1.3有理数的加法运算律(公开课)
- 格式:ppt
- 大小:1.10 MB
- 文档页数:25
有理数的加减法(一)
[本节课内容]
1.有理数的加法
2.有理数的加法的运算律
[本节课学习目标]
1、理解有理数的加法法则.
2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.
3、掌握异号两数的加法运算的规律.
4、理解有理数的加法的运算律.
5、能够应用有理数的加法的运算律进行计算.
[知识讲解]
一、有理数加法:
正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出
正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做
净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.
于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).
这里用到正数和负数的加法.
下面借助数轴来讨论有理数的加法.
看下面的问题:
一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作-5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结
果是什么?
两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8
如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向左运动了 8m,写成算式就是(-5)+(-3) = -8
1。
有理数的加法教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.小结 五、课时小结: 本节课我们探索了有理数加法的运算律,灵活运用加法的运算律使运算简便.一般情况下,将互为相反数的数结合相加;同分母的分数能凑整的数结合;正数、负数分别相加,以使计算简便.作 业 1、教科书 习题1.3第1题;2、配套练习相关题目。
板 书 设 计一、 复习引入 二、 讲授新课 三、 例题讲解 四、 当堂检测 五、课时小结教 学 反 思组长查阅2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.(二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. (演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD . 所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条D CA BD CABDCAB理、很规范.下面我们来看大屏幕. (演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CA答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.D C A B(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD .又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习EDCA B P1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷---(3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。
1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则教师备课素材示例●置疑导入展示世界杯图片:问题1:在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.某届世界杯中,德国队在第一场上半场赢了2个球,下半场输了1个球,德国队在本场比赛的净胜球数是多少?问题2:若我们把进一个球记为+1,失一个球记为-1,则德国队本场的净胜球数如何用算式表示呢?【教学与建议】教学:从学生熟悉的情景出发,找准新知识的起点,提出疑问,激发学生的学习兴趣和求知欲.建议:学生单独完成,完成后教师引导学生观察此算式的特征,进而引入新课.●情景导入(多媒体展示)回答下列问题:“飞天英雄”翟志刚在太空行走时穿着厚厚的太空服,一个重要的原因就是飞船舱外温度太低,达到-100 ℃,而舱内的最低温度比舱外温度约高118 ℃,要想知道舱内的最低温度,该怎样计算呢?●悬念激趣动物王国开运动会,小蚂蚁充当火炬手.小蚂蚁从某点出发在一条直线上来回爬,假设向右为正,向左为负,小蚂蚁爬行的过程记录如下(单位:cm):+6,+11,-7,-4,-6.问:小蚂蚁最后能回到出发点吗?【教学与建议】教学:创造一种轻松的学习氛围,导入有理数的加法法则.建议:让学生说明思考过程、讨论算法.两个有理数相加,既要考虑符号,又要考虑绝对值.【例1】下列各式中,计算结果为正的是(C)A.4.1+(-5.5) B.(-6)+2C.-3+5 D.0+(-1)【例2】计算:(-3)+(-4)=__-7__.步骤:(1)根据数轴确定两个加数的正负;(2)根据数轴确定是用绝对值相加还是相减;(3)根据法则计算结果.【例3】有理数a,b在数轴上的对应点的位置如图所示,则下列对a +b的值的判断错误的是(A)A.大于0 B.小于0 C.小于aD.大于b【例4】若有理数a,b对应的点在数轴上的位置如图所示,则a+b__<__0(选填“=”“>”或“<”).利用有理数的加法解答实际问题时,(1)找出具有相反意义的量,分别用正、负数表示;(2)将实际问题转化为有理数的加法运算;(3)根据计算结果,结合实际问题确定答案.【例5】“规定向左为负,向右为正,现把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”写成算式是(B)A.(-3)-(+1)=-4 B.(-3)+(+1)=-2C.(+3)+(-1)=+2 D.(+3)+(+1)=+4【例6】一艘潜艇所在高度为-80 m,一条鲨鱼在潜艇上方30 m处,则鲨鱼所在高度为__-50__m__.高效课堂教学设计1.掌握有理数加法法则,会正确进行有理数的加法运算.2.利用有理数的加法运算解决简单的实际问题.▲重点掌握有理数加法法则,会正确进行有理数的加法运算.▲难点能运用加法运算律简化加法运算.◆活动1 新课导入有理数的绝对值的定义是什么?答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.在小学我们学过正数与0的加法运算,引入负数后,怎样进行加法运算呢?本节课我们共同来研究这个问题.◆活动2 探究新知教材P 16~18 内容.提出问题:(1)一个物体先向右移动5 m ,再向右移动3 m ,两次运动的最后结果是多少?请列算式表示;(2)一个物体先向左移动5 m ,再向左移动3 m ,两次运动的最后结果是多少?请列算式表示;(3)一个物体先向左移动3 m ,再向右移动5 m ,两次运动的最后结果是多少?请列算式表示;(4)一个物体先向右移动3 m ,再向左移动5 m ,两次运动的最后结果是多少?请列算式表示;(5)一个物体先向右移动5 m ,再向左移动5 m ,两次运动的最后结果是多少?请列算式表示;(6)一个数同0相加,结果是多少?(7)你能归纳一下有理数加法法则吗?学生完成并交流展示.◆活动3 知识归纳1.同号两数相加,取__相同__的符号,并把绝对值__相加__.2.绝对值不相等的异号两数相加,取绝对值较__大__的加数的符号,并用__较大__的绝对值减去__较小__的绝对值.互为相反数的两个数相加得__0__.3.一个数同0相加,仍得__这个数__.4.(1)若a >0,b >0,则a +b__>__0;(2)若a <0,b <0,则a +b__<__0;(3)若a >0,b <0,且|a|>|b|,则a +b__>__0;(4)若a >0,b <0,且|a|<|b|,则a +b__<__0.◆活动4 例题与练习例1 教材P 18 例1.例2 计算:(1)(+3)+(+8); (2)⎝ ⎛⎭⎪⎫+14+⎝ ⎛⎭⎪⎫-12;(3)⎝⎛⎭⎪⎫-312+(-3.5); (4)-3.4+4; (5)(-2.8)+2.8; (6)|(-19)+8.3|.解:(1)原式=+(3+8)=11;(2)原式=-⎝ ⎛⎭⎪⎫12-14=-14; (3)原式=-(3.5+3.5)=-7;(4)原式=+(4-3.4)=0.6;(5)原式=0;(6)原式=|-(19-8.3)|=|-10.7|=10.7.例3 一只蜗牛爬树,白天向上爬了1.5 m ,夜间向下爬了0.3 m ,白天和夜间一共向上爬了多少米?解:规定向上为正,向下为负,1.5+(-0.3)=+(1.5-0.3)=1.2(m).答:蜗牛一共向上爬了1.2 m .练习1.教材P 18~19 练习第1,2,3,4题.2.下列运算正确的是(D)A .(-2)+(-2)=0B .(-6)+(+4)=-10C .(+12)+(+3)=-15D .(+21)+(-2)=193.有下列说法:①若两个加数都是正数,其和一定为正数;②若两个数的和是正数,则这两个加数一定都为正数;③若两个加数都是负数,其和一定为负数;④若两个数的和是负数,则这两个加数一定都为负数.其中正确的有(C)A .0个B .1个C .2个D .3个4.A 地的海拔为-21 m ,B 地的海拔比A 地高68 m ,则B 地的海拔为__47__m.5.已知m ,n ,,n 互为相反数,+n +,n 互为相反数,∴m +n =0.又∵x 的绝对值等于6,∴x =-6或+n ++n ++n +x 的值为-6或6.◆活动5 课堂小结1.有理数的加法法则.2.运用有理数的加法法则解决问题.1.作业布置(1)教材P 24 习题1.3第1题;(2)对应课时练习.2.教学反思。
有理数的加法公开课教案6篇《有理数的加法》教案篇一教学目的:经受探究有理数加法法则,理解有理数加法的意义。
初步把握有理数加法法则,并能准确地进展有理数加法运算。
教学重点:有理数的加法法则教学难点:异号两数相加的法则教学教程:一、复习提问:1、假设向东走5米记作+5米,那么向西走3米记作__。
2、a=-5,b=+3,︱a︳+︱b︱=_a=-5,b=+3,︱a︱-︱b︱=__-1012345678二、授课小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的方向为正方向提问:这题有几种状况?小结:有以下四种状况〔1〕两次都向东走,〔2〕两次都向西走〔3〕先向东走,再向西走〔4〕先向西走,再向东走依据小结,我们再分析每一种状况:〔1〕向东走5米,再向东走3米,一共向东走了多少米?+5+3〔+5〕+〔+3〕=+8〔2〕向西走-5米,再向西走-3米,一共向东走了多少米?-5-3〔-3〕+〔-5〕=-8〔3〕先向东走5米,再向西走3米,两次一共向东走了多少米?+3+5〔+5〕+〔-3〕=2〔4〕先向西走5米,再向东走3米,两次一共向东走了多少米?-5+3〔-5〕+〔+3〕=-2下面再看两种特别状况:〔5〕向东走5米,再向西走5米,两次一共向东走了多少米-5+5〔+5〕+〔-5〕=0〔6〕向西走5米,再向东走0米,两次一共向东走了多少米?-5(-5〕+0=-5小结:总结前的六种状况:同号两数相加:〔+5〕+〔+3〕=+8〔-5〕+〔-3〕=-8异号两数相加:〔+5〕+〔-3〕=2〔-5〕+〔+3〕=-2〔+5〕+〔-5〕=0一数与零相加:〔-5〕+0=-5得出结论:有理数加法法则1、同号两数相加,取一样的符号,并把确定值相加2、确定值不等的异号两数相加,取确定值较大的加数的符号,并用较大确实定值减去较小确实定值。
互为相反数的两个数相加得零3、一个数与零相加,仍得这个数例如:〔-4〕+〔-5〕〔同号两数相加〕解:=-〔〕〔取一样的符号〕=-9〔并把确定值相加〕〔-2〕+〔+6〕〔确定值不等的异号两数相加〕解:=+〔〕〔取确定值较大的符号〕=+4〔用较大确实定值减去较小确实定值〕练习:口答:1、〔-15〕+〔-32〕=2、〔+10〕+〔-4〕=3、7+〔-4〕=4、4+〔-4〕=5、9+〔-2〕=6、〔-0.5)+4.4=7、〔-9〕+0=8、0+〔-3〕=计算:〔1〕〔-3〕+〔-9〕〔2〕〔-1/2)+〔+1/3〕解略练习:〔1〕15+〔-22〕=〔2〕〔-13〕+〔-8〕=〔3〕〔-0·9〕+1·5=〔4〕2·7+〔-3·5〕=〔5〕1/2+〔-2/3〕=〔6〕〔-1/4〕+〔-1/3〕=练习三:1、填空:〔1〕+11=27〔2〕7+=4〔3〕〔-9〕+=9〔4〕12+=0〔5〕〔-8〕+=-15〔6〕+〔-13〕=-62、用“”号填空:〔1〕假设a>0,b>0,那么a+b0;〔2〕假设a0,b|b|,那么a+b0;〔4〕假设a0,|a|>|b|,那么a+b0小结:1、把握有理数的加法法则,正确地进行加法运算。