,已知汽车每小时比货车多行驶20千米,求两车的速度各为多少?12.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?13.2020年是脱贫攻坚、全面建设小康社会关键年.为响应党的号召,蓬溪县中职校向一所希望小学赠送文具1080件,现用A、B两种不同的包装箱进行包装,已知每个B 型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.问B型包装箱每个可以装多少件文具?14.如图,AB是⊙O的直径,BC交⊙O于点D,E是BD的中点,连接AE交BC于点F,∠ACB =2∠EAB.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若3cos4C=,8AC=,求BF的长.15.(列方程解应用题)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本,求A和B两种图书的单价分别为多少元?16.某厂计划生产10万只一次性无纺布口罩,为尽快完成任务,实际每天生产的数量是原计划的1.25倍,结果提前2天完成任务.求该厂原计划每天生产口罩的数量.17.甲、乙两地相距360千米,一辆贩毒车从甲地往乙地接头取货,警方截取情报后,立即组织干警从甲地出发,前往乙地缉拿这伙犯罪分子,结果警车与贩毒车同时到达,将犯罪分子一网打尽.已知贩毒车比警车早出发1小时15分,警车与贩毒车的速度比为4∶3,求贩毒车和警车的速度.18.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控.甲、乙两个工厂生产同一种防护口罩,甲厂每天比乙厂多生产口罩5万只,甲厂生产该种口罩40万只所用时间与乙厂生产该种口罩15万只所用时间相同,甲、乙两个工厂每天分别生产该种口罩多少万只?19.济南市地铁1号线于2019年1月1日起正式通车,在修建过程中,技术人员不断改进技术,提高工作效率,如在打通一条长600米的隧道时,计划用若干小时完成,在实际工作过程中,每小时打通隧道长度是原计划的1.2倍,结果提前2小时完成任务.(1)求原计划每小时打通隧道多少米?(2)如果按照这个速度下去,后面的360米需要多少小时打通?20.某牧区需要550顶帐篷过冬,现由甲、乙两个工厂生产,已知甲工厂每天生产的能力是乙工厂的1.5倍,并且生产240顶帐篷甲工厂比乙工厂少4天,(1)甲、乙两个工厂每天分别生产多少顶帐篷?(2)若甲工厂每天生产成本为3万元,乙工厂每天生产成本为2.4万元,要使这批帐篷的生产总成本不高于60万元,至少应安排甲工厂生产多少天?21.从青岛到济南有南线和北线两条高速公路:南线全长400千米,北线全长320千米.甲、乙两辆客车分别由南线和北线从青岛驶往济南,已知客车甲在南线高速公路上行驶的平均速度比客车乙在北线高速公路上快20千米/小时,两车恰好同时到达济南,求两辆客车从青岛到济南所用的时间是多少小时?22.小明用18元买软面笔记本,小丽用27元买硬面笔记本.已知每本硬面笔记本比软面笔记本贵2元,小明和小丽能买到相同数量的笔记本吗?23.某玩具店用2000元购进一批玩具,面市后,供不应求,于是店主又购进同样的玩具,所购的数量是第一批数量的3倍,但每件进价贵了4元,结果购进第二批玩具共用了6300元.若两批玩具的售价都是每件120元,且两批玩具全部售完.(1)第一次购进了多少件玩具?(2)求该玩具店销售这两批玩具共盈利多少元?24.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.(1)求甲、乙每天能生产多少万只口罩?(2)问至少应安排两个工厂工作多少天才能完成任务?25.在我市雨污分流工程中,甲、乙两个工程队共同承担茅洲河某段720米河道的清淤任务,已知甲队每天能完成的长度是乙队每天能完成长度的2倍,且甲工程队清理300米河道所用的时间比乙工程队清理200米河道所用的时间少5天.(1)求甲、乙两工程队每天各能完成多少米的清淤任务;费用不超过60万元,则至少应安排乙工程队清淤多少天?26.某超市计划购进甲、乙两种商品,已知甲的进价比乙多20元/件,用2000元购进甲种商品的件数与用1600元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价各是多少元?(2)小丽用950元只购买乙种商品,她购买乙种商品件数y(件),该商品的销售单价x(元),列出y与x函数关系式?若超市销售乙种商品,至少要获得20%的利润,那么小丽最多可以购买多少件乙种商品?27.列分式方程解应用题元旦期间,甲、乙两位好友约着一起开两辆车自驾去黄山玩,其中面包车为领队,小轿车紧随其后,他们同时出发,当面包车行驶了200千米时,发现小轿车只行驶了180千米,若面包车的行驶速度比小轿车快10千米/小时,请问:(1)小轿车和面包车的速度分别多少?(2)当小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面100千米的地方碰头,他们正好同时到达,请问小轿车需要提速多少千米/小时?(3)小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面s千米的地方碰头,他们正好同时到达,请问小轿车提速千米/小时.(请你直接写出答案即可)28.在某次商业足球比赛中,门票销售单位对团体购买门票实行优惠,决定在原定票价基础上每张降价100元,这样按原定票价需花费14 000元购买的门票张数,现在只花费了10 500元.(1)求每张门票的原定票价;(2)根据实际情况,组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.29.某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?30.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:若用1800元购进甲种商品的件数与用900元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共100件,其中销售甲种商品为a件(a 40),设销售完100件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.参考答案1.(1)100个;(2)4000元【解析】【分析】(1)设该商家第一次购进机器人x个,根据“第一次用11000元购进某款拼装机器人,用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元”列出方程并解答;(2)分别求出第一次购进机器人单价,第二次购进机器人单价,由利润=数量⨯每个机器人的利润,可求解.【详解】解:(1)该商家第一次购进机器人x个,根据题意得1100024000102x x=-解得:100x=经检验,100x=是原方程的解答:该商家第一次购进机器人100个.(2)第一次购进机器人的单价为:11000100110÷=(元),第二次购进机器人单价:11010120+=(元),所以商场总获利:100(130110)1002(130120)4000⨯-+⨯⨯-=(元)答:该商场总共获利4000元.【点睛】本题考查了分式方程的应用,解答分式方程时,一定要注意验根.2.甲班平均每人捐款2元【解析】【分析】设甲班平均每人捐款为x元,根据题目信息列出分式方程,并且检验即可.【详解】设甲班平均每人捐款为x元,由题意知:1208850.8x x=+整理得:48x=解得:2x =经检验:2x =是原分式方程的解答:加班平均每人捐款为2元.【点睛】本题考查了分式方程的实际应用,根据题目条件熟练的提取信息,并列式是解题的关键,其中“检验”是易忘记点,应该注意.3.(1)足球的单价为60元,篮球的单价为100元;(2)学校共有3种购买方案,方案1:购买7个篮球,5个足球;方案2:购买4个篮球,10个足球;方案3:购买1个篮球,15个足球.【解析】【分析】(1)设足球的单价为x 元,则篮球的单价为(40)x +元,根据“花1500元购买的篮球的个数与花900元购买的足球的个数恰好相等”列出分式方程即可求出结论;(2)设购买篮球m 个,足球n 个,根据“该班恰好用完1000元购买的篮球和足球”列出二元一次方程,然后求出所有正整数解即可.【详解】解:(1)设足球的单价为x 元,则篮球的单价为(40)x +元 依题意,得:150090040x x=+ 解得:60x =,经检验,60x =是原方程的解,且符合题意40100x ∴+=.答:足球的单价为60元,篮球的单价为100元.(2)设购买篮球m 个,足球n 个,依题意,得:100601000m n +=,3105m n ∴=-. m ,n 均为正整数,n ∴为5的倍数,5n ∴=或10或15,7m ∴=或4或1.答:学校共有3种购买方案,方案1:购买7个篮球,5个足球;方案2:购买4个篮球,10个足球;方案3:购买1个篮球,15个足球.【点睛】此题考查的是分式方程的应用和二元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.4.(1)设学生总数为x ,240300x <≤;(2)300人.【解析】【分析】(1)设这个学校九年级学生有x 人,根据“如果给学校九年级学生每人购买1支,那么只能按零售价付款;如果多购买60支,那么可以按批发价付款”,即可得出关于x 的一元一次不等式组,解之即可得出结论;(2)设铅笔的零售价为y 元,则批发价为300360y 元,根据数量=总价÷单价结合150元按批发价比按零售价多购买60支,即可得出关于y 的分式方程,解之经检验后即可得出y 值,再将其代入150y中即可求出结论. 【详解】解:(1)设这个学校九年级学生有x 人, 依题意,得:30060300x x ⎧⎨+>⎩, 解得:240300x <.答:这个学校九年级的学生总数大于240且小于等于300.(2)设铅笔的零售价为y 元,则批发价为300360y 元, 依题意,得:15015060300360y y -=, 解得:12y =, 经检验,12y =是原分式方程的解,且符合题意,∴150300y=.答:这个学校九年级学生有300人.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式组;(2)找准等量关系,正确列出分式方程.5.(1)甲工程队每天完成600米,乙工程队每天完成300米;(2)两工程队最多可以合作施工6天.【解析】【分析】(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,根据工作时间=工作总量÷工作效率结合甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天,即可得出关于x的分式方程,解之即可得出结论;(2)设甲队先单独工作y天,则甲乙两工程队还需合作6000600300600y-+=(20233-y)天,根据总费用=每天的费用×工作时间结合支付工程队总费用不超过79000元,即可得出关于y的一元一次不等式,解之即可得出结论.【详解】(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:6000x﹣60002x=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作6000600300600y-+=(20233-y)天,依题意,得:7000(y+20233-y)+5000(20233-y)≤79000,解得:y≥1,∴20233-y≤20233-=6.答:两工程队最多可以合作施工6天.6.如果此鹿不向北转,而继续向西跑,猎人需要追900步才能追上此鹿.【解析】【分析】先求出BC 的长, 设如果此鹿不向北转,而继续向西跑,猎人需要追x 步才能追上此鹿,根据单位时间内鹿跑的路程和猎人骑马追赶的路程的比值是定值,列方程求解即可.【详解】解:由题意可知,36AB =步,50AD =步,10CD =步,且AB BC ⊥.由勾股定理,得48BC ===.设如果此鹿不向北转,而继续向西跑,猎人需要追x 步才能追上此鹿. 根据题意,列方程,得364850x x -=. 解得900x =.经检验,900x =是原方程的解,且符合题意.答:如果此鹿不向北转,而继续向西跑,猎人需要追900步才能追上此鹿.【点睛】此题考查了分式方程的应用,根据等量关系得出方程是解答本题的关键,注意分式方程一定要检验.7.(1)每件甲种商品价格为70元,每件乙种商品价格为60元;(2)该商店最多可以购进20件甲种商品【解析】【分析】(1)分别设出甲、乙两种商品的价格,根据“用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同”列出方程,解方程即可得出答案;(2)分别设出购进甲、乙两种商品的件数,根据“投入的经费不超过3200元”列出不等式,解不等式即可得出答案.【详解】解:(1)设每件乙种商品价格为x 元,则每件甲种 商品价格为(10x +)元, 根据题意得:35030010x x=+ 解得:60x =.经检验,60x =是原方程的解,则1070x +=.答:每件甲种商品价格为70元,每件乙种商品价格为60元.-)件,根据题意得:(2)设购进甲种商品a件,则购进乙种商品(50a+-≤,a a7060(50)3200a≤.解得:20∴该商店最多可以购进20件甲种商品.【点睛】本题考查的是分式方程在实际生活中的应用,认真审题,根据题意列出方程和不等式是解决本题的关键.8.(1)A种口罩单价为3元,B种口罩单价为2.5元;(2)A种口罩最多能购进1000个.【解析】【分析】(1)设B种口罩单价为x元,则A种口罩单价为1.2x元,根据数量=总价÷单价结合用3000元购进A、B两种口罩1100个,即可得出关于x的分式方程,解之经检验后即可得出结论;-个,根据总价=单价×数量结合总(2)设购进A种口罩y个,则购进B种口罩(2600)y价不超过7000元,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设B种口罩单价为x元,则A种口罩单价为1.2x元,15001500+=,11001.2x xx=,解得 2.5x=是原分式方程的解,经检验, 2.5x=,∴1.23答:A种口罩单价为3元,B种口罩单价为2.5元;-个,(2)设购进A种口罩y个,则购进B种口罩(2600)y+-,y y3 2.5(2600)7000y≤,解得:1000答:A种口罩最多能购进1000个.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.9.25/km h【解析】【分析】设自行车的速度为 /,x kn h 则汽车的速度是3 /x km h ,根据题意列出方程,解出来即可.【详解】解:设自行车的速度为 /,x kn h 则汽车的速度是3 /x km h254025603x x-= 解之得: 25x =经检验; 25x =是方程的解答:自行车的速度是25/km h【点睛】本题考查分式方程的应用,关键在于找出等量关系,列出方程.10.每本《人类简史》的价格为40元【解析】【分析】设每本《人类简史》的价格为x 元,根据用1600元购买《人类简史》的套数是用700元购买《未来简史》套数的2倍列出方程即可求出答案.【详解】解:设每本《人类简史》的价格为x 元,则每本《未来简史》的价格为(5x -)元, 依题意,得:160070025x x =⨯-, 解得:40x =,经检验,40x =是所列分式方程的解,且符合题意.答:每本《人类简史》的价格为40元.【点睛】本题考查了分式方程的实际应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.11.货车的速度是50km/h ,小车的速度是70km/h【分析】设货车的速度为x km/h ,表示出小汽车的速度,进而表示出货车和小汽车所用的时间,用时间作为等量关系来列式.【详解】解:设货车的速度为x km/h ,则小汽车的速度为(x +20)km/h .352520x x=+ 50x =经检验,50x =是原方程的解,则x +20=70 .答:货车的速度是50km/h ,小车的速度是70km/h.【点睛】本题考查了分式方程中的路程问题,注意表示出货车和小汽车所用的时间,用时间作为等量关系来列式是解题的关键.12.至少应安排两个工厂工作10天才能完成任务.【解析】【分析】设乙厂每天能生产口罩x 万只,则甲厂每天能生产口罩1.5x 万只,根据工作时间=工作总量÷工作效率结合在独立完成60万只口罩的生产任务时甲厂比乙厂少用5天,即可得出关于x 的分式方程,解之经检验即可得出x 的值,再利用两厂工作的时间=总生产任务的数量÷两厂日生产量之和,即可求出结论.【详解】解:设乙厂每天能生产口罩x 万只,则甲厂每天能生产口罩1.5x 万只, 依题意,得:606051.5x x-=, 解得:x =4,经检验,x =4是原方程的解,且符合题意,∴1.5x =6,∴100÷(4+6)=10(天).答:至少应安排两个工厂工作10天才能完成任务.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 13.B 型包装箱每个可以装45件文具【解析】【分析】设B 型包装箱每个可以装x 件文具,依据单独使用B 型包装箱比单独使用A 型包装箱可少用12个;可列等量关系为:所用B 型包装箱的数量=所用A 型包装箱的数量-12,由此可得到所求的方程,进而求解【详解】解:设B 型包装箱每个可以装x 件文具,根据题意列方程为:1080x =108015x --12 21513500x x∴124530x x ==-经检验:145x =,230x =-都是原方程的解.但230x =-不符合实际情况,舍去.∴x=45答:B 型包装箱每个可以装45件文具.【点睛】此题考查分式方程的应用问题,理解题意,设好未知数,找准等量关系,列出方程是解题的关键,另外特别注意解分式方程不要漏掉检验,并且注意方程的解是否符合实际. 14.(1)AC 是⊙O 的切线,见解析;(2)83BF =【解析】【分析】(1)首先证明∠ACB =∠BAD ,然后根据圆周角定理的推论得出∠ACB +∠CAD=90°,则有∠BAD+∠CAD=90°,所以BA ⊥AC ,则可证明AC 是⊙O 的切线;(2)过点F 做FH ⊥AB 于点H .首先通过角平分线的性质得出FH=FD ,且FH ∥AC ,然后利用锐角三角函数求出CD,BD 的长度,然后设 DF=x ,则FH=x ,143BF x =-,最后利用3cos 4FH BFH BF ∠==建立关于x 的方程,解方程即可得出答案. 【详解】 解:(1)AC 是⊙O 的切线理由:如图,连接AD .∵ E 是BD 中点,∴BE DE =.∴ ∠DAE=∠EAB .∵ ∠ACB =2∠EAB ,∴∠ACB =∠BAD .∵ AB 是⊙O 的直径,∴ ∠ADB=∠ADC=90°,∴ ∠ACB +∠CAD=90°,∴ ∠BAD+∠CAD=90°.即 BA ⊥AC .∴ AC 是⊙O 的切线.(2)解:如图,过点F 做FH ⊥AB 于点H .∵ AD ⊥BD ,FH ⊥AB ,∠DAE=∠EAB ,∴ FH=FD ,且FH ∥AC .在Rt △ADC 中,∵3cos4C=,8AC=,∴ CD=6.同理,在Rt△BAC中,可求得323 BC=.∴143 BD=.设DF=x,则FH=x,143BF x=-.∵ FH∥AC,∴∠BFH=∠ACB.∴3 cos4FHBFHBF∠==.即3 1443xx=-.解得x=2,经检验,x=2是原分式方程的解,∴83 BF=.【点睛】本题主要考查切线的判定及性质,圆周角定理的推论,解直角三角形,掌握切线的判定及性质,圆周角定理的推论,锐角三角函数,分式方程的解法是解题的关键.15.A种图书的单价为30元,B种图书的单价为20元.【解析】【分析】设B种图书的单价为x元,则A种图书的单价为1.5x元,根据数量=总价÷单价结合用3000元购买的A种图书比用1600元购买的B种图书多20本,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设B种图书的单价为x元,则A种图书的单价为1.5x元,依题意,得:3000160020 1.5x x-=,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:A种图书的单价为30元,B种图书的单价为20元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.16.该厂原计划每天生产口罩1万只【解析】【分析】设该厂原计划每天生产口罩x万只,根据题意,列出分式方程即可求出结论.【详解】解:设该厂原计划每天生产口罩x万只.由题意可列方程101021.25x x-=,12.510 2.5x-=,1x=.经检验1x=是原方程的根.答:该厂原计划每天生产口罩1万只.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.17.警车96千米/小时,贩毒车72千米/小时【解析】【分析】设警车的速度为4xkm/h,则贩毒车的速度为3xkm/h,根据警车与贩毒车之间的时间关系建立方程求出其解,即可得出结果.【详解】解:设警车的速度为4xkm/h,则贩毒车的速度为3xkm/h,根据题意得:3605360 443x x+=,解得:x=24,经检验,x= 24 是原方程的根,∴原方程的根为x=24.。
分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时.1分 依题意,得29833122x x =⨯+. 5分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分1.0559x ∴≈答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.56⨯= 9分49.563415.56-=答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+xx . 3分 去分母,得 1200+4200=18x (或18x =5400)5分 解得 300x =. 6分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x=1 解这个方程,得x =25 ………………6分10、22402240220x x -=- 11、解:设这种计算器原来每个的进价为x 元, 1分根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分 80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x ⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ∴31=+x18、 20。
分式方程应用题的常见类型汇总类型1 工程问题1.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为________________.2.(十堰中考)甲、乙两名学生练习计算机打字,甲打一篇1 000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,问:甲、乙两人每分钟各打多少个字?3.(扬州中考)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.求原来每天制作多少件?4.一项工程,甲、乙两公司合做,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?类型2 行程问题5.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回.出租车的平均速度比公共汽车多20千米/时,回来时路上所花的时间比去时节省了14.设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是( )A.40x+20=34×40xB.40x=34×40x+20C.40x+20+14=40xD.40x=40x+20-146.(贵阳中考)2014年12月26日,西南真正意义上的第一条高铁——贵阳至广州高速铁路将开始试运行.从贵阳到广州,乘特快列车的行程约为1 800 km,高铁开通后,高铁列车的行程约为860 km,运行时间比特快列车所用的时间减少了16 h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.类型3 销售问题7.某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?8.华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2 500元,购买B品牌足球花费了2 000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌的足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A、B两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B品牌足球?9.某商场销售的一款空调机,每台的标价是1 635元.在一次促销活动中,按标价的8折销售,仍有9%的利润率.(1)求这款空调机每台的进价;(利润率=利润进价=售价-进价进价)(2)在这次促销活动中,商场销售了这款空调机100台.问:共盈利多少元?参考答案1.520+45x=12.设乙每分钟打x个字,则甲每分钟打(x+5)个字,由题意得1 000x+5=900x,解得x=45.经检验:x=45是原方程的解.答:甲每分钟打50个字,乙每分钟打45个字.3.设原来每天制作x件,由题意,得480x-480(1+50%)x=10,解得x=16.检验:x=16时,1.5x≠0,所以x=16是原分式方程的解.答:原来每天制作16件.4.(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得1x+11.5x=112,解得x=20,经检验x=20是方程的解且符合题意.1.5x=30.故甲,乙两公司单独完成此项工程,各需20天,30天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元,根据题意得12(y+y-1 500)=102 000,解得y=5 000,甲公司单独完成此项工程所需的施工费为:20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费为:30×(5 000-1 500)=105 000(元).故甲公司的施工费较少.5.A6.设特快列车的平均速度为x km/h,根据题意可列出方程为1 800x=8602.5x+16,解得x=91.检验:当x=91时,2.5x≠0.所以x=91是方程的根.答:特快列车的平均速度为91 km/h.7.设九年级学生有x人,根据题意,列方程得:1 936x×0.8=1 936x+88,整理得0.8(x+88)=x,解得x=352.经检验x=352是原方程的解.答:这个学校九年级学生有352人.8.(1)设购买一个A品牌足球x元,则购买一个B品牌足球(x+30)元,根据题意得2 500x=2 000x+30×2,解得x=50.经检验,x=50是原方程的解.x+30=80.答:购买一个A品牌足球需50元,购买一个B品牌足球80元.(2)设本次购买a个B品牌足球,则购进A品牌足球(50-a)个,根据题意得50×(1+8%)(50-a)+80×0.9a≤3 260,解得a≤3119 .∵a取正整数,∴a最大值为31.答:此次华昌中学最多可购买31个B品牌足球.9.(1)设这款空调机每台的进价为x元,则根据利润率公式有:9%=1 635×0.8-xx.解这个方程,得x=1 200.检验略.答:这款空调机每台的进价为1 200元.(2)1 200×0.09×100=10 800.答:商场盈利10 800元.。
分式方程与分式不等式应用题解析在数学领域中,分式方程和分式不等式是我们经常遇到的两个概念。
它们在实际生活和工作中有着广泛的应用。
本文将深入探讨分式方程与分式不等式的应用题解析,为读者提供全面的理解和解决问题的方法。
一、分式方程的应用题解析分式方程是一个含有分式的方程,其中未知数出现在分母或分子中。
下面我们通过几个应用题来解析分式方程的应用。
应用题1:某地天然气公司按下列电价表收费,计算某用户一月的天然气费用:若使用不超过40立方米,单价为0.8元/立方米;若使用超过40立方米但不超过100立方米,前40立方米单价为0.8元/立方米,超过40立方米的部分单价为0.6元/立方米;若使用超过100立方米,前40立方米单价为0.8元/立方米,40立方米到100立方米的部分单价为0.6元/立方米,超过100立方米的部分单价为0.4元/立方米。
解析:设用户使用天然气的量为x立方米,利用分式方程可以表示用户一月的天然气费用。
根据题意,我们可以列出以下等式:费用 = 单价 ×用量当使用不超过40立方米时,费用为0.8x元;当使用超过40立方米但不超过100立方米时,费用为0.8×40 + 0.6(x-40)元;当使用超过100立方米时,费用为0.8×40 + 0.6×(100-40) + 0.4(x-100)元。
从而得到了这个分式方程的应用题的解析方法。
应用题2:某项工程需要7天由甲、乙两台机器分别工作,由于甲机器工作效率高于乙机器工作效率的1/3,甲机器比乙机器早1天开始工作。
求甲机器和乙机器完成整个工程所需的天数。
解析:设乙机器完成整个工程所需的天数为x天,则甲机器完成整个工程所需的天数为x-1天。
根据题意,我们可以列出以下等式:乙机器每天的工作效率为1/x,甲机器每天的工作效率为1/(x-1)。
根据乙机器完成整个工程所需的天数的效率是甲机器的1/3,我们可以得到以下分式方程:1/x = (1/(x-1)) + 1/3通过解分式方程,可以找到乙机器和甲机器完成整个工程所需的天数的解。
一、八年级数学分式解答题压轴题(难) 1.如图,小刚家、王老师家、学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车送小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?
【答案】王老师的步行速度是5km/h,则王老师骑自行车的速度是15km/h.
【解析】 【分析】
王老师接小刚上学走的路程÷骑车的速度-平时上班走的路程÷步行的速度=2060小时. 【详解】 设王老师的步行速度是km/hx,则王老师骑自行车是3km/hx,
由题意可得:330.50.520360xx,解得:5x, 经检验,5x是原方程的根, ∴315x 答:王老师的步行速度是5km/h,则王老师骑自行车的速度是15km/h.
【点睛】 本题考查列分式方程解应用题.重点在于准确地找出相等关系,需注意①王老师骑自行车接小刚所走路程是(3+3+0.5)千米;②注意单位要统一.
2.已知下面一列等式: 111122;11112323;11113434;11114545;…
(1)请你按这些等式左边的结构特征写出它的一般性等式: (2)验证一下你写出的等式是否成立;
(3)利用等式计算:11(1)(1)(2)xxxx11(2)(3)(3)(4)xxxx.
【答案】(1)一般性等式为111=(+11nnnn);(2)原式成立;详见解析;(3) 244xx.
【解析】 【分析】 (1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算. 【详解】
解:(1)由111122;11112323;11113434;11114545;…,
知它的一般性等式为111=(+11nnnn); (2)1111(1)(1)nnnnnnnn111(1)1nnnn, 原式成立;
初二数学分式试题答案及解析1.下列运算正确的是()A.B.C.D.【答案】D【解析】A、,故A选项错误;B、,故B选项错误;C、,故C选项错误;D、,故D选项正确,故选D.【考点】约分2.不改变分式的值,如果把分子和分母中的各系数都化为整数,那么所得的正确结果是()A.B.C.D.【答案】A【解析】,故选A【考点】分式的基本性质3.某种商品在降价x%后,单价为a元,则降价前它的单价为( )A.;B.;C.;D..【答案】A.【解析】直接根据降价前它的单价×(1-降价的百分数)=现在的单价,列式得:.故选A.【考点】列代数式(分式).4.如果分式中的x、y都扩大到原来的3倍,那么分式的值( )A.扩大到原来的3倍B.扩大到原来的6倍C.不变D.不能确定【答案】C【解析】因为,所以分式的值不变.故选C.【考点】分式的基本性质.5.若,则x的取值范围是_______.【答案】x<1.【解析】由绝对值的定义和分式有意义的条件入手求解.试题解析:由题意得x-1≤0且x-1≠0即x≤1,且x≠1所以x<1.考点: 分式的基本性质.6.下列分式中,无论x取何值,分式总有意义的是A.B.C.D.【答案】A.【解析】分式有意义,分母不等于零.A、无论x取何值,x2+1>0,故该分式总有意义,故本选项正确;B、当x=-时,该分式的分母等于0,分式无意义,故本选项错误;C、当x=1时,该分式的分母等于0,分式无意义,故本选项错误;D、当x=时,该分式的分母等于0,分式无意义,故本选项错误;故选:A.考点:分式有意义的条件.7.观察下列各等式:,,,…,根据你发现的规律计算:=______(n为正整数).【答案】.【解析】本题重在理解规律,从规律中我们可以发现,中间的数值都是相反数,所以最后的结果就是,化简即可.试题解析:原式=2(1-)+2(-)+2(-)…+2(-)=2(1-)=.考点: 分式的加减法.8.已知a﹣b=2ab,则﹣的值为()A.B.﹣C.﹣2D.2【答案】C【解析】把所求分式通分,再把已知代入即可.解:﹣==﹣∵a﹣b=2ab∴∴=﹣2.故选C.点评:本题考查了分式的加减运算.解决本题首先应通分,然后整体代入,最后进行约分.9.请你先将分式:化简,再选取一个你喜欢且使原式有意义的数代入并求值.【答案】,当时,原式【解析】先对分子部分因式分解,再根据分式的基本性质约分,然后算加,最后代入求值即可. 解:原式.当时,原式【考点】分式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.10.计算:(1);(2)【答案】(1);(2)1【解析】(1)先根据有理数的乘方法则、二次根式的性质、绝对值的规律化简,再合并同类二次根式;(2)先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分即可.(1);(2).【考点】实数的运算,分式的化简点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.11.当x=___________时,分式的值为零【答案】—2【解析】分式的值为零,即=0.则故x=2(分母不为0,故舍去x=2),x=-2.故答案是x=-2.【考点】解分式方程及分式意义点评:本题难度较低,主要考查学生对解分式方程及对分式的意义知识点的掌握,注意求出分式方程答案后要检验分式分母不等于零。
分式方程应用题专题测试卷(含答案)一、单选题(共11题;共22分)1.(2020八上·中山期中)为迎接我市创建全国文明城市活动,环卫处投资20万元购买并投放一批A型“垃圾清扫车”,因为清扫车需求量增加,计划继续投放B型清扫车,B型清扫车的投放数量与A型清扫车的投放数量相同,投资总费用减少,购买B型清扫车的单价比购买A型清扫车的单价少50元,则B型清扫车每辆车的价格是多少元?设B型清扫车每辆车的价格为元,根据题意,列方程正确的是()A.B.C.D.2.(2020八上·晋州月考)某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A. B. C. D.3.(2020八上·温州开学考)小慧与小秀去距学校10千米的博物馆参观,小慧骑自行车先走,过了30分钟后,小秀乘汽车出发,结果她们同时到达,已知汽车的速度是骑车速度的4倍.设骑车的速度为x千米/小时,则所列方程正确的是()A. B. C. D.4.(2020八上·香坊期末)元旦期间,某水果店第一天用320元钱购进苹果销售,第二天又用800元钱购进这种苹果,所购数量是第一天购进数量的2倍,但每千克苹果的价格比第一天购进价多1元,若设水果店第一天购进水果千克苹果,则可列方程为().A. B. C. D.5.(2020八上·富锦期末)冬天到了,政府决定免费为贫困山区安装暖气,计划甲安装队为A山区安装660片,乙安装队为B山区安装600片,两队同时开工且恰好同时完工,甲队比乙队每天多安装20片.设乙队每天安装x片,根据题意,下面所列方程中正确的是()A. B. C. D.6.(2020八上·龙凤期末)两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地,设第二组的步行速度为x千米/小时,根据题意可列方程是().A. B. C. D.7.(2020八上·牡丹江期末)某班学生周末乘汽车到外地参加活动,目的地距学校,一部分学生乘慢车先行,出发后,另一部分学生乘快车前往,结果他们同时到达目的地,已知快车速度是慢车速度的2倍,如果设慢车的速度为,那么可列方程为()A. B. C. D.8.(2020八上·龙岩期末),两地相距,一艘轮船从地逆流航行到地,又立即从地顺流航行到地,共用去,已知水流速度为,若设该轮船在静水中的速度为,则下列所列方程正确是()A. B. C. D.9.(2020八上·息县期末)甲打字员计划用若干小时完成文稿的电脑输入工作,两小时后,乙打字员协助此项工作,且乙打字员文稿电脑输入的速度是甲的1.5倍,结果提前6小时完成任务,则甲打字员原计划完成此项工作的时间是()A. 17小时B. 14小时C. 12小时D. 10小时10.(2020八上·兴国期末)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.B.C.D.11.(2020八上·桂林期末)2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为,现在高速路程缩短了,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为,则根据题意可列方程为()A.B.C.D.二、填空题(共8题;共8分)12.(2020八上·铜仁月考)今年植树节前一天,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,则桂花树的单价为________元.13.(2020八上·余干期末)游泳者在河中逆流而上,于桥A下面将水壶遗失被水冲走,继续前游30分钟后他发现水壶遗失,于是立即返回追寻水壶,在桥A下游距桥1.2公里的桥B下面追到了水壶,那么该河水流的速度是________.14.(2020八上·襄城期末)某列列车平均提速v千米/时。
初二数学分式试题答案及解析1.下列运算正确的是()A.B.C.D.【答案】D.【解析】A、,分母的所有项都变号,故A错误;B、分子分母都乘以或除以同一个不为0的数分式的值不变,故B错误;C、分子分母都除以(x-y),故C错误;D、分子分母都除以(x-1),故D正确.故选D.【考点】分式的基本性质.2.若分式的值是0,则x = __________.【答案】 1【解析】由x2-1=0可得x=±1,又x+1≠0,所以x≠-1,所以x=1【考点】分式值为0的条件3.已知【答案】【解析】∵∴x=2y∴原式=【考点】分式的化简求值4.(1)已知计算结果是,求常数m的值;(2)已知计算结果是,求常数A、B的值.【答案】(1)3;(2).【解析】先把拨给条件进行通分,然后利用恒等式的性质进行计算即可求值. (1)∵=,又∵=,∴(2)∵,又∵=,∴.∴.【考点】1.分式的化简;2.解二元一次方程组.5.若,则x的取值范围是_______.【答案】x<1.【解析】由绝对值的定义和分式有意义的条件入手求解.试题解析:由题意得x-1≤0且x-1≠0即x≤1,且x≠1所以x<1.考点: 分式的基本性质.6.如果分式有意义,那么的取值范围是()A.>1B.<1C.≠1D.=1【答案】C【解析】由题,1-x≠0, x≠1,选C.分式有意义的条件是分母不为零,由题,1-x≠0, x≠1,选C.【考点】分式有意义的条件.7.计算:﹣.【答案】【解析】原式利用同分母分式的减法法则计算,约分即可得到结果.解:原式===.点评:此题考查了分式的加减法,分式的加减运算关键是通分,通分的关键是找最简公分母.8.将分式约分时,分子和分母的公因式是.【答案】2a【解析】观察分子分母,提取公共部分即可.解:分式约分时,分子和分母的公因式是:2a.故答案为:2a.点评:此题主要考查了约分,注意:找出分子分母公共因式时,常数项也不能忽略.9.在式子中,分式的个数有()A.2B.3C.4D.5【答案】B【解析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解:分式有:,,9x+工3个.故选B.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.10.把分式中的、都扩大3倍,那么分式的值().A.扩大3倍B.缩小3倍C.扩大9倍D.不变【答案】A【解析】由题意把、代入原分式,再把化简结果与原分式比较即可作出判断.解:由题意得则分式的值扩大3倍故选A.【考点】分式的基本性质点评:本题属于基础应用题,只需学生熟练掌握分式的基本性质,即可完成.11.已知=,则的值为__________。
2018年09月20日分式应用组卷一.选择题(共1小题)1.(2018•巴中)若分式方程+=有增根,则实数a的取值是()A.0或2 B.4 C.8 D.4或8二.解答题(共20小题)2.(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?3.(2018•东莞市)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?4.(2018•德阳)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n 天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?5.(2018•吉林)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.6.(2017•通辽)一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.7.(2017•毕节市)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.8.(2016•菏泽)为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)9.(2016•广东)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?10.(2015•宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?11.(2015•淄博)为充分利用雨水资源,幸福村的小明家和相邻的爷爷家采取了修建蓄水池、屋顶收集雨水的做法.已知小明和爷爷家的屋顶收集雨水的面积、蓄水池的容积和蓄水池已有水的量如表:小明家爷爷家屋顶收集雨水面积(m2)160 120蓄水池容积(m3)50 13蓄水池已有水量(m3)34 11.5气象预报即将会下雨,为了收集尽可能多的雨水,下雨前需从爷爷家的蓄水池中抽取多少立方米的水注入小明家的蓄水池?12.(2015•昆明)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?13.小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.14.(2014•达州)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?15.(2014•晋江市)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?16.(2014•襄阳)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?17.(2014•随州)某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?18.(2015秋•潍坊校级月考)若关于x的方程有增根,求增根和k的值.19.(2016春•长宁区期末)解方程:x2+3x﹣=8.20.(2016•富顺县校级模拟)用换元法解分式方程:=2解:设=m,则原方程可化为m﹣=2;去分母整理得:m2﹣2m﹣3=0解得:m1=﹣1,m2=3即:=﹣1或=3;解得:x=或x=﹣经检验:x=或 x=﹣是原方程的解.故原方程的解为:x1=,x2=﹣.请同学们借鉴上面换元法解分式方程的方法,先解下列方程,然后再化简求值:已知a是方程的根,并求代数式的值?21.(2017春•长泰县月考)已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.2018年09月20日雯惠的初中数学组卷参考答案与试题解析一.选择题(共1小题)1.(2018•巴中)若分式方程+=有增根,则实数a的取值是()A.0或2 B.4 C.8 D.4或8【解答】解:方程两边同乘x(x﹣2),得3x﹣a+x=2(x﹣2),由题意得,分式方程的增根为0或2,当x=0时,﹣a=﹣4,解得,a=4,当x=2时,6﹣a+2=0,解得,a=8,故选:D.二.解答题(共20小题)2.(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?【解答】解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.3.(2018•东莞市)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.4.(2018•德阳)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n 天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?【解答】解:(1)设B工程公司单独完成需要x天,根据题意得:45×+54(+)=1,解得:x=120,经检验x=120是分式方程的解,且符合题意,答:B工程公司单独完成需要120天;(2)根据题意得:m×+n×=1,整理得:n=120﹣m,∵m<46,n<92,∴120﹣m<92,解得42<m<46,∵m为正整数,∴m=43,44,45,又∵120﹣m为正整数,∴m=45,n=90,答:A、B两个工程公司各施工建设了45天和90天.5.(2018•吉林)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示甲队每天修路的长度,庆庆同学所列方程中的y表示甲队修路400米所需时间或乙队修路600米所需时间;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米所需时间或乙队修路600米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间或乙队修路600米所需时间.(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可).(3)选冰冰的方程:=,去分母,得:400x+8000=600x,移项,x的系数化为1,得:x=40,检验:当x=40时,x、x+20均不为零,∴x=40.答:甲队每天修路的长度为40米.选庆庆的方程:﹣=20,去分母,得:600﹣400=20y,将y的系数化为1,得:y=10,经验:当y=10时,分母y不为0,∴y=10,∴=40.答:甲队每天修路的长度为40米.6.(2017•通辽)一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.【解答】解:设汽车出发后第1小时内的行驶速度是x千米/小时,根据题意可得:=1++,解得:x=80,经检验得:x=80是原方程的根,答:汽车出发后第1小时内的行驶速度是80千米/小时.7.(2017•毕节市)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.【解答】解:(1)设这种笔单价为x元,则本子单价为(x﹣4)元,由题意得:=,解得:x=10,经检验:x=10是原分式方程的解,则x﹣4=6.答:这种笔单价为10元,则本子单价为6元;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得:10m+6n=100,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.8.(2016•菏泽)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)【解答】解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:=2×,解得:x=3.2,经检验:x=3.2是原分式方程的解,且符合题意,答:A4薄型纸每页的质量为3.2克.9.(2016•广东)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:,解得:x=100,经检验x=100是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加y%,可得:,解得:y=20,经检验y=20是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.10.(2015•宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【解答】解:(1)设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得:x+2x﹣600=6600,解得:x=2400,2x﹣600=4200,答:B花木数量为2400棵,则A花木数量是4200棵;(2)设安排a人种植A花木,由题意得:=,解得:a=14,经检验:a=14是原分式方程的解,26﹣a=26﹣14=12,答:安排14人种植A花木,12人种植B花木.11.(2015•淄博)为充分利用雨水资源,幸福村的小明家和相邻的爷爷家采取了修建蓄水池、屋顶收集雨水的做法.已知小明和爷爷家的屋顶收集雨水的面积、蓄水池的容积和蓄水池已有水的量如表:小明家爷爷家屋顶收集雨水面积(m2)160 120蓄水池容积(m3)50 13蓄水池已有水量(m3)34 11.5气象预报即将会下雨,为了收集尽可能多的雨水,下雨前需从爷爷家的蓄水池中抽取多少立方米的水注入小明家的蓄水池?【解答】解:下雨前需从爷爷家的蓄水池中抽取x立方米的水注入小明家的蓄水池,由题意得=,解得:x=6,经检验:x=6是所列方程的根.答:下雨前需从爷爷家的蓄水池中抽取6立方米的水注入小明家的蓄水池.12.(2015•昆明)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路1200 米;(2)求原计划每小时抢修道路多少米?【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.13.(2014•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,由题意得=,解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.14.(2014•达州)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?【解答】解:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,由题意得,×2=,解得:x=80,经检验;x=80是原分式方程的解,且符合题意,则第一次进货100件,第二次进货的单价为88元,第二次进货200件,总盈利为:(100﹣80)×100+(100﹣88)×(200﹣10)+10×(100×0.8﹣88)=4200(元).答:在这两笔生意中,商家共盈利4200元.15.(2014•晋江市)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.16.(2014•襄阳)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:=,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.17.(2017春•长泰县月考)已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.【解答】解:方程两边同时乘以(x+2)(x﹣1),去分母并整理得(m+1)x=﹣5,(1)∵x=1是分式方程的增根,∴1+m=﹣5,解得:m=﹣6;(2)∵原分式方程有增根,∴(x+2)(x﹣1)=0,解得:x=﹣2或x=1,当x=﹣2时,m=1.5;当x=1时,m=﹣6;(3)当m+1=0时,该方程无解,此时m=﹣1;当m+1≠0时,要使原方程无解,由(2)得:m=﹣6或m=,综上,m的值为﹣1或﹣6或1.5.18.(2015秋•潍坊校级月考)若关于x的方程有增根,求增根和k的值.【解答】解:去分母得:3x+3﹣x+1=x+kx,由分式方程有增根,得到3x(x﹣1)=0,解得:x=0或x=1,把x=0代入整式方程得:4=0,矛盾,舍去;把x=1代入整式方程得:k=5.19.(2016春•长宁区期末)解方程:x2+3x﹣=8.【解答】解:设u=,原方程等价于﹣20u=8.化简,得20u2+8u﹣1=0.解得u=,u=﹣.当u=时,x2+3x=10.解得x=﹣5,x=2,经检验x=﹣5,x=2是原分式方程的解;当u=﹣时,x2+3x+2=0.解得x=﹣1,x=﹣2,经检验:x=﹣1,x=﹣2是原分式方程的解;综上所述:x=﹣5,x=2,x=﹣1,x=﹣2是原分式方程的解.20.(2016•富顺县校级模拟)用换元法解分式方程:=2解:设=m,则原方程可化为m﹣=2;去分母整理得:m2﹣2m﹣3=0解得:m1=﹣1,m2=3即:=﹣1或=3;解得:x=或x=﹣经检验:x=或 x=﹣是原方程的解.故原方程的解为:x1=,x2=﹣.请同学们借鉴上面换元法解分式方程的方法,先解下列方程,然后再化简求值:已知a是方程的根,并求代数式的值?【解答】解:()2﹣()﹣2=0设=m,则原方程可化为m2﹣m﹣2=0,解这个整式方程得:m1=2,m2=﹣1即:=2或=﹣1;解得:x=4或x=﹣经检验:x=4或 x=﹣是原方程的解.故原方程的解为:x1=4,x2=﹣.因为a是方程的根,所以,a=4或a=﹣=÷=÷=•=则①当a=4时,原式===2;②当a=﹣时,原式===﹣1即:所求代数式的值为2或﹣121.(2014•随州)某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?【解答】解:设甲队单独完成工程需x天,由题意,得:×9+×5=1,解得:x=20,经检验得:x=20是方程的解,∵﹣=,∴乙单独完成工程需30天,∵20<30,∴从缩短工期角度考虑,应该选择甲队.。