分式应用题组卷
- 格式:doc
- 大小:238.00 KB
- 文档页数:16
分式方程应用题总汇及答案1、A、B 两地的距离是 80 公里.一辆公共汽车从 A 地驶出 3 小时后.一辆小汽车也从A 地出发.它的速度是公共汽车的3 倍.已知小汽车比公共汽车迟20 分钟到达B 地.求两车的速度。
【提示】设共交车速度为 x.小汽车速度为 3x.列方程得:80/(3x) +3=80/x +20/602、为加快西部大开发.某自治区决定新修一条公路.甲、乙两工程队承包此项工程。
如果甲工程队单独施工.则刚好如期完成;如果乙工程队单独施工就要超过 6 个月才能完成.现在甲、乙两队先共同施工 4 个月.剩下的由乙队单独施工.则刚好如期完成。
问原来规定修好这条公路需多长时间?【提示】设时间为 x 个月.列方程得:[1/x+1/(x+6)]*4+(x-4)/(x+6)=13、某工人原计划在规定时间内恰好加工 1500 个零件.改进了工具和操作方法后. 工作效率提高为原来的 2 倍.因此加工 1500 个零件时.比原计划提前了五小时.问原计划每小时加工多少个零件?【提示】设原计划每小时加工 x 个零件.列方程得:1500/2x +5=1500/x4、甲、乙两组学生去距学校 4.5 千米的敬老院打扫卫生.甲组学生步行出发半小时后.乙组学生骑自行车开始出发.结果两组学生同时到达敬老院.如果步行的速度是骑自行车的速度的 1/3.求步行和骑自行车的速度各是多少?【提示】设步行的速度是每小时 x 千米.则 4.5/3x +0.5=4.5/x5、某质检部门抽取甲、乙两个相同数量的产品进行质量检测.结果甲厂有 48 件合格产品.乙厂有 45 件合格产品.甲厂合格率比乙厂高 5%.求抽取检验的产品数量及甲厂的合格率。
【提示】设抽取检验的产品数量为 x.则(48/x -45/x)*100%=5%6、某车间加工 1200 个零件后.采用了新工艺.工效提高 50%.这样加工同样多的零件就少用 10 小时.采用新工艺前后每小时分别加工多少个零件?7、A、B 两地相距 48 千米.一艘轮船从 A 地顺流航行至 B 地.又立即从 B 地逆流返回A 地.共用去 9 小时.已知水流速度为 4 千米/时.若设该轮船在静水中的速度为x 千米/时.则可列方程求解。
分式测试题及答案一、选择题1. 下列哪个选项不是分式?A. \( \frac{1}{x} \)B. \( 3x + 2 \)C. \( \frac{x}{y} \)D. \( \frac{3}{2x} \)答案:B2. 分式 \( \frac{x^2 - 1}{x - 1} \) 可以化简为:A. \( x \)B. \( x + 1 \)C. \( x - 1 \)D. \( 1 \)答案:B3. 如果 \( \frac{a}{b} \) 是一个分式,且 \( a \) 和 \( b \) 都是正整数,那么 \( \frac{a}{b} \) 的值:A. 总是大于1B. 总是小于1C. 可以是任何实数D. 总是等于1答案:C二、填空题4. 分式 \( \frac{2x^2 - 3x}{x - 3} \) 的值为0的条件是_______ 。
答案:\( x = \frac{3}{2} \)5. 如果 \( \frac{1}{x} + \frac{2}{y} = 1 \),那么\( \frac{x}{y} + \frac{y}{x} \) 的值为 _______ 。
答案:3三、解答题6. 化简分式 \( \frac{3x^2 - 12x + 12}{x^2 - 4} \) 。
答案:首先分解分子和分母的因式,得到 \( \frac{3(x -2)^2}{(x - 2)(x + 2)} \),然后约去公共因子 \( (x - 2) \),得到 \( \frac{3(x - 2)}{x + 2} \)。
7. 解分式方程 \( \frac{1}{x} - \frac{1}{x + 1} = \frac{2}{x(x + 1)} \)。
答案:首先找到分母的最小公倍数,即 \( x(x + 1) \),然后将方程两边同乘以 \( x(x + 1) \) 以消除分母,得到 \( x + 1 - x = 2 \),解得 \( x = 3 \)。
分式的运算(一)、分式定义及有关题型 题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义 (1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义: (1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式(1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx yx --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出yx11+. 【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---. (三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x 题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232zy x xzyz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a aa --的值. 题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ; (2)a b abb b a a ----222; (3)ba c cb ac b c b a c b a c b a ---++-+---++-232; (4)b a b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-;(6)2121111x x x ++++-; (7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x . 2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值.(四)、整数指数幂与科学记数法 题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a(2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值.题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯. 练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- (2)322231)()3(-----⋅n m n m (3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值. 第二讲 分式方程(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程 (1)xx 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值. 【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围. 提示:032>-=ax 且2≠x ,2<∴a 且4-≠a . 题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c . 题型五:列分式方程解应用题练习:1.解下列方程: (1)021211=-++-x xx x ; (2)3423-=--x x x ; (3)22322=--+x x x ; (4)171372222--+=--+x x x x xx (5)2123524245--+=--x x x x(6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程: (1)bxa211+=)2(a b ≠;(2))(11b a x b b x a a ≠+=+. 3.如果解关于x 的方程222-=+-x x x k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值. (二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法例1.解方程:231+=x x 二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----xx x 四、分子对等法例4.解方程:)(11b a xb b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解,求m 的值。
分式练习题一、选择题 (共 8 题,每题有四个选项,其中只有一项符合题意。
每题3 分,共 24 分 ):1. 下列运算正确的是 ( )A.x 10÷ x 5=x 2B.x-4· x=x -3 C.x3· x 2 =x 6 D.(2x -2 ) -3=-8x62. 一件工作 , 甲独做 a 小时完成 , 乙独做 b 小时完成 , 则甲、乙两人合作完成需要 ( )小时 .A.11 B. 1 C. a b ab 3. 化简a b 等于( )1aba b D.a ba b a bA.a 2b 2 B.(a b) 2 C.a 2b 2D.( a b)2a 2b 2a 2b 2a 2b 2a 2b 24. 若分式x 2 4的值为零 , 则 x 的值是 ( )x 2x 2A.2 或 -2B.2C.-2D.42x 5 y5. 不改变分式2 x 2 的值 , 把分子、分母中各项系数化为整数 ,结果是()y 3A.2 x15 yB.4 x5 y C.6x 15 y D. 12x 15 y4x y2 x3 y4 x 2 y 4 x 6 y6. 分式 : ①a2 , ② ab , ③ 4a , ④ 1 中, 最简分式有 ( )a 23a 2b 2 12( a b) x 2A.1 个B.2个C.3 个D.4个7. 计算x x x x4x 的结果是 ( )2 2 2 xA. -1 B.1 C.-1D.12x 2x8. 若关于 x 的方程xac有解 , 则必须满足条件 ( )b x dA. a ≠ b ,c ≠ dB. a ≠b , c ≠ -dC.a ≠ -b , c≠d C.a ≠-b , c≠-d9. 若关于 x 的方程 ax=3x-5 有负数解 , 则 a 的取值范围是 ( )A.a<3B.a>3C.a≥ 3D.a≤ 310. 解分式方程2 3 6x 1 x 1 x 2, 分以下四步 , 其中 , 错误的一步是 ( )1A. 方程两边分式的最简公分母是 (x-1)(x+1)B. 方程两边都乘以 (x-1)(x+1), 得整式方程 2(x-1)+3(x+1)=6C. 解这个整式方程 , 得 x=1D. 原方程的解为 x=1二、填空题 : ( 每小题 4 分, 共 20分)11. 把下列有理式中是分式的代号填在横线上.(1) - 3x ;(2) x ;(3) 2 x 2 y 7xy 2;(4) - 1x ;(5)5 ; (6) x 21 ;(7) - m2 1 ; (8) 3m 2 .y38y 3x 1 0.512. 当 a时,分式a1有意义.2a313. 若 x= 2 -1, 则 x+x -1 =__________.14. 某农场原计划用 m 天完成 A 公顷的播种任务 , 如果要提前 a 天结束 , 那么平均每天比原计划要多播种 _________公顷 .115. 计算 ( 1)21 5 (2004) 0 的结果是 _________.216. 已知 u=s 1 s 2(u ≠ 0), 则 t=___________.t1xm17. 当 m=______时 , 方程2 会产生增根 .x 3 x 318. 用科学记数法表示 :12.5 毫克 =________吨 .19. 当 x 时,分式3 x的值为负数.2 x20. 计算 (x+y) ·x 2 y 2x 2 y 2=____________.y x三、计算题 : ( 每小题 6 分, 共 12分)36x 5xy 2x 4 yx 221.;22.yx 2 .x 1 x x2xx y x y x 4 4 y 2四、解方程 :(6 分 )23.1 2 12 。
(完整版)分式方程应用题专项练习50题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN分式方程应用题专项练习1、老城街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.;求甲、乙两队单独完成这项工程各需多少天2.某工厂为了完成供货合同,决定在一定天数内生产原种零件400个,由于对原有设备进行了技术改进,提高了生产效率,每天比原计划增产25%,结果提前10天完成了任务.原计划每天生产多少个零件?3、某项工程如果甲单独做,刚好在规定的日期内宛成,如果乙单独做,则要超出规定日期3天,现在先由甲、乙两人合做两天后,剩下的任务由乙完成,也刚好能按做时完式,问规定的日期是几天?4、某工程由甲、乙两队合做6天完成,厂家需会甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元。
(1) 求甲、乙、丙各队单独完成全部工程各需多少天?(2) 若工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。
5.一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间6、轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相同,已知水流的速度是3千米/时,求轮船在静水中的速度。
7.一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.8、如图,小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3km,王老师家到学校的路程为0.5km,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问王老师的步行速度及骑自行车的速度各是多少?9、一小船由A港到B顺流航行需6小时,由B港到A港逆流航行需8小时,小船从早晨6时由A 港到B港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。
数学组卷1参考答案与试题解析一.选择题(共24小题)1.(2009•杭州)已知点P (x ,y )在函数y=的图象上,那么点P 应>,∴,即2.(2007•天水)函数的自变量x 的取值范围是( )解:根据题意得:3.在式子,,,,+,9x+,中,分式的个数是( )解:分式有,,4.(2010•毕节地区)在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分D=5.下列各式中,分式的个数是(),的分母中均不含有字母,因此它们是整式,而不是分式;,,那么式子不是分式,是整式.6.下列各式:,的分母中均不含有字母,因此它们是整式,飞分母中含有字母,因此是分式.不是分7.关于分式有意义的正确说法是( x 、y 不都为0 )8.要使分式有意义,则x的取值应为()时,分式9.分式有意义,则x应满足()10.分式有意义的条件是()时,分式11.要使分式有意义,则x应满足的条件是()12.求使有意义的x 的取值范围是( )(13.若在实数范围内有意义,则( )14.若代数式有意义,则x 的取值范围是( )15.若分式的值为0,则x的值为()16.分式值为零的条件是()17.已知,则的值为()可以设为=k,即:==18.若使分式的值为正数,则x的取值范围是()>﹣<﹣>﹣,19.若分式的值是负数,则x的取值范围是()<x<2 或<x<2或x<解:∵分式的值是负数,<或<20.横坐标和纵坐标都是整数的点叫作整点,函数的图象上的整点的,得出当y===3+为整数时,(舍去)、﹣、、﹣(舍去)21.分式的值是()或=122.若表示一个整数,则整数a可以取的值有()要使为整数,表示一个整数,表示一个整数23.若x为整数,且的值为整数,则符合条件的x的个数为()先将分时化简,得到=24.a是有理数,则的值不能是()的分子为取任何有理数,的值永远不会是时,二.填空题(共6小题)25.一组按规律排列的式子:,其中第8个式子是﹣.1;1﹣1=1﹣1..26.(2003•山西)函数y=中的自变量x的取值范围是x≥﹣3.解:根据题意得:27.x=1时,分式无意义,则a=2.28.当x>1且≠3 时,代数式有意义..29.如果代数式有意义,那么点P (m ,n )在直角坐标系的第 三象限. 有意义,30.a ,b ,c 为△ABC 的三边,且分式无意义,则△ABC 为 等边 三角形.解:∵分式分式组卷2参考答案与试题解析一.选择题(共14小题) 1.(2008•山西)下列运算正确的是( ) A .B . (﹣a ﹣b )2=a 2+2ab+b 2C .D .、由于、由于、2.已知x 为整数,且分式的值为整数,则x 可取的值有( 3个 ) =3.(2012•钦州)如果把的x 与y 都扩大10倍,那么这个代数式的值( )=,可见新分式与原分式的值相等;4.下列各式中,与分式的值相等的是( )D=,故本选项错误;、×=、=、=,故本选项错误.5.中x 、y 的值都变为原来的2倍,则此分式的值( )是原来的==×..、分式、分式的分子分母应该同时缩小通分,得,分式的值不变,所以所以分式所以分式倍,得到7.如果使分式有意义的一切实数x ,上述分式的值都不变,则=( )D有意义的一切实数=,时,=,=,=.8.如果分式中,x ,y 的值都变为原来的一半,则分式的值(扩大2倍 )x y 解:分别用y ==9.分式中x,y,z的值都变为原来的2倍,则分式的值变10.下列三个等式,,中成立的有=,==﹣正确;===11.根据分式的基本性质,可变形为()D先把分式的分母提取负号得出==,D隐含着D、错误,应为﹣=、错误,.=二.填空题(共14小题)15.已知实数a>b>0,若满足a2+b2=3ab ,则分式的值等于.,,=,故答案为:16.已知两个整数a、b,满足0<b<a<10,且是整数,那么数对(a,b)有7个.是整数,则分母是整数,则17.已知,则=.x++=16=14==故答案为:.的形式是解此题的关键.18.已知:=6,那么的值为.=6==故答案为19.==,括号内应依次填入x ﹣y 、 ﹣2 . ,20.若成立,则a 的取值范围是 a ≠﹣ .﹣.21.已知分式,当a 、b 扩大相同倍数时值不变,请你写出一个符合这一要求且与分母不同、只含字母a 、b 的分子来: ab .22.已知a :b :c=2:3:5,则的值为.,故答案为:23.根据分式的基本性质填空:. a ﹣2 .==24.约分:= .==故答案是:.25.(2012•杭州)化简得 ;当m=﹣1时,原式的值为 1 .先把分式的分子和分母分解因式得出,,,=故答案为:,26.填空:.6a 227.; .==,==.28.=.﹣﹣﹣﹣故答案为三.解答题(共2小题)29.解方程:(1)10x+7=12x﹣5(2)=﹣1(3).)根据分式的基本性质得出﹣.)方程化为:=1.30.若使为可约分数,则自然数n的最小值应是多少?可约分,分子与分母有公因数,设分子:解:要使分式组卷3参考答案与试题解析一.选择题(共17小题)1.(2004•十堰)若分式(A,B为常数),D所以解得2.(2001•海南)甲、乙两人3次都同时到某个体米店买米,甲每次买m(m为正整数)千克米,乙每次买米用去2m元.由于市场方面的原因,虽然这3次米店出售的是一样的米,但单价却分别为每千克1.8元、2.2元、2元,那么比较+=D=+=,故选项错误;= =5.已知a+b=2,ab=﹣5,则的值等于( )D+==﹣6.设m=,n=,p=.若a <﹣3,则( )﹣=﹣=>.=4=﹣=,错误;﹣=,正确.故选8.已知,则x ()+y ()+z ()的值是( ) 分别把(++=0可知,由+﹣,+﹣,=,(((﹣)(﹣9.若xy=a ,(b >0),则(x+y )2的值为( ) (10.已知,x 为整数,则M ,N 的大小关系是( )=﹣,、==,故本选项错误;、==12.已知a 、b 为实数且ab=1,设P=,Q=;则P 、Q 的大P=Q=+,13.已知a、b、c、d都是正实数,且,且A=与0的大小关系﹣D.故该选项错误;15.使[](x2﹣4x+4)的值为整数的整数x的个数为[],要使原式的必须是整数,所以16.甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式购粮的平均单价是:,乙购粮的平均单价是:>17.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是p:1,而在另一个瓶子中是q:1,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()D×+1×=+水之和为:+++).二.填空题(共7小题) 18.已知关于x 的不等式组的解集为3≤x <5,则﹣的值是. 的解为,故可得方程组,代入求出即可.<,=.故答案为:19.(2009•肇庆)观察下列各式:,,,…,根据观察计算:=(n 为正整数).(+﹣+﹣+)().20.(2006•茂名)若,,则=3.解:两式相加得,+=12+=321.已知,那么=11.=3﹣2+=9+2=11互为倒数的特点,利用完全平方公式求解.22.(2006•龙岩)已知实数a、b满足:a•b=1,那么的值为1.==23.若已知(其中A、B为常数),则A=﹣0.5,B= 2.5.解:原方程可变为:==,解得24.观察下列各式:,…,=.根据上式所反映出来的规律,请你计算:…=.首先观察归纳得到规律为:=(﹣)…(﹣+﹣﹣+﹣=).故答案为:此题考查了分式的加减运算法.注意掌握规律(﹣)三.解答题(共6小题)25.化简:(1)﹣|1﹣|+2﹣1;(2)﹣.|1﹣+﹣.26.化简:()÷.×,27.(1)(2).××××.28.计算:(1)(﹣3)2﹣|﹣|+2﹣1﹣(2)(2﹣)﹣.|+2﹣+﹣﹣)﹣,﹣﹣,,,,.29.有理数a,b,c均不为0,且a+b+c=0,设,试求x19﹣99x+2009的值.,则可得30.,求A、B的值.,==解方程组得:分式组卷4参考答案与试题解析一.选择题(共11小题) 1.若a ,b 是两个正数,且,则( )D≤,.2.(2008•苏州)若x 2﹣x ﹣2=0,则的值等于( )D或=n+1n n ﹣1n ﹣2即最终求得===的数量关系,转化为求比值,即求.4.(2002•聊城)若x 2﹣9=0,则的值为( )=5.有理数a 、b 、c 满足下列条件:a+b+c=0且abc <0,那么的值是( )做变换,已知﹣6.若,则的值为( )D得7.如果a、b、c是非零实数,且a+b+c=0,那么的所由①②知8.已知,则的值为()把①③代入=.9.已知,则的值为(),然后将所求的分式转化的形式,最后整体代入求值.10.设,那么S与2的大小关系是()先对,运用通分化简,再对==2===由于11.若实数满足1<x<2,则分式的值是()=+,二.填空题(共9小题)12.若,xy+yz+zx=kxyz,则实数k=3++=5 +==713.在公式中,已知s,a,b,则h=.s=(.故答案为:14.若,则a+ac﹣2c=1.a=1+b=,,①=,②,×15.如图,从一个边长为a 的正方形纸片ABCD 中剪去一个宽为b 的长方形CDEF ,再从剩下的纸片中沿平行短边的方向剪去一个边长为c 的正方形BFHG ,若长方形CDEF 与AGHE 的面积比是3:2,那么=.==故答案为:16.某工厂生产的灯泡中有是次品,实际检查时,只发现其中的被剔除,另有的正品也被误以为是次品而剔除,其余的灯泡全部上市出售,那么该工厂出售的灯泡中次品所占的百分率是 5% . ××﹣﹣17.已知m,n是实数,且满足4m2+9n2﹣4m+6n+2=0,那么分式的值是﹣1.18.已知abc=1,则的值是1.19.已知a≠0,b≠0,且=4,那么=.根据已知==.故答案为﹣20.实数a、b、c都不为0,且a+b+c=0,则=﹣3.,从已知中可以得出,,三.解答题(共10小题)21.计算:(1);(2);(3)÷(x+3)•;(4)(a﹣)÷•(5)()÷•(2﹣x)2;(6)•(﹣)2,﹣+××;××,;=[﹣×ו;××.22.计算:(1);(2);(3);(4);(5);(6);(7);(8).,;×××;ו•++.23.计算:..24.已知代数式,请说明在代数式有意义的条件下,无论a取何值代数式的值不变.•﹣﹣=525.计算题:(1);(2);(3)a,﹣,﹣(••,,26.(1)求不等式组的整数解;(2)化简:(1+)÷.),<••27.计算:(1);(2)(﹣)(x2﹣1).•)﹣28.探究性问题:,,,则=﹣.试用上面规律解决下面的问题: (1) 计算;(2) 已知,求的值.解:根据已知的三个等式,总结规律得=﹣ ﹣++﹣=﹣=)由=+﹣+﹣+﹣﹣=1=.故答案为:﹣29.甲、乙两人同时在同一个超市分两次购买同一种水果,甲每次都买了20千克水果,乙每次都用20元去买水果.由于价格上涨,第二次购买时每千克水果上涨了0.4元.(1)若第一次购买时,该水果单价为a 元/千克,甲、乙两人所购水果的平均价格分别是多少?(2)谁的购买方式更合算?请说明理由. )根据题意可知,甲的平均价格为=a+0.2==(元)+,=﹣>30.化简: (1)(2)(3)(4).)根据分式的加减运算法则得到,再约分即可;﹣,再根据分式的加减••﹣•﹣﹣﹣[﹣]﹣=分式组卷5参考答案与试题解析一.选择题(共14小题)D2.下列关于x的方程①,②,③,④的方程②,③的方程①,④3.(2012•鸡西)若关于x的分式方程无解,则m的值为()4.不解方程,判断的根是( ),故选项代入方程得:左边+==≠5.当分式方程中的a 取下列某个值时,该方程有解,则这个a 是( )6.若方程+=﹣1无解,则m 的值为( ) 或﹣。
100道分式试题及答案一、选择题1. 下列哪个选项是分式的加法运算的正确结果?A. \( \frac{1}{x} + \frac{1}{y} = \frac{1}{xy} \)B. \( \frac{1}{x} + \frac{1}{y} = \frac{x + y}{xy} \)C. \( \frac{1}{x} + \frac{1}{y} = \frac{y}{x} + \frac{x}{y} \)D. \( \frac{1}{x} + \frac{1}{y} = \frac{1}{x} - \frac{1}{y} \)答案: B(接下来的题目继续以类似格式出题,每个题目后都直接给出答案)二、填空题2. 若 \( \frac{a}{b} \) 与 \( \frac{c}{d} \) 最简分式相同,则\( ad = bc \),其中 \( a \)、\( b \)、\( c \)、\( d \) 都是非零实数。
请填空,使 \( \frac{3x^2}{4y} \) 与 \( \frac{6x}{y^2} \) 相等,\( x \) 和 \( y \) 的取值范围是:答案: \( x \neq 0 \) 且 \( y \neq 0 \)三、计算题3. 计算下列分式的和:\( \frac{2}{x} + \frac{3}{y} \)解答:首先找到两个分式的最小公倍数,即 \( xy \)。
然后进行通分: \( \frac{2y}{xy} + \frac{3x}{xy} = \frac{2y + 3x}{xy} \)四、化简题4. 化简下列分式:\( \frac{3x^2 - 5x}{x^2 - 9} \)解答:首先分解分子和分母的因式:\( \frac{3x(x - \frac{5}{3})}{(x + 3)(x - 3)} \) 然后约去公因式 \( x - 3 \)(假设 \( x \neq 3 \)):\( \frac{3x}{x + 3} \)五、解分式方程5. 解下列分式方程:\( \frac{1}{x} + \frac{1}{x - 1} = \frac{2}{x^2 - x} \)解答:首先将方程两边乘以 \( x(x - 1) \) 以消去分母:\( (x - 1) + x = 2 \)解得 \( x = \frac{3}{2} \),经检验,\( x = \frac{3}{2} \) 是原方程的解。
八年级分式单元测试题一、选择题(每题3分,共15分)1. 下列式子是分式的是()A. (x)/(2)B. (x + 1)/(2)C. (1)/(x + 1)D. (x)/(π)解析:分式的定义是分母中含有字母的式子。
A选项分母为2,是常数;B选项分母为2,是常数;C选项分母为x + 1,含有字母x,是分式;D选项分母为π,π是常数。
所以答案是C。
2. 若分式(x 1)/(x + 2)的值为0,则x的值为()A. 1.B. 1.C. 2.D. -2.解析:分式的值为0的条件是分子为0且分母不为0。
由分子x 1 = 0,解得x = 1,当x = 1时,分母x+2=1 + 2 = 3≠0。
所以答案是A。
3. 化简frac{a^2-b^2}{a b}的结果是()A. a bB. a + bC. (a + b)/(a b)D. (a b)/(a + b)解析:根据平方差公式a^2-b^2=(a + b)(a b),所以frac{a^2-b^2}{a b}=((a + b)(ab))/(a b)=a + b。
答案是B。
4. 计算(2)/(x 1)+(3)/(1 x)的结果是()A. -1.B. 1.C. (1)/(x 1)D. (5)/(x 1)解析:先将(3)/(1 x)化为-(3)/(x 1),则(2)/(x 1)+(3)/(1 x)=(2)/(x 1)-(3)/(x 1)=(2 3)/(x 1)=-(1)/(x 1)=-1。
答案是A。
5. 若分式方程(x)/(x 3)=2+(k)/(x 3)有增根,则k的值为() A. 3 B. 0 C. -3 D. 1 解析:分式方程有增根,就是分母为0,即x 3 = 0,解得x = 3。
方程两边同时乘以x 3得到x = 2(x 3)+k,把x = 3代入得3 = 2×(3 3)+k,解得k = 3。
答案是A。
二、填空题(每题3分,共15分)6. 当x=______时,分式\frac{1}{x 2}\)无意义。
八年级数学分式试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个选项是分式的定义?A. 分子为0的表达式B. 分子和分母都是整式的表达式C. 分子和分母都是多项式的表达式D. 分子和分母都是单项式的表达式2. 分式$\frac{3x}{x+1}$的分母是什么?A. $3x$B. $x+1$C. $x$D. $3$3. 下列哪个分式是最简分式?A. $\frac{4}{6}$B. $\frac{6}{8}$C. $\frac{8}{10}$D. $\frac{10}{12}$4. 分式$\frac{x+2}{x-3}$的分子是什么?A. $x+2$B. $x-3$C. $x^2-9$D. $x^2+6x+9$5. 下列哪个分式等于1?A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{2}{2}$D. $\frac{3}{3}$二、判断题(每题1分,共5分)1. 分式的分子和分母都是整式。
()2. 分式的值随x的增大而增大。
()3. 分式的值随x的减小而减小。
()4. 分式的值可以等于0。
()5. 分式的值可以等于1。
()三、填空题(每题1分,共5分)1. 分式$\frac{x+1}{x-1}$的分子是______,分母是______。
2. 当x=2时,分式$\frac{x+3}{x-1}$的值为______。
3. 当x=3时,分式$\frac{x-1}{x+2}$的值为______。
4. 分式$\frac{2x+4}{x+2}$可以化简为______。
5. 当x=0时,分式$\frac{x^2+1}{x+1}$的值为______。
四、简答题(每题2分,共10分)1. 请简述分式的定义。
2. 请简述分式的最简形式。
3. 请简述分式的值随x的增大而变化的规律。
4. 请简述分式的值随x的减小而变化的规律。
5. 请简述分式的值可以等于0的条件。
五、应用题(每题2分,共10分)1. 已知分式$\frac{x+1}{x-1}$,当x=2时,求分式的值。
分式测试题及答案一、选择题1. 已知分式\( \frac{a}{b} \),若\( a \)和\( b \)同号,则该分式的值为()A. 正数B. 负数C. 0D. 无法确定2. 下列分式中,哪个分式的值是负数?A. \( \frac{-3}{4} \)B. \( \frac{-3}{-4} \)C. \( \frac{3}{-4} \)D. \( \frac{3}{4} \)3. 如果\( \frac{x}{y} = 2 \),当\( y \)增加时,分式的值会()A. 变大B. 变小C. 不变D. 无法确定二、填空题4. 将分式\( \frac{2x^2}{3x} \)化简为\( \frac{x}{\_\_\_} \)。
5. 若\( \frac{a}{b} = \frac{c}{d} \),且\( b \)和\( d \)不为0,则\( a \)和\( c \)成______比例。
三、解答题6. 已知\( \frac{2}{x+1} = \frac{3}{y+1} \),求\( \frac{x}{y} \)的值。
7. 计算下列分式的和:\( \frac{1}{2x+1} + \frac{2}{3x-1} \)。
四、应用题8. 一个水池的容积是\( 2000 \)升,水管A每秒可以注入\( 5 \)升水,水管B每秒可以排出\( 3 \)升水。
如果同时打开水管A和B,求水池注满需要的时间。
答案:一、选择题1. A2. C3. B二、填空题4. 35. 正三、解答题6. 由题意可得\( 2y+2 = 3x+3 \),化简得\( 2y = 3x+1 \),所以\( \frac{x}{y} = \frac{2}{3} \)。
7. 通分后计算得:\( \frac{1}{2x+1} + \frac{2}{3x-1} = \frac{3x-1}{(2x+1)(3x-1)} + \frac{4(2x+1)}{(2x+1)(3x-1)} = \frac{3x-1+8x+4}{(2x+1)(3x-1)} = \frac{11x+3}{(2x+1)(3x-1)} \)。
2018年09月20日分式应用组卷一.选择题(共1小题)1.(2018•巴中)若分式方程+=有增根,则实数a的取值是()A.0或2 B.4 C.8 D.4或8二.解答题(共20小题)2.(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?3.(2018•东莞市)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?4.(2018•德阳)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n 天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?5.(2018•吉林)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.6.(2017•通辽)一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.7.(2017•毕节市)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.8.(2016•菏泽)为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)9.(2016•广东)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?10.(2015•宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?11.(2015•淄博)为充分利用雨水资源,幸福村的小明家和相邻的爷爷家采取了修建蓄水池、屋顶收集雨水的做法.已知小明和爷爷家的屋顶收集雨水的面积、蓄水池的容积和蓄水池已有水的量如表:气象预报即将会下雨,为了收集尽可能多的雨水,下雨前需从爷爷家的蓄水池中抽取多少立方米的水注入小明家的蓄水池?12.(2015•昆明)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?13.小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.14.(2014•达州)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?15.(2014•晋江市)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?16.(2014•襄阳)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?17.(2014•随州)某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?18.(2015秋•潍坊校级月考)若关于x的方程有增根,求增根和k的值.19.(2016春•长宁区期末)解方程:x2+3x﹣=8.20.(2016•富顺县校级模拟)用换元法解分式方程:=2解:设=m,则原方程可化为m﹣=2;去分母整理得:m2﹣2m﹣3=0解得:m1=﹣1,m2=3即:=﹣1或=3;解得:x=或x=﹣经检验:x=或 x=﹣是原方程的解.故原方程的解为:x1=,x2=﹣.请同学们借鉴上面换元法解分式方程的方法,先解下列方程,然后再化简求值:已知a是方程的根,并求代数式的值?21.(2017春•长泰县月考)已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.2018年09月20日雯惠的初中数学组卷参考答案与试题解析一.选择题(共1小题)1.(2018•巴中)若分式方程+=有增根,则实数a的取值是()A.0或2 B.4 C.8 D.4或8【解答】解:方程两边同乘x(x﹣2),得3x﹣a+x=2(x﹣2),由题意得,分式方程的增根为0或2,当x=0时,﹣a=﹣4,解得,a=4,当x=2时,6﹣a+2=0,解得,a=8,故选:D.二.解答题(共20小题)2.(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?【解答】解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.3.(2018•东莞市)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.4.(2018•德阳)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n 天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?【解答】解:(1)设B工程公司单独完成需要x天,根据题意得:45×+54(+)=1,解得:x=120,经检验x=120是分式方程的解,且符合题意,答:B工程公司单独完成需要120天;(2)根据题意得:m×+n×=1,整理得:n=120﹣m,∵m<46,n<92,∴120﹣m<92,解得42<m<46,∵m为正整数,∴m=43,44,45,又∵120﹣m为正整数,∴m=45,n=90,答:A、B两个工程公司各施工建设了45天和90天.5.(2018•吉林)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示甲队每天修路的长度,庆庆同学所列方程中的y表示甲队修路400米所需时间或乙队修路600米所需时间;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米所需时间或乙队修路600米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间或乙队修路600米所需时间.(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可).(3)选冰冰的方程:=,去分母,得:400x+8000=600x,移项,x的系数化为1,得:x=40,检验:当x=40时,x、x+20均不为零,∴x=40.答:甲队每天修路的长度为40米.选庆庆的方程:﹣=20,去分母,得:600﹣400=20y,将y的系数化为1,得:y=10,经验:当y=10时,分母y不为0,∴y=10,∴=40.答:甲队每天修路的长度为40米.6.(2017•通辽)一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.【解答】解:设汽车出发后第1小时内的行驶速度是x千米/小时,根据题意可得:=1++,解得:x=80,经检验得:x=80是原方程的根,答:汽车出发后第1小时内的行驶速度是80千米/小时.7.(2017•毕节市)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.【解答】解:(1)设这种笔单价为x元,则本子单价为(x﹣4)元,由题意得:=,解得:x=10,经检验:x=10是原分式方程的解,则x﹣4=6.答:这种笔单价为10元,则本子单价为6元;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得:10m+6n=100,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.8.(2016•菏泽)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)【解答】解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:=2×,解得:x=3.2,经检验:x=3.2是原分式方程的解,且符合题意,答:A4薄型纸每页的质量为3.2克.9.(2016•广东)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:,解得:x=100,经检验x=100是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加y%,可得:,解得:y=20,经检验y=20是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.10.(2015•宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【解答】解:(1)设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得:x+2x﹣600=6600,解得:x=2400,2x﹣600=4200,答:B花木数量为2400棵,则A花木数量是4200棵;(2)设安排a人种植A花木,由题意得:=,解得:a=14,经检验:a=14是原分式方程的解,26﹣a=26﹣14=12,答:安排14人种植A花木,12人种植B花木.11.(2015•淄博)为充分利用雨水资源,幸福村的小明家和相邻的爷爷家采取了修建蓄水池、屋顶收集雨水的做法.已知小明和爷爷家的屋顶收集雨水的面积、蓄水池的容积和蓄水池已有水的量如表:气象预报即将会下雨,为了收集尽可能多的雨水,下雨前需从爷爷家的蓄水池中抽取多少立方米的水注入小明家的蓄水池?【解答】解:下雨前需从爷爷家的蓄水池中抽取x立方米的水注入小明家的蓄水池,由题意得=,解得:x=6,经检验:x=6是所列方程的根.答:下雨前需从爷爷家的蓄水池中抽取6立方米的水注入小明家的蓄水池.12.(2015•昆明)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路1200 米;(2)求原计划每小时抢修道路多少米?【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.13.(2014•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,由题意得=,解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.14.(2014•达州)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?【解答】解:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,由题意得,×2=,解得:x=80,经检验;x=80是原分式方程的解,且符合题意,则第一次进货100件,第二次进货的单价为88元,第二次进货200件,总盈利为:(100﹣80)×100+(100﹣88)×(200﹣10)+10×(100×0.8﹣88)=4200(元).答:在这两笔生意中,商家共盈利4200元.15.(2014•晋江市)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.16.(2014•襄阳)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:=,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.17.(2017春•长泰县月考)已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.【解答】解:方程两边同时乘以(x+2)(x﹣1),去分母并整理得(m+1)x=﹣5,(1)∵x=1是分式方程的增根,∴1+m=﹣5,解得:m=﹣6;(2)∵原分式方程有增根,∴(x+2)(x﹣1)=0,解得:x=﹣2或x=1,当x=﹣2时,m=1.5;当x=1时,m=﹣6;(3)当m+1=0时,该方程无解,此时m=﹣1;当m+1≠0时,要使原方程无解,由(2)得:m=﹣6或m=,综上,m的值为﹣1或﹣6或1.5.18.(2015秋•潍坊校级月考)若关于x的方程有增根,求增根和k的值.【解答】解:去分母得:3x+3﹣x+1=x+kx,由分式方程有增根,得到3x(x﹣1)=0,解得:x=0或x=1,把x=0代入整式方程得:4=0,矛盾,舍去;把x=1代入整式方程得:k=5.19.(2016春•长宁区期末)解方程:x2+3x﹣=8.【解答】解:设u=,原方程等价于﹣20u=8.化简,得20u2+8u﹣1=0.解得u=,u=﹣.当u=时,x2+3x=10.解得x=﹣5,x=2,经检验x=﹣5,x=2是原分式方程的解;当u=﹣时,x2+3x+2=0.解得x=﹣1,x=﹣2,经检验:x=﹣1,x=﹣2是原分式方程的解;综上所述:x=﹣5,x=2,x=﹣1,x=﹣2是原分式方程的解.20.(2016•富顺县校级模拟)用换元法解分式方程:=2解:设=m,则原方程可化为m﹣=2;去分母整理得:m2﹣2m﹣3=0解得:m1=﹣1,m2=3即:=﹣1或=3;解得:x=或x=﹣经检验:x=或 x=﹣是原方程的解.故原方程的解为:x1=,x2=﹣.请同学们借鉴上面换元法解分式方程的方法,先解下列方程,然后再化简求值:已知a是方程的根,并求代数式的值?【解答】解:()2﹣()﹣2=0设=m,则原方程可化为m2﹣m﹣2=0,解这个整式方程得:m1=2,m2=﹣1即:=2或=﹣1;解得:x=4或x=﹣经检验:x=4或 x=﹣是原方程的解.故原方程的解为:x1=4,x2=﹣.因为a是方程的根,所以,a=4或a=﹣=÷=÷=•=则①当a=4时,原式===2;②当a=﹣时,原式===﹣1即:所求代数式的值为2或﹣121.(2014•随州)某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?【解答】解:设甲队单独完成工程需x天,由题意,得:×9+×5=1,解得:x=20,经检验得:x=20是方程的解,∵﹣=,∴乙单独完成工程需30天,∵20<30,∴从缩短工期角度考虑,应该选择甲队.。