2.6 固有值和固有函数
- 格式:ppt
- 大小:645.50 KB
- 文档页数:15
数学物理方程常规例题I(1-20题)一、数学模型例题例1. 密度为ρ均匀柔软的细弦线x =0端固定,垂直悬挂,在重力作用下,横向拉它一下,使之作微小的横振动。
试导出振动方程。
解:考虑垂直悬挂的细弦线上一段微元ds ,该微元在坐标轴上投影为区间[x ,x+d x ],在微元的上端点处有张力:)(1x L g T -=ρ,在下端点处有张力:)(2dx x L g T --=ρ考虑张力在位移方向的分解,应用牛顿第三定律,有tt u m T T =-1122sin sin αα 由于细弦作微小振动,所以有近似)(tan sin 22dx x u x +=≈αα )(tan sin 11x u x =≈αα代入牛顿第三定律的表达式,有tt x x u ds t x u x L g t dx x u dx x L g ρρρ≈--+--),()(),()(上式两端同除以ds ρ,得tt x x u dsx u x L dx x u dx x L g≈--++-)()()())((由于dx ds ≈,而x x x x x u x L dxx u x L dx x u dx x L )]()[()()()())((-≈--++-所以,细弦振动的方程为tt x x u u x L g =-])[(例2. 长为L 密度为ρ底半径为R 的均匀圆锥杆(轴线水平)作纵振动,锥顶点固定在x =0处。
导出此杆的振动方程。
(需要包括假设在内的具体推导) 解:设均匀圆锥杆作纵振动时位移函数为u (x ,t )则在点x 处,弹力与相对伸长量成正比,即),(),(t x Yu t x P x = 其中,Y 为杨氏模量。
在截面上张力为T (x , t ) = S (x ) P (x , t )这里,S (x )为x 处圆锥截面积。
考虑圆锥杆上对应于区间[x ,x+dx ]处的微元(如右图所示)。
应用牛顿第二定律,得),()]()()[(31),(),(t x u x xS dx x S dx x t x T t dx x T tt -++=-+ρ 由于圆锥截面积2)()(x LR x S π= 微元(圆台)体积)33()(31)]()()[(313222dx xdx dx x LRx xS dx x S dx x ++=-++ρπρ 所以),()33()(31)],(),()[()(3222222t x u dx xdx dx x L Rt x u x t dx x u dx x L R Y tt x x ++=-++ρππ两端除dx ,并取极限,得),()],([22t x u x t x u x Y tt x x ρ=记ρ/2Y a =,则有方程)2(2x xx tt u xu a u += 二、二阶偏微分方程化简与求通解只考虑未知函数是两个自变量情形,即),(y x u 。
数学物理方程 李明奇主编 电子科技大学出版社2-3章部分习题答案习题2.14.一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。
试写出定解问题。
解:由Newton 定律: tt x x Sdxu t x YSu t dx x SYu ρ=-+),(),(,其中,Y 为杨氏模量,S 为均匀细杆的横截面积,x u 为相对伸长率。
化简之后,可以得到定解问题为:⎪⎪⎩⎪⎪⎨⎧-==========)(|,0|0|,0|)/(0002L x Iu u u u u a u Y u t t t L x x x xx xx tt δρρ。
习题2.23.设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡-波尔兹曼定律正比于4u ,即dSdt ku dQ 4=,设物体与周围介质之间,只有热辐射而无热传导,周围介质的绝对温度为已知函数),,,(t z y x ϕ,。
试写出边界条件。
解:由Fourier 热传导实验定律dSdt nuk dQ ∂∂-=1,其中1k 称为热传导系数。
可得dSdt u k dSdt nuk )(441ϕ-=∂∂-,即可得边界条件:)(441ϕ--=∂∂u k k nus。
习题2.34.由静电场Gauss 定理⎰⎰⎰⎰⎰⋅=⋅VsdV dS E ρε01,求证:0ερ=⋅∇E ,并由此导出静电势u 所满足的Poisson 方程。
证明:⎰⎰⎰⎰⎰⎰⎰⎰⋅=⋅=⋅VVsdV dV divE dS E ρε01,所以可以得到:0ερ=divE 。
由E divE ⋅∇=与u E -∇=,可得静电势u 所满足的Poisson 方程:2ερ-=∇u 。
习题2.42.求下列方程的通解:(2):;032=-+yy xy xx u u u (5):;031616=++yy xy xx u u u解:(2):特征方程:03)(2)(2=--dx dy dx dy解得:1-=dx dy 和3=dxdy。
29.0(,)11cos ,sin (,)(cos ,sin ),cos sin ;sin cos .sin cos ;s xx yy rr r r x y x y x r y laplace u u r u u u r rx r y r u x y u r r u u u u r u r u u u u ru θθθθθθθθθθθθθθθ+=++==⎧⎨=⎩∴==+⎧⎪⎨=−+⎪⎩=−⇒=∵ 证明方程在极坐标下为 证明: sin cos ;cos cos in .sin .sin ()cos ()sin sin cos cos r xx x r r u u r y r r u u u x x r r x u u r r r r θθθθθθθθθθθθθθθθθθ⎧∂∂∂⎛⎞⎧=−⎜⎟⎪⎪∂∂∂⎝⎠⎪⎪⇒⎨⎨∂∂∂⎛⎞⎪⎪+=+⎜⎟⎪⎪⎩∂∂∂⎝⎠⎩∂∂∂∂∂⎛⎞==−⎜⎟∂∂∂∂∂⎝⎠∂∂∂∂⎛⎞⎛=−−⎜⎟⎜∂∂∂∂⎝⎠⎝ 从而2222222222222sin cos sin cos sin cos sin cos sin cos sin .cos ()sin ()sin yy u u u u r r r r r r u u ur r r r u u u y y r r y θθθθθθθθθθθθθθθθθθθ⎞⎟⎠∂∂∂∂=+−+∂∂∂∂∂∂∂∂−++∂∂∂∂∂∂∂∂∂⎛⎞==+⎜⎟∂∂∂∂∂⎝⎠= 2222222222222cos cos sin sin cos sin cos cos sin sin cos sin cos cos .1u u r r r r u u u u r r r r r r u u ur r r r u u u u θθθθθθθθθθθθθθθθθθθθθθ∂∂∂∂⎛⎞⎛⎞++⎜⎟⎜⎟∂∂∂∂⎝⎠⎝⎠∂∂∂∂=−++∂∂∂∂∂∂∂∂+−+∂∂∂∂+=+ 所以 10.u +=21.(01,0),(0,)(1,)0,1,0.(2)2(,0)11,1,2(,0)(1);tt xx tu a u x t u t u t x x u x x x u x x x ⎧=<<>⎪==⎪⎪⎧⎪<≤⎪⎨⎪=⎨⎪⎪⎪−<<⎪⎩⎪⎪=−⎩求下列问题的解22(,)()().()()0,()()0.(0)(1)0.()()0,(0)(1)0.(),()si n n n u x t X x T t T t a T t X x X x X X X x X x X X n X x B λλλλπ=′′+=′′+===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 111212202n (1,2,).()cos sin (1,2,).(,)(cos sin )sin .42sin (1)sin sin .2n n n n n n n n x n T t C an t D an t n u x t a an t b an t n x n a x n xdx x n xdx n ππππππππππ∞===+==+⎡⎤=+−=⎢⎥⎣⎦∑∫∫ 代入另一常微分方程,得则其中 ()()14402244124(1)sin 11.44(,)(sin cos 11sin )sin .2nn nn b x x n xdx an n a n u x t an t an t n x n n a πππππππππ∞=⎡⎤=−=−−⎣⎦⎡⎤=+−−⎣⎦∫∑ 因此,所求定解问题的解为2(0,0),(0,)(,)0,(3)35(,0)3sin6sin ,22(,0)0.tt xx x t u a u x l t u t u l t x xu x l l u x ππ⎧=<<>⎪==⎪⎪⎨=+⎪⎪=⎪⎩ ()22(,)()().()()0,()()0.(0)()0.()()0,(0)()0.21(),(2n n u x t X x T t T t a T t X x X x X X l X x X x X X l n X l λλλπλ=′′+=′′+=′==′′+=⎧⎨′==⎩+=解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, ()()()()()()121)sin (0,1,2,).22121()cossin (0,1,2,).22212121(,)(cossin )sin .222235(3sin6sin 22n n n n n n n n n x B x n la n a n T t C t D t n l la n a n n u x t a tb t x l l l x x a l l ππππππππ∞=+==++=+=+++=+=+∑ 代入另一常微分方程,得则 其中 ()03,1;21)sin 6,2;20,12.0.3355(,)3cos sin 6cos sin .2222l n n n xdx n l l n b a a u x t t x t x l l l lπππππ=⎧+⎪==⎨⎪≠⎩==+∫、 因此,所求定解问题的解为3.4(0,0),(2)(0,)0,(,)0,(,0)().t xx x x u u x l t u t u l t u x x l x =<<>⎧⎪==⎨⎪=−⎩求下列定解问题的解:2(,)()().()4()0,()()0.(0)()0.()()0,(0)()0.(),()n n u x t X x T t T t T t X x X x X X l X x X x X X l n X x A lλλλπλ=′+=′′+=′′==′′+=⎧⎨′′==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 222()2()012000cos (0,1,2,).()(0,1,2,).1(,)cos .222().62()cos n n t ln n n t ln n l l n n x n l T t D e n n u x t a a e x l l a x l x dx l n a x l x xd l l πππππ−∞−=====+=−==−∑∫∫ 代入另一常微分方程,得则 其中 2222222()2212[1(1)].2[1(1)](,)cos .6n n n t ln l x n l l n u x t e x n lππππ∞−=−−+−=−−+−=+∑ 因此,所求定解问题的解为2110(01),,0,(1,)0,.,.rr r u u u r r r A u A θθθαθαθπα⎧++=<<⎪⎪⎨⎧≤≤⎪⎪=⎨⎪<≤⎪⎩⎩其中为已知常数22(,)()().()()()0,()()0.()()0,()(2).(),()cos sin n n n n u r R r r R r rR r R r n X x A n B n θθλθλθθλθθθπλθθ=Φ′′′+−=′′Φ+Φ=′′Φ+Φ=⎧⎨Φ=Φ+⎩==+解:应用分离变量法,令 代入方程分离变量,得求解固有值问题得,()2010(0,1,2,).()()()0,(0).()(0,1,2,).1(,)cos sin .212n n n n n n n n n r R r rR r R r R R r C r n u r a a n b n r Aa Ad a ααλθθθαθππ∞=−=′′′⎧+−=⎨<+∞⎩===++==∑∫ 代入另一常微分方程的定解问题得, 则 其中 112cos sin ,1sin 0.2(,)sin cos .n nn AA n d n n b A n d A A u x t r n n n ααααθθαππθθπααθππ−−∞======+∫∫∑ 因此,所求定解问题的解为0(0,0),(0,)0,(,)0(0),(,0)(1),lim (,)0(0),.xx yy y u u x l y u y u l y y x u x A u x y x l l A →∞⎧+=<<<<∞⎪⎪==≤<∞⎨⎪⎪=−=<<⎩其中为已知常数 2(,)()().()()0,()()0.(0)()0.()()0,(0)()0.(),()sin n n n u x y X x Y y X x X x Y y Y y X X l X x X x X X l n X x B lλλλπλ=′′+=′′−===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 10(1,2,).()(1,2,).(,)sin.22()sin .lim (,)0n n y y lln n n n n y y l ln n n l n n y n x n l Y y C e D e n n u x y a e b e x l x n A a b A l xdx l l l n u x y a ππππππππ−∞−=→∞==+=⎛⎞=+⎜⎟⎝⎠+=−==⇒∑∫ 代入另一常微分方程,得则 其中 10.2(,)sin .n n y l n A n u x t e x n l πππ∞−===∑因此,所求定解问题的解为()22228.-10.cos ,sin ,111(0),0.{cos sin }.,()xx yy x y a rr r r an a u u u x r y r u u u r a r r u A n B n u r a r θθθθθθθ+==+====⎧++=−<<⎪⎨⎪=⎩+= 在以原点为心,为半径的圆内,试求泊松方程 的解,使它满足边界条件解:令作极坐标变换,得由固有函数法,相应的固有函数系为 因此,设方程的解为[]()()()()()()()0002222cos ()sin .11,110,0210,323()0()n n n n n n n n n nn n nn n n n b r n a a r n a a a n r r nb b b r r a r A r B r n b r C r D θθ∞=−+⎧′′′+=−⎪⎪⎪′′′+−=≠⎨⎪⎪′′′+−=⎪⎩=+≠=+∑ 代入方程,得方程,的通解:, ()()2000(0),()0;(0),()0.()00()0.11()ln ,4(0),()n n n n n n n n r a a a b b a a r n b r a r A r B r a a a −<+∞=<+∞==≠==+−<+∞=. 由有界性条件及边界条件,得 , 方程的通解: 由有界性条件及边界条件,()()()()()220222220.1().41,.41,.a r a r u r a r u x y a x y θ=−=−⎡⎤=−+ 得 则定解问题的解为 化成直角坐标,则得21210.sin ,(2)(0,)0,(,)0(0),(,0)0,(,0)0(0);{sin }.(,)()sin .tt xx tn n n u a u t x l u t u l t t u x u x x l n x ln u x t u t x l n a u u l ππππ∞=⎧=+⎪⎪==≥⎨⎪==≤≤⎪⎩=⎛⎞′′+⎜⎟⎝⎠∑求下列问题的解:解:由固有函数法,相应的固有函数系为 设方程的解为 代入原方程,得()2111020(1),.(0)(0)0(1,2,),1()0;1()sin sin .n n n n t n a u u t l u u n n u t l an u t t d al l l a t t a a l ππτττππππ=≠⎛⎞′′+=⎜⎟⎝⎠′===≠===−⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠∫"" 由初始条件,得当时, 当时, 2(,)sin sin l l a u x t t t x a a l l ππππ⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠ 故所求的解为2110(0,0),(3)(0,)0,(,)0,(,0)0.,{sin}.(,)()sin .sin 22sin [1(t xx n n n n l n u a u A x l t u t u l t u x n x ln u x t u t x l n A A A x l n A A A xdx l l n πππππ∞=∞=⎧=+<<>⎪==⎨⎪=⎩====−∑∑∫ 解:由固有函数法相应的固有函数系为 设方程的解为 并将展为: ,其中 222()023321)].2[1(1)],(0)0.2()[1(1)]2[1(1)][1].(,n n n n n n a t tn l n n a t n ln a A u u l n u Au t e d n Al e n au x πτπππτππ⎛⎞−−⎜⎟⎝⎠⎛⎞−⎜⎟⎝⎠−⎧⎛⎞′+=−−⎪⎜⎟⎨⎝⎠⎪=⎩=−−=−−−∫ 代入原方程可得得: 故所求的解为2233212)[1(1)][1]sin .n a tnl n Al n t e x n alπππ⎛⎞∞−⎜⎟⎝⎠==−−−∑()2211.224sin cos ,(2)(0,)0,(,)(0),(,0),(,0)()(0).(,)(,)().224sin cos ,(0,)(0ttxx t ttxx u a u x x l lu t u l t B t Bu x x u x x l x x l l u x t v x t w x v a v w x x l lv t w ππππ⎧=+⎪⎪==≥⎨⎪⎪==−≤≤⎩=+′′=+++求下列问题的解解:设问题的解为 将其代入上面的定解问题,得22222)0,(,)(),(,0)(),(,0)().224sincos 0,(0)0().4()sin.8(0,)0,(,)0,(,0)t tt xx v l t w l B Bv x w x x v x x l x l a w x x l lw w l B B l w t x x l a l v a v v t v l t v x ππππ⎧⎪⎪=+=⎨⎪⎪+==−⎩⎧′′+=⎪⎨⎪==⎩=+==== 化成下面两个问题:(1) , 解得: (2) 12222022340(),(,0)().(,)cos sin sin .0,4;24sin sin 8, 4.824()sin t n n n l n l n Bx w x v x x l x l n a n a n v x t a t b t x l l l n l n a x xdx l l a l l n an l b x l x xdx n a l n ππππππππππ∞=⎧⎪⎪⎨⎪⎪−=−⎩⎛⎞=+⎜⎟⎝⎠≠⎧⎪=−⋅=⎨−=⎪⎩=−⋅=∑∫∫ 解得: 其中, ()()43222441222[11].4[11]44(,)cos sin sin sin .844(,)(,)()1cossin 8nn n al l a n a n v x t t x t x a l l n a l l B l a u x t v x t w x x t x l a l l πππππππππ∞=−−−−=−+⎛⎞=+=+−⎜⎟⎝⎠∑ 则 因此,原问题的解为14..0,(2)(-)(),(-)().0().:0X X X X X X X x Be Ae Be A B λππππλ′′+=⎧⎨′′==⎩<=++=+−=−==⇒求下列问题的固有值与固有函数解:当时,方程的通解为 由边界条件,有, ; 得0()0.0().-0.:().0().sin ,X x X x Ax B A B A B A X x C X x A B A B A Bλππλ===++=+⇒==>=+−=++=− 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有22sin ;()0sin 0(1,2,);()cos sin .(0,1,2,),()cos sin .n n n n n n n n X x n n X x A nx B nx n n X x A nx B nx λλ+====+===+"""" 要不恒等于,则,得故,固有值 固有函数222()()0,(3)(1)()0.ln ,()0.0()00:x y x xy x y y y e x e x d y y d y x Be Bx A B Be τλτλττλ′′′⎧++=⎨==⎩==+=<=+=++=+=解:方程通过自变量代换 或 得: 当时,方程的通解为 由边界条件,有 , ; 得))0()0.0()ln .0,0.:()0.0()cos ln sin ln .0,A B y x y x A B A x B B A y x y x A B A x B x A λτλ==⇒===+=+===>=+=+= 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有()()2220;()00(1,2,);()sin ln .(1,2,),()sin ln .n n n n n n B y x n n y x B n x n n y x B n x λππλπ========"""" 要不恒等于,则,得 故,固有值 固有函数。
数学物理方程 李明奇主编 电子科技大学出版社2-3章部分习题答案习题2.14.一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。
试写出定解问题。
解:由Newton 定律: tt x x Sdxu t x YSu t dx x SYu ρ=-+),(),(,其中,Y 为杨氏模量,S 为均匀细杆的横截面积,x u 为相对伸长率。
化简之后,可以得到定解问题为:⎪⎪⎩⎪⎪⎨⎧-==========)(|,0|0|,0|)/(0002L x I u u u u u a u Y u t t t L x x x xx xx tt δρρ。
习题2.23.设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡-波尔兹曼定律正比于4u ,即dSdt ku dQ 4=,设物体与周围介质之间,只有热辐射而无热传导,周围介质的绝对温度为已知函数),,,(t z y x ϕ,。
试写出边界条件。
解:由Fourier 热传导实验定律dSdt nuk dQ ∂∂-=1,其中1k 称为热传导系数。
可得dSdt u k dSdt n uk )(441ϕ-=∂∂-,即可得边界条件:)(441ϕ--=∂∂u k k nus。
习题2.34.由静电场Gauss 定理⎰⎰⎰⎰⎰⋅=⋅VsdV dS E ρε01,求证:0ερ=⋅∇E ,并由此导出静电势u 所满足的Poisson 方程。
证明:⎰⎰⎰⎰⎰⎰⎰⎰⋅=⋅=⋅VVsdV dV divE dS E ρε01,所以可以得到:0ερ=divE 。
由E divE ⋅∇=与u E -∇=,可得静电势u 所满足的Poisson 方程:02ερ-=∇u 。
习题2.42.求下列方程的通解:(2):;032=-+yy xy xx u u u (5):;031616=++yy xy xx u u u 解:(2):特征方程:03)(2)(2=--dxdydx dy 解得:1-=dx dy 和3=dxdy。
数学物理方程 李明奇主编 电子科技大学出版社习题2.14.一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。
试写出定解问题。
解:由Newton 定律: tt x x Sdxu t x YSu t dx x SYu ρ=-+),(),(,其中,Y 为杨氏模量,S 为均匀细杆的横截面积,x u 为相对伸长率。
化简之后,可以得到定解问题为:⎪⎪⎩⎪⎪⎨⎧-==========)(|,0|0|,0|)/(0002L x I u u u u u a u Y u t t t L x x x xx xx tt δρρ。
习题2.23.设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡-波尔兹曼定律正比于4u ,即dSdt ku dQ 4=,设物体与周围介质之间,只有热辐射而无热传导,周围介质的绝对温度为已知函数),,,(t z y x ϕ,。
试写出边界条件。
解:由Fourier 热传导实验定律dSdt n uk dQ ∂∂-=1,其中1k 称为热传导系数。
可得dSdt u k dSdt nuk )(441ϕ-=∂∂-, 即可得边界条件:)(441ϕ--=∂∂u k k nu s。
习题2.34.由静电场Gauss 定理⎰⎰⎰⎰⎰⋅=⋅VsdV dS E ρε01,求证:0ερ=⋅∇E ,并由此导出静电势u 所满足的Poisson 方程。
证明:⎰⎰⎰⎰⎰⎰⎰⎰⋅=⋅=⋅VVsdV dV divE dS E ρε01,所以可以得到:0ερ=divE 。
由E divE ⋅∇=与u E -∇=,可得静电势u 所满足的Poisson 方程:2ερ-=∇u 。
习题2.42.求下列方程的通解:(2):;032=-+yy xy xx u u u (5):;031616=++yy xy xx u u u解:(2):特征方程:03)(2)(2=--dx dy dx dy解得:1-=dx dy 和3=dxdy。