中考总复习专题一分类讨论
- 格式:doc
- 大小:100.00 KB
- 文档页数:4
中考数学思想方法专题讲座——分类讨论在数学中,当被研究的问题存在多种情况,不能一概而论时,就需要按照可能出现的各种情况分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法叫分类讨论思想,它不仅是一种重要的数学思想,同时也是一种重要的解题策略.在研究问题时,要认真审题,思考全面,根据其数量差异或位置差异进行分类,注意分类应不重不漏,从而得到完美答案.一、分类讨论应遵循的原则: 1、分类应按同一标准进行; 2、分类讨论应逐级进行; 3、分类应当不重复,不遗漏。
二、分类讨论的主要因素:1、题设本身为分类定义;2、部分性质、公式在不同条件下有不同的结论;3、部分定义、定理、公式和法则本身有范围或条件限制;4、题目的条件或结论不唯一时;5、含参数(字母系数)时,须根据参数(字母系数)的不同取值范围进行讨论;6、推理过程中,未知量的值,图形的位置或形状不确定。
三、分类类讨论的步骤:1、确定分类对象;2、进行合理分类;3、逐类讨论,分级进行;4、归纳并作出结论。
四、分类讨论的几种类型:类型一、与数与式有关的分类讨论热点1.在实数中带有绝对值号,二次根式的化简中,应注意讨论绝对值号内的数、被开方数中的字母的正负性,()()a aaa a≥==-⎧⎪⎨⎪⎩例1. =+==||,则5,3||若2baba。
分析:因b b2=||,故原题可转化为绝对值的问题进行讨论。
解:∵3||=a;∴x= ,∵b b2=||=5;∴x= ,,8|53|||时,5,3当=+=+==baba,2|5-3|||时,5-,3当==+==baba,2|53-|||时,5,3-当=+=+==baba,8|5-3-|||时,5-,3-当==+==baba故应填。
小结:二次根式的化简往往可转化为与绝对值相关的问题。
而去绝对值时一般要根据绝对值的概念进行分类讨论。
【练习】 1. 化简:①︱x︳=②=2. 已知│x│= 4,│y│=12,且xy<0,则xy= .【点评】由xy<0知x,y异与应分x>0,y<0,及x<0,y>0两类.3.若||3,||2,,( )a b a b a b==>+=且则A.5或-1 B.-5或1; C.5或1 D.-5或-14.在数轴上,到-2的点的距离为3的点表示的数是.热点2:与函数及图象有关的分类讨论一次函数的增减性(k有正负之分):【例1】已知直线y=kx+3与坐标轴围成的三角形的面积为2,则k的值等于.【例2】若一次函数当自变量x的取值范围是-1≤x≤3时,函数y的范围为-2≤y≤6,•则此函数的解析式为.0,0,k y xk y xy kx b⎧⎪⎨⎪⎩=+时随的增大而增大时随的增大而减小热点3:不等式中的分类讨论在根据不等式的基本性质解不等式时,当遇到含字母系数的一元一次不等式时,要根据系数的正负性,决定不等号的方向变化,此时需要讨论其正负性;在分式的值大于零或小于零时计算分式中某字母的取值范围,也要讨论分子分母的正负性,以此建立不等式或不等式组求解.【例1】不等式mx >n (m 、n 是常数且m ≠0)的解是 .思路分析:x 前的系数m 的正负性不确定,故要对其讨论,再依据不等式基本性质求x 的取值.【例2】已知分式4-x 2x -3的值为负数,则x 的取值范围是 . 思路分析:欲求x 的取值范围,需要建立关于x 的不等式(组),由“两数相除,异号得负”知4-x 与2x -3异号,因此得⎩⎪⎨⎪⎧ 4-x >02x -3<0或⎩⎪⎨⎪⎧ 4-x <02x -3>0.分别解这两个不等式组即可.【练习】1.关于x 的一元一次不等式(2m +3)x >2m +3的解是 .解析:分2m +3>0和2m +3<0两种情况讨论.2.若分式2x +3x -1的值大于零,则x 的取值范围是 . 3.解不等式 (a +1)x >a 2-1.热点4:涉及问题中待定参数的变化范围的分类讨论。
专题20 分类讨论思想在压轴题中的应用分类讨论思想是一个非常重要的数学思想,在中考数学压轴题中考查频繁,例如在解决中考压轴题中的存在性问题时,要用到分类讨论思想:1.在解决等腰三角形存在性问题时,需要讨论腰和底的多种情况;2.在解决直角三角形存在性问题时,需要对直角的情况进行讨论;3.在解决平行四边形和矩形、菱形、正方形的存在性时,需要对邻边或对边的情况进行讨论;4.在解决相似三角形存在性问题时,需要对对应边和对应角进行分类讨论;5.压轴题中其他的问题,例如线段的数量和位置关系等,有时也需要进行分类讨论。
(2022·辽宁阜新·统考中考真题)如图,已知二次函数2y x bx c =-++的图像交x 轴于点()1,0A -,()5,0B ,交y 轴于点C .(1)求这个二次函数的表达式;(2)如图1,点M 从点B BC 向点C 运动,点N 从点O 出发,以每秒1个单位长度的速度沿线段OB 向点B 运动,点M ,N 同时出发.设运动时间为t 秒(05t <<).当t 为何值时,BMN V 的面积最大?最大面积是多少?(3)已知P 是抛物线上一点,在直线BC 上是否存在点Q ,使以A ,C ,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 坐标;若不存在,请说明理由.(1)用待定系数法可求得二次函数的表达式为;(2)过点M 作ME x ⊥轴于点E ,设BMN V 面积为S ,由ON t =,BM =,可得5BN t =-,45ME BMsin t =︒==,即得()21115255()22228S BN ME t t t =⋅=-⋅=--+,由二次函数性质可得当52t =秒时,BMN V 的面积最大,求得其最大面积;(3)由()5,0B ,()0,5C 得直线BC 解析式为5y x =-+,设(),5Q m m -+,()2,45P n n n -++,分三种情况进行讨论求解.【答案】(1)245y x x =-++(2)当52t =时,BMN V 的面积最大,最大面积是258(3)存在,Q 的坐标为()7,12-或()7,2-或()1,4或()2,3【详解】(1)将点()1,0A -,()5,0B 代入2y x bx c =-++中,得010255b c b c =--+⎧⎨=-++⎩,解这个方程组得45b c =⎧⎨=⎩,∴二次函数的表达式为245y x x =-++;(2)过点M 作ME x ⊥轴于点E ,如图:设BMN V 面积为S ,根据题意得:ON t =,BM =.()5,0B ,5BN t ∴=-,在245y x x =-++中,令0x =得5y =,()0,5C ∴,5OC OB ∴==,45OBC ∠∴=︒.45ME BMsin t ∴=︒==,()22111515255()2222228S BN ME t t t t t ∴=⋅=-⋅=-+=--+,05t << ,∴当52t =时,BMN V 的面积最大,最大面积是258;(3)存在点Q ,使以A ,C ,P ,Q 为顶点的四边形是平行四边形,理由如下:由()5,0B ,()0,5C 得直线BC 解析式为5y x =-+,设(),5Q m m -+,()2,45P n n n -++,又()1,0A -,()0,5C ,①当PQ ,AC 是对角线,则PQ ,AC 的中点重合,21054505m n m n n +=-+⎧∴⎨-+-++=+⎩,解得0(m =与C 重合,舍去)或7m =-,()7,12Q ∴-;②当QA ,PC 为对角线,则QA ,PC 的中点重合,21050455m n m n n -=+⎧∴⎨-++=-+++⎩,解得0(m =舍去)或7m =,()7,2Q ∴-;③当QC ,PA 为对角线,则QC ,PA 的中点重合,20155450m n m n n +=-⎧∴⎨-++=-+++⎩,解得1m =或2m =,()1,4Q ∴或()2,3,综上所述,Q 的坐标为()7,12-或()7,2-或()1,4或()2,3.本题考查二次函数的综合应用,涉及待定系数法,三角形面积,平行四边形的性质及应用,解题的关键是用含字母的式子表示相关点的坐标和相关线段的长度.(2022·湖南湘潭·统考中考真题)已知抛物线2y x bx c =++.(1)如图①,若抛物线图象与x 轴交于点()3,0A ,与y 轴交点()0,3B -.连接AB .①求该抛物线所表示的二次函数表达式;②若点P 是抛物线上一动点(与点A 不重合),过点P 作PH x ⊥轴于点H ,与线段AB 交于点M .是否存在点P 使得点M 是线段PH 的三等分点?若存在,请求出点P 的坐标;若不存在,请说明理由.(2)如图②,直线43y x n =+与y 轴交于点C ,同时与抛物线2y x bx c =++交于点()3,0D -,以线段CD 为边作菱形CDFE ,使点F 落在x 轴的正半轴上,若该抛物线与线段CE 没有交点,求b 的取值范围.(1)①直接用待定系数法求解;②先求出直线AB 的解析式,设点M (m ,m -3)点P (m ,m 2-2m -3)若点M 是线段PH 的三等分点,则13HM HP =或23HM HP =,代入求解即可;(2)先用待定系数法求出n 的值,再利用勾股定理求出CD 的长为5,因为四边形CDFE 是菱形,由此得出点E 的坐标.再根据该抛物线与线段CE 没有交点,分两种情况(CE 在抛物线内和CE 在抛物线右侧)进行讨论,求出b 的取值范围.【答案】(1)①2=23y x x --,②存在,点P 坐标为(2,-3)或(12,-154),理由见解析(2)b <32-或b >133【详解】(1)①解:把()3,0A ,()0,3B -代入2y x bx c =++,得20333b c c ⎧=++⎨-=⎩,解得:23b c =-⎧⎨=-⎩,∴2=23y x x --②解:存在,理由如下,设直线AB 的解析式为y =kx +b ,把()3,0A , ()0,3B -代入,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩,∴直线AB 的解析式为y =x -3,设点M (m ,m -3)、点P (m ,m 2-2m -3)若点M 是线段PH 的三等分点,则13HM HP =或23HM HP =,即232331m m m -=--或232332m m m -=--,解得:m =2或m =12或m =3,经检验,m =3是原方程的增根,故舍去,∴m =2或m =12∴点P 坐标为(2,-3)或(12,-154)(2)解:把点D (-3,0)代入直线43y x n =+,解得n =4,∴直线443y x =+,当x =0时,y =4,即点C (0,4)∴CD =5,∵四边形CDFE 是菱形,∴CE =EF =DF =CD =5,∴点E (5,4)∵点()3,0D -在抛物线2y x bx c =++上,∴(-3)2-3b +c =0,∴c =3b -9,∴239y b x bx =++-,∵该抛物线与线段CE 没有交点,分情况讨论当CE 在抛物线内时52+5b +3b -9<4解得:b <32-当CE 在抛物线右侧时,3b -9>4解得:b >133综上所述,b <32-或b >133此题考查了二次函数和一次函数以及图形的综合,解题的关键是数形结合和分情况讨论.1.(2023·安徽宿州·统考一模)如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()8,4,OA OC ,分别落在x 轴和y 轴上,将OAB V 绕点O 逆时针旋转,使点B 落在y 轴上,得到ODE V ,OD 与CB 相交于点F ,反比例函数()0k y x x=>的图象经过点F ,交AB 于点G .(1)求k 的值.(2)连接FG ,则图中是否存在与FBG △相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由.(3)点M 在直线OD 上,N 是平面内一点,当四边形GFMN 是正方形时,请直接写出点N 的坐标.2.(2022·河南郑州·河南省实验中学校考模拟)在ABC V 中,AB AC =,E 为边AC 上一点,D 为直线BC 上一点,连AD 、BE ,交于点F .(1)如图1,若60BAC ∠=︒,D 点在线段BC 上,且AE CD =,过B 作BG AD ⊥,求证:12=FG BF ;(2)如图2,若BAC BFD ∠=∠,且3BF AF =,求BD BC 的值;(3)如图3,若60BAC ∠=︒.若3BD CD =,将线段AD 绕点A 逆时针旋转到AH ,并且使得HAC ADB ∠=∠,连接BH 交AC 于P ,直接写出AC PC= ______ .3.(2022·吉林长春·模拟)如图,在ABC V 中,5AB AC ==,6BC =.点P 从点B 出发,沿BC 以每秒2个单位长度的速度向终点C 运动,同时点Q 从点C 出发,沿折线CA AB -以每秒5个单位长度的速度运动,到达点A 时,点Q 停止1秒,然后继续运动.分别连接PQ 、BQ .设点P 的运动时间为t 秒.(1)求点A 与BC 之间的距离;(2)当3BP AQ =时,求t 的值;(3)当PQB V 为钝角三角形时,求t 的取值范围;(4)点P 关于直线AB 的对称点是点D ,连接DQ ,当线段DQ 与ABC V 的某条边平行时,直接写出t 的值.4.(2022·浙江金华·一模)如图,在平面直角坐标系xOy 中,菱形OABC 的顶点A 在x 轴的正半轴上,点C 的坐标为()3,4,点D 从原点O 出发沿O A B →→匀速运动,到达点B 时停止,点E 从点A 出发沿A B C →→随D 运动,且始终保持CDE COA ∠=∠.设运动时间为t .(1)当DE OB ∥时,求证:OCD BCE △≌△.(2)若点E 在BC 边上,当CDE △为等腰三角形时,求BE 的长.(3)若点D 的运动速度为每秒1个单位,是否存在这样的t ,使得以点C ,D ,E 为顶点的三角形与OCD V 相似?若存在,直接写出所有符合条件的t ;若不存在,请说明理由.5.(2022·重庆·模拟)如图,在平面直角坐标系中,抛物线2y x bx c ++=﹣交x 轴于点A 和C (1,0),交y 轴于点B (0,3),抛物线的对称轴交x 轴于点E ,交抛物线于点F .(1)求抛物线的解析式;(2)将线段OE 绕着点O 沿顺时针方向旋转得到线段OE ',旋转角为α(0°<α<90°),连接,AE BE '',求13BE AE '+'的最小值;(3)M 为平面直角坐标系中一点,在抛物线上是否存在一点N ,使得以A ,B ,M ,N 为顶点的四边形为矩形?若存在,请直接写出点N 的横坐标;若不存在,请说明理由.6.(2022·广东佛山·校考三模)已知抛物线223(0)y ax ax a a =--<交x 轴于点A ,(B A 在B 的左侧),交y 轴于点C .(1)求点A 的坐标;(2)若经过点A 的直线y kx k =+交抛物线于点D .①当0k >且1a =-时AD 交线段BC 于E ,交y 轴于点F ,求ΔΔEBD CEF S S -的最大值;②当0k <且k a =时,设P 为抛物线对称轴上一动点,点Q 是抛物线上的动点,那么以A ,D ,P ,Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标,若不能,请说明理由.7.(2022·广东江门·校考一模)如图,抛物线26y ax x =++的图象与直线y kx b =+有唯一交点()1,4A -.(1)求抛物线和直线的解析式;(2)若点拋物线与x 轴的交点分别为点M 、N ,抛物线的对称轴上是否存在一点P ,使PA PM +的值最小?如果有,请求出这个最小值,如果没有,请说明理由.(3)直线y kx b =+与x 轴交于点B ,点Q 是x 轴上一动点,请你写出使QAB V 是等腰三角形的所有点Q 的横坐标.8.(2022·广东佛山·校考三模)如图1,AD 、BD 分别是ABC ∆的内角BAC ∠、ABC ∠的平分线,过点A 作AE AD ⊥,交BD 的延长线于点E .(1)求证:12E C ∠=∠;(2)如图2,如果AE AB =,且:2:3BD DE =,求cos ABC ∠的值;(3)如果ABC ∠是锐角,且ABC ∆与ADE ∆相似,求ABC ∠的度数,并直接写出ADE ABC S S ∆∆的值.。
第8课时分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二 圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是___ __.5.(上海市)在△ABC 中,AB=AC=5,3cos 5B .如果圆O 的半径为10,且经过点B 、C ,那么线段AO 的长等于 .6.(•威海市)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t≥0).(1)试写出点A ,B 之间的距离d (厘米)与时间t (秒)之间的函数表达式; (2)问点A 出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。
分类讨论题类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.例1.(·沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50° B.80° C.65°或50°D.50°或80°【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。
故顶角可能是50°或80°.答案:D .同步测试:1.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm2. (·江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A 落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.例2.(•湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心, r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __.【解析】圆与斜边AB只有一个公共点有两种情况,1、圆与AB相切,此时r=2.4;2、圆与线段相交,点A在圆的内部,点B在圆的外部或在圆上,此时3<r≤4。
第36讲 分类讨论型问题(建议该讲放第21讲后教学)类型一 由计算化简时,运用法则、定理和原理的限制引起的讨论例1(2016·南通模拟)矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为()A.3cm2B.4cm2C.12cm2D.4cm2或12cm2【解后感悟】解此题的关键是求出AB=AE,注意AE=1或3不确定,要进行分类讨论.1.(1)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为____________________.(2)已知平面上有⊙O及一点P,点P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.(3)若|a|=3,|b|=2,且a>b,则a+b=()A.5或-1 B.-5或1 C.5或1 D.-5或-1类型二在一个动态变化过程中,出现不同情况引起的讨论例2为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60时,求m的取值范围.【解后感悟】本题是房款=房屋单价×购房面积在实际生活中的运用,由于单价随人均面积而变化,所以用分段函数的解析式来描述.同时建立不等式组求解,解答本题时求出函数解析式是关键.2.(1)在平面直角坐标系中,直线y =-x +2与反比例函数y =1x 的图象有唯一公共点,若直线y =-x +b 与反比例函数y =1x的图象有2个公共点,则b 的取值范围是( )A .b>2B .-2<b<2C .b>2或b<-2D .b<-2 (2)如图,在平面直角坐标系中,四边形OBCD 是边长为4的正方形,平行于对角线BD 的直线l 从O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,运动到直线l 与正方形没有交点为止.设直线l 扫过正方形OBCD 的面积为S ,直线l 运动的时间为t(秒),下列能反映S 与t 之间函数关系的图象是( )3.已知抛物线y 1=ax 2+bx +c(a ≠0)与x 轴相交于点A ,B(点A ,B 在原点O 两侧),与y 轴相交于点C ,且点A ,C 在一次函数y 2=43x +n 的图象上,线段AB 长为16,线段OC 长为8,当y 1随着x 的增大而减小时,求自变量x 的取值范围.类型三 由三角形的形状、关系不确定性引起的讨论例3 (2017·湖州)如图,在平面直角坐标系xOy 中,已知直线y =kx(k >0)分别交反比例函数y =1x 和y =9x 在第一象限的图象于点A ,B ,过点B 作BD ⊥x 轴于点D ,交y =1x 的图象于点C ,连结AC.若△ABC 是等腰三角形,则k 的值是________.【解后感悟】解题的关键是用k 表示点A 、B 、C 的坐标,再进行分类讨论.4.(1)在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,3),M 为坐标轴上一点,且使得△MOA 为等腰三角形,则满足条件的点M 的个数为( )A .4B .5C .6D .8(2) (2016·北流模拟)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =6,一条线段PQ =AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP = .(3) (2016·临淄模拟)如图,在正方形ABCD 中,M 是BC 边上的动点,N 在CD 上,且CN =14CD ,若AB =1,设BM =x ,当x = 时,以A 、B 、M 为顶点的三角形和以N 、C 、M 为顶点的三角形相似.类型四由特殊四边形的形状不确定性引起的讨论例4(2017·鄂州模拟)如图1,在四边形ABCD中,AD∥BC,AB=8cm,AD=16cm,BC=22cm,∠ABC=90°,点P从点A出发,以1cm/s的速度向点D运动,点Q从点C 同时出发,以3cm/s的速度向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形ABQP成为矩形?(2)当t为何值时,以点P、Q与点A、B、C、D中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD是否能成为菱形?若能,求出t的值;若不能,请说明理由,并探究如何改变Q点的速度(匀速运动),使四边形PBQD在某一时刻为菱形,求点Q的速度.【解后感悟】解本题的关键是用方程(组)的思想解决问题,涉及四边形的知识,同时也是存在性问题,解答时要注意分类讨论及数形结合.5.(1)(2016·盐城模拟)在平面直角坐标系中有三点A(1,1),B(1,3),C(3,2),在直角坐标系中再找一个点D,使这四个点构成平行四边形,则D点坐标为.(2)(2016·江阴模拟)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s),当t=s时,以A、C、E、F为顶点的四边形是平行四边形.(3) (2016·金华模拟)如图,B(6,4)在函数y =12x +1的图象上,A(5,2),点C 在x 轴上,点D 在函数y =12x +1上,以A 、B 、C 、D 四个点为顶点构成平行四边形,写出所有满足条件的D 点的坐标 .(4)(2016·萧山模拟)已知在平面直角坐标系中,点A 、B 、C 、D 的坐标依次为(-1,0),(m ,n),(-1,10),(-7,p),且p ≤n.若以A 、B 、C 、D 四个点为顶点的四边形是菱形,则n 的值是 .类型五 由直线与圆的位置关系不确定性引起的讨论例5 如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP =10cm ,射线PN 与⊙O 相切于点Q.A 、B 两点同时从点P 出发,点A 以5cm /s 的速度沿射线PM 方向运动,点B 以4cm /s 的速度沿射线PN 方向运动.设运动时间为t(s ).(1)求PQ 的长;(2)当t 为何值时,直线AB 与⊙O 相切?【解后感悟】本题是直线与圆的位置关系应用,题目设置具有创新性.解决本题的关键是抓住直线与圆的两种情况位置关系,及其对应数量关系进行分析.6.(2016·泗洪模拟)如图,已知⊙P 的半径为2,圆心P 在抛物线y =12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .【压轴把关题】如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O 出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在第一、四象限,在运动过程中,设▱PCOD的面积为S.①当点M,N中,有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC内部(不包括边界)时,直接写出S的取值范围.【方法与对策】本题是四边形的综合题,对于第(3)题解题的关键是正确分几种不同情况求解.①当点C在BO上时,第一种情况,当点M在CE边上时,由△EMF∽△ECO求解,第二种情况,当点N在DE边上时,由△EFN∽△EPD求解;当点C在BO的延长线上时,第一种情况,当点M在DE边上时,由EMF∽△EDP求解,第二种情况,当点N 在CE 边上时,由△EFN ∽△EOC 求解;②当1≤t <94时和当92<t ≤5时,分别求出S 的取值范围.这种双动点型、分类讨论问题是中考命题常用的策略.【分类讨论应不重复、不遗漏】在△ABC 中,P 是AB 上的动点(P 异于A ,B),过点P 的一条直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线.如图,∠A =36°,AB =AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有________条.参考答案第36讲 分类讨论型问题【例题精析】例1 ∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,AD ∥BC ,∴∠AEB =∠CBE ,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠AEB =∠ABE ,∴AB =AE ,①当AE =1cm 时,AB =1cm =CD ,AD =1cm +3cm =4cm =BC ,此时矩形的面积是1cm ×4cm =4cm 2;②当AE =3cm 时,AB =3cm =CD ,AD =4cm =BC ,此时矩形的面积是:3cm ×4cm =12cm 2;故选D .例2 (1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元); (2)由题意,得①当0≤x ≤30时,y =0.3×3x =0.9x ;②当30<x ≤m 时,y =0.9×30+0.5×3×(x -30)=1.5x -18;③当x >m 时,y =0.9×30+0.5×3(m -30)+0.7×3×(x -m)=2.1x -18-0.6m.∴y =⎩⎪⎨⎪⎧0.9x (0≤x ≤30)1.5x -18(30<x ≤m )2.1x -18-0.6m (x>m )(45≤m ≤60). (3)由题意,得①当50≤m ≤60时,y =1.5×50-18=57(舍).②当45≤m <50时,y =2.1×50-0.6m -18=87-0.6m.∵57<y ≤60,∴57<87-0.6m ≤60,∴45≤m <50.综合①②得45≤m <50.例3 ∵点B 是y =kx 和y =9x 的交点,y =kx =9x ,解得:x =3k ,y =3k ,∴点B 坐标为⎝⎛⎭⎫3k ,3k ,点A 是y =kx 和y =1x 的交点,y =kx =1x ,解得:x =1k ,y =k ,∴点A坐标为⎝⎛⎭⎫1k ,k ,∵BD ⊥x 轴,∴点C 横坐标为3k,纵坐标为13k=k3,∴点C 坐标为⎝ ⎛⎭⎪⎫3k ,k 3,∴BA ≠AC ,若△ABC 是等腰三角形,①AB =BC ,则⎝⎛⎭⎫3k -1k 2+(3k -k )2=3k -k 3,解得:k =377;②AC =BC ,则⎝⎛⎭⎫3k -1k 2+⎝⎛⎭⎫k 3-k 2=3k -k 3,解得:k =155;故答案为k =377或155.例4 (1)∵∠ABC =90°,AP ∥BQ ,∴当AP =BQ 时,四边形ABQP 成为矩形,由运动知,AP =t ,CQ =3t ,∴BQ =22-3t ,∴t =22-3t ,解得t =112.∴当t =112时,四边形ABQP成为矩形; (2)当P 、Q 两点与A 、B 两点构成的四边形是平行四边形时,就是(1)中的情形,此时t =112.当P 、Q 两点与C 、D 两点构成的四边形是平行四边形时,∵PD ∥QC ,∴当PD=QC 时,四边形PQCD 为平行四边形.此时,16-t =3t ,t =4;当P 、Q 两点与B 、D 两点构成的四边形是平行四边形时,同理,16-t =22-3t ,t =3;当P 、Q 两点与A 、C 两点构成的四边形是平行四边形时,同理,t =3t ,t =0,不符合题意;故当t =112或t =4或t =3时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形. (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD =BQ =BP 时,四边形PBQD 能成为菱形.由PD =BQ ,得16-t =22-3t ,解得t =3,当t =3时,PD =BQ =13,AP =AD -PD =16-13=3.在Rt △ABP 中,AB =8,根据勾股定理得,BP =AB 2+AP 2=64+9=73≠13,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为v cm /s 时,能够使四边形PBQD 在时刻t s 为菱形,由题意得,⎩⎨⎧16-t =22-vt ,16-t =64+t 2,解得⎩⎪⎨⎪⎧t =6,v =2.故点Q 的速度为2cm /s 时,能够使四边形PBQD 在某一时刻为菱形.例5 (1)连结OQ ,∵PN 与⊙O 相切于点Q ,∴OQ ⊥PN ,即∠OQP =90°.∵OP =10,OQ =6,∴PQ =102-62=8(cm ). (2)过点O 作OC ⊥AB ,垂足为C.∵点A 的运动速度为5cm /s ,点B 的运动速度为4cm /s ,运动时间为t s ,∴PA =5t ,PB =4t.∵PO =10,PQ =8,∴PA PO =PB PQ =t2.∵∠P =∠P ,∴△PAB ∽△POQ ,∴∠PBA =∠PQO =90°.∵∠BQO =∠CBQ =∠OCB =90°,∴四边形OCBQ 为矩形,∴BQ =OC.∵⊙O 的半径为6,∴BQ =OC =6时,直线AB 与⊙O 相切.①当AB 运动到如图1所示的位置时,BQ =PQ -PB =8-4t ,由BQ =6,得8-4t =6,t =0.5.②当AB 运动到如图2所示的位置时,BQ =PB -PQ =4t -8,由BQ =6,得4t -8=6,t =3.5.综上,当t =0.5s 或3.5s 时,直线AB 与⊙O 相切.【变式拓展】1.(1)0或-1 (2)4或2 (3)C 2.(1)C (2)D3.根据OC 长为8可得一次函数中的n 的值为8或-8.分类讨论:①n =8时,易得A(-6,0),如图1,∵抛物线经过点A 、C ,且与x 轴交点A 、B 在原点的两侧,∴抛物线开口向下,则a <0,∵AB =16,且A(-6,0),∴B(10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =-6+102=2,要使y 1随着x 的增大而减小,∵a <0,∴x ≥2;②n =-8时,易得A(6,0),如图2,∵抛物线过A 、C 两点,且与x 轴交点A ,B 在原点两侧,∴抛物线开口向上,则a >0,∵AB =16,且A(6,0),∴B(-10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =6-102=-2,要使y 1随着x 的增大而减小,且a >0,∴x ≤-2.4.(1)C (2)6或12 (3)12或455.(1)(3,0)或(-1,2)或(3,4) (2)2或6 (3)(2,2)或(-6,-2)或(10,6) (4)2,5,186.(6,2)或(-6,2)【热点题型】【分析与解】(1)∵OB =6,C 是OB 的中点,∴BC =12OB =3.∴2t =3,即t =32s .∴OE =32+3=92,E(92,0). (2)如图1,连结CD 交OP 于点G ,在▱PCOD 中,CG =DG ,OG =PG ,∵AO =PE ,∴AG =EG .∴四边形ADEC 是平行四边形. (3)①(Ⅰ)当点C 在线段BO 上时,第一种情况:如图2,当点M 在CE 边上时,∵MF ∥OC ,∴△EMF ∽△ECO.∴MF CO =EF EO ,即26-2t =23+t,解得t =1.第二种情况:如图3,当点N 在DE 边时,∵NF ∥PD ,∴△EFN ∽△EPD.∴FN PD =EF EP 即16-2t =23,解得t =94.(Ⅱ)当点C 在BO 的延长线上时,第一种情况:如图4,当点M 在DE 边上时,∵MF ∥PD ,∴EMF ∽△EDP.∴MF DP =EF EP 即22t -6=23,解得t =92.第二种情况:如图5,当点N 在CE 边上时,∵NF ∥OC ,∴△EFN ∽△EOC.∴FN OC =EF EO 即12t -6=23+t ,解得t =5.综上所述,所有满足条件的t 的值为1,94,92,5.②278<S ≤92或272<S ≤20.【错误警示】当PD∥BC时,△APD∽△ABC,当PE∥AC时,△BPE∽△BAC,连结PC,∵∠A=36°,AB=AC,点P在AC的垂直平分线上,∴AP=PC,∠ABC=∠ACB =72°,∴∠ACP=∠PAC=36°,∴∠PCB=36°,∴∠B=∠B,∠PCB=∠A,∴△CPB ∽△ACB,故过点P的△ABC的相似线最多有3条.故答案为:3.。
分类讨论型问题探究分类思想是解题的一种常用思想方法,它有利于培养和发展学生思维的条理性、缜密性、灵活性,使学生学会完整地考虑问题、化整为零地解决问题,学生只有掌握了分类的思想方法,在解题中才不会出现漏解的情况.例1(2005年黑龙江) 王叔叔家有一块等腰三角形的菜地,腰长为40米,一条笔直的水渠从菜地穿过,这条水渠恰好垂直平分等腰三角形的一腰,水渠穿过菜地部分的长为15米(水渠的宽不计),请你计算这块等腰三角形菜地的面积.分析:本题是无附图的几何试题,在此情况下一般要考虑多种情况的出现,需要对题目进行分情况讨论。
分类思想在中考解题中有着广泛的应用,我们在解题中应仔细分析题意,挖掘题目的题设,结论中可能出现的不同的情况,然后采用分类的思想加以解决. 解:(1)当等腰三角形为锐角三角形时(如图1),由勾股定理得AE =25(m )由DE ∥FC 得,FCEDAC AE =,得FC =24(m ) S △ABC =12 ³40³24=480(m 2)(2)当等腰三角形为钝角三角形时(如图2)同理可得,S △ABC =1264³24=768(m 2)说明:本题主要考查勾股定理、相似三角形的判定及性质等内容。
练习一 1、(2005年资阳市)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( )A.2a b + B.2a b - C.2a b +或2a b - D. a+b 或a-b2.(2005年杭州)在右图的几何体中, 上下底面都是平行四边形, 各个侧面都是梯形, 那么图中和下底面平行的直线有( )(A) 1条 (B) 2条 (C) 4条 (D) 8条3(2005年潍坊市)已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径是( ).A .5cmB .11cmC .3cmD .5cm 或11cm图1图2A4.(2005年北京)在△ABC中,∠B=25°,AD是BC边上的高,并且AD BD DC2 ²,则∠BCA的度数为____________。
2016中考总复习专题一:分类讨论
一三角形中的分类讨论
1,等腰三角形一腰上的高与另一腰所成的角为45,则这的顶角为。
2.(2015•黄冈模拟)等腰△ABC中,∠A=30°,AB=4,则AB边上的高CD的长是()
A.
2或2或B.
2或或
C.
2或2或
D.
2或或
3.等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是()
A .4 B
.
10
C .4或10 D
.
以上答案都
不对
4,(2013秋•紫阳县期末)已知等腰三角形的一内角度数为40°,则它的顶角的度数为()
A .40°B
.
80°C
.
100°D
.
40°或100°
5.(2015•德州)一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A.50 B.50或40 C.50或40或30 D.50或30或20
6,(2015南京)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)(10分)
(6题图)(10题图)(12题图)
二圆中的分类讨论
7,一条弦把圆分成2:3两部分,则这条弦所对圆周角的度数是。
8,已知两圆半径为2和5,当两圆相切时,圆心距为。
9.(2014•凉山州)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()
A.cm B.cm C.cm或cm D.cm或cm 10.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为
11,(2012•绍兴)已知点A、B、P是⊙O上不同的三点,∠APB=α,点M是⊙O上的动点,且使△ABM为等腰三角形.若满足题意的点M只有2个,则符合条件的α的值有()A.1个B.2个C.3个D.4个
12,(2015•杭州模拟)直线y=x+与x轴、y轴分别相交于A,B两点,圆心P的坐
标为(1,0),圆P与y轴相切于点O.若将圆P沿x轴向左平移,当圆P与该直线相切时点P的坐标为;当圆P与该直线相交时,横坐标为整数的点P有
13,(2014•杭州)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于(长度单位).
14,(2013•杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t 可取的一切值。
(单位:秒)
15.(2013•三明)如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4.
(1)判断线段AP与PD的大小关系,并说明理由;
(2)连接OD,当OD与半圆C相切时,求的长;
(3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取
值.
三函数中的分类讨论
16.(2015•拱墅区一模)设二次函数y=ax2+bx+c(a≠0)的图象经过点(3,0),(7,﹣8),当3≤x≤7时,y随x的增大而减小,则实数a的取值范围是.17.(2015•黄冈)二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为.
18.(2012•杭州)已知抛物线y=k(x+1)(x﹣)与x轴交于点A,B,与y轴交于点C,
则能使△ABC为等腰三角形的抛物线的条数是()
A.2B.3C.4D.5
19,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
20.如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4).(1)求抛物线的解析式;
(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x 轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;
(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4
的两部分,求出该直线的解析式.
21、如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点
A、O、B三点.
(1)求抛物线的函数表达式;
(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;
(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.
22,.如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建
立平面直角坐标系,抛物线y=﹣x2+x+4经过A、B两点.
(1)写出点A、点B的坐标;
(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;
(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.。