八年级数学整式的运算
- 格式:ppt
- 大小:888.00 KB
- 文档页数:22
人教版数学八年级上册15.1.3《整式的乘法》说课稿一. 教材分析《人教版数学八年级上册》第15.1.3节《整式的乘法》是初中数学中非常重要的一部分,主要介绍了整式乘法的基本概念和运算法则。
这部分内容是学生学习更高级数学知识的基础,也是解决实际问题的重要工具。
本节课的内容包括整式乘法的定义、运算规则以及具体的计算方法。
通过本节课的学习,学生应该能够理解和掌握整式乘法的基本概念和运算法则,并能够运用到实际问题中。
二. 学情分析在八年级的学生中,他们已经学习了整式的基本概念和运算法则,对代数知识有一定的了解。
然而,对于整式乘法这样的高级运算,他们可能还存在一些困难和模糊的地方。
因此,在教学过程中,我们需要关注学生的知识基础,针对他们的薄弱环节进行有针对性的教学。
同时,学生对于实际问题的解决能力也需要进一步的培养和提高。
三. 说教学目标本节课的教学目标包括以下三个方面:1.知识与技能:学生能够理解整式乘法的定义和运算法则,能够熟练地进行整式乘法的计算。
2.过程与方法:学生能够通过自主学习和合作交流,掌握整式乘法的基本方法,并能够将这些方法应用到实际问题中。
3.情感态度与价值观:学生能够培养对数学的兴趣和自信心,养成良好的学习习惯和团队合作精神。
四. 说教学重难点本节课的重难点是整式乘法的运算法则和具体的计算方法。
学生需要理解并掌握整式乘法的规则,并能够灵活运用到实际问题中。
在教学过程中,我们需要针对这些重难点进行详细的讲解和辅导,帮助学生理解和掌握。
五. 说教学方法与手段在教学过程中,我们将采用多种教学方法和手段,以提高学生的学习效果和兴趣。
1.引导式教学:通过提问和引导,激发学生的思考和探究欲望,培养他们的自主学习能力。
2.合作学习:学生进行小组讨论和合作交流,让他们在互动中学习和提高。
3.实例讲解:通过具体的例题讲解,让学生理解和掌握整式乘法的计算方法。
4.练习与反馈:通过布置练习题和及时的反馈,帮助学生巩固知识,提高解题能力。
以下是八年级数学上册的必背知识点:一、整式的概念与运算1.简单的代数式的概念与运算:常数、变量、系数、次数等。
2.同类项的概念与合并:同底数幂相乘的原理、定点方向向量。
3.整式之和与差、积的概念与规律。
二、分式的概念与运算1.简单的分式的概念与约分:通分、求最简分式。
2.分式之和与差、积及商的概念与运算。
三、一元一次方程与不等式1.等式的定义与性质:等式的基本性质、等式的移项与合并、等式的逆运算等。
2.一元一次方程与不等式的定义与解法:有理数的加减乘除、方程、方程与不等式的基本关系。
四、图形的初步认识1.点、线、面的概念。
2.线段、射线、角的概念与性质:直角、余角、补角、平分线。
3.直线与点的位置关系:共线、相交、平行、垂直。
4.三角形、四边形的定义与性质:等腰、等边、直角、等角、对顶角、对边、外角和等角、四边形的分类及性质。
五、比例与图形的相似1.比与比例的概念与运算:比例的基本性质、反比例等。
2.图形的相似与比例:全等、相似的定义与性质、相似三角形的判定与性质、相似多边形的性质等。
六、平面直角坐标系与函数1.平面直角坐标系:横坐标与纵坐标、坐标的性质与应用等。
2.函数及表示方法:函数的概念、自变量与因变量、函数的表示方法等。
3.一次函数的概念:函数的定义域、值域、图象等。
七、数据的收集、整理与处理1.数据的收集与整理:调查方法、表格、直方图、折线图等。
2.概率的初步认识:实验、样本空间、随机事件、概率等。
以上是八年级数学上册的必背知识点,希望能对你的学习有所帮助!。
八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法第4课时整式的除法教学设计(新版)新人教版一. 教材分析整式的乘除法是八年级数学上册第14.1节的内容,这一部分主要让学生掌握整式相乘和相除的法则,培养学生解决实际问题的能力。
教材通过实例引入整式的乘除法,让学生在具体的情境中探索和发现规律,进而掌握运算法则。
本节课的内容是整式除法,是整式乘除法的进一步延伸,对于学生来说,具有一定的挑战性。
二. 学情分析八年级的学生已经学习了整式的基本概念,具有一定的数学基础。
但是,对于整式的乘除法,他们可能还存在着一些模糊的认识,需要通过具体的实例和练习来进一步理解和掌握。
同时,学生可能对于如何将实际问题转化为数学问题还存在着一定的困难,因此,在教学过程中,需要教师引导学生将实际问题与数学知识相结合,提高他们解决问题的能力。
三. 教学目标1.理解整式除法的概念,掌握整式除法的运算法则。
2.能够运用整式除法解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和创新能力,提高学生的数学素养。
四. 教学重难点1.教学重点:整式除法的概念和运算法则。
2.教学难点:如何将实际问题转化为数学问题,运用整式除法解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、分组讨论法等多种教学方法,引导学生通过自主学习、合作学习,发现和总结整式除法的运算法则,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入整式除法概念。
例如,已知多项式f(x)=x^2+4x+4可以被多项式g(x)=x+2整除,让学生思考如何求出商和余数。
2.呈现(10分钟)通过PPT展示整式除法的定义和运算法则,引导学生理解和记忆。
3.操练(10分钟)让学生分组讨论,运用PPT中的例题,自己动手完成整式除法的运算,并互相检查。
初二数学整式的除法运算数学中,整式的除法运算是我们学习的一个重要内容。
本文将详细介绍初二数学整式的除法运算,包括概念、步骤和注意事项等。
整式是指由常数、未知数及其系数经过加、减、乘运算组成的代数式。
我们将讨论的整式除法是指对两个整式进行相除运算,得到商式和余式。
一、整式除法的概念整式除法是指对一个整式f(x)除以另一个整式g(x),得到唯一的商式q(x)和余式r(x)的运算。
其中,被除式f(x)除以除式g(x)的结果是商式q(x),余项为r(x),满足等式f(x) = g(x)·q(x) + r(x)。
二、整式除法的步骤整式除法的运算步骤如下:1. 将被除式和除式按照指数降序排列,确保各项系数对应。
2. 令被除式的首项与除式的首项相除,得到商数的首项。
3. 用商数的首项乘以除式的每一项,并与相应的被除式的项相减,得到一个新的多项式。
4. 重复步骤3,直到无法进行减法运算为止,最后所得的多项式为余项。
5. 将商数和余项以及除数等整齐地写在一起,形成整式的除法运算式。
三、整式除法的注意事项在进行整式的除法运算时,需要注意以下几点:1. 每一步的计算都要注意保持各项对齐,以确保正确的运算。
2. 注意将每一步的结果写明,避免出错或遗漏。
3. 在计算过程中,要仔细检查每一步的运算,以确保准确性。
4. 若被除式中某些项的指数小于除式中对应项的指数,可以在被除式前面添加0。
5. 在进行多次步骤3时,可以化简相同指数的项。
示例:现假设有被除式f(x)=3x^3-5x^2+2x-4和除式g(x)=x-2,我们来进行整式的除法运算。
按照上述步骤,我们可以依次进行计算,最终得到商式q(x)=3x^2+1、余式r(x)=0。
四、总结通过以上的介绍,我们了解了初二数学整式的除法运算。
整式除法是一个基础概念,掌握它对于后续的多项式运算和方程的解法有着重要意义。
在进行整式除法时,要注意步骤的执行和运算的准确性,以确保得到正确的结果。
人教版数学八年级上册15.3.2《整式的除法》教案一. 教材分析《整式的除法》是人教版数学八年级上册第15章第三节的一部分,主要内容包括单项式除以单项式、多项式除以单项式以及多项式除以多项式的运算方法。
这一节内容在数学学习中占据重要地位,是学生进一步学习函数、不等式等数学知识的基础。
通过本节内容的学习,学生能够掌握整式除法的基本运算方法,提高运算能力,并为后续学习打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了整式的加减、乘法等基本运算,具备一定的数学基础。
但学生在进行整式除法运算时,容易出错,对除法运算的理解不够深入。
因此,在教学过程中,需要关注学生的学习困难,通过具体例子引导学生理解整式除法的运算规律,提高学生的运算能力。
三. 教学目标1.知识与技能目标:使学生掌握整式除法的基本运算方法,能够熟练地进行整式除法运算。
2.过程与方法目标:通过自主探究、合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学学习的成就感。
四. 教学重难点1.重点:整式除法的基本运算方法。
2.难点:理解整式除法的运算规律,能够灵活运用整式除法解决实际问题。
五. 教学方法采用“引导探究法”和“合作交流法”,教师引导学生通过观察、分析、归纳等方法,发现整式除法的运算规律,培养学生的问题解决能力。
同时,鼓励学生进行合作交流,分享学习心得,提高学生的沟通能力。
六. 教学准备1.教师准备:教师需熟练掌握整式除法的运算方法,了解学生的学习情况,准备相关教学素材。
2.学生准备:学生需预习整式除法相关内容,了解基本概念,准备参与课堂讨论。
七. 教学过程1.导入(5分钟)教师通过一个简单的例子,引导学生回顾整式的加减、乘法运算,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示整式除法的例子,引导学生观察、分析,发现整式除法的运算规律。
学生通过自主探究,总结整式除法的基本方法。
八年级数学上册前两章知识点
摘要:
一、前言
二、八年级数学上册前两章的知识点概述
1.第四章整式的运算
2.第五章因式分解
三、具体知识点详解
1.整式的运算
1.整式的概念和分类
2.整式的加减法
3.整式的乘法
4.整式的除法
2.因式分解
1.因式分解的概念和性质
2.提公因式法
3.公式法
4.分组分解法
5.十字相乘法
四、总结
正文:
八年级数学上册前两章的知识点主要涉及整式的运算和因式分解。
整式的运算主要包括整式的概念和分类,整式的加减法,整式的乘法和整式的除法。
整式是由常数、变量及它们的积和和组成的式子,可分为单项式和多项式。
整式的加减法遵循相应的运算法则,如同类项的合并。
整式的乘法则是将一个多项式乘以另一个多项式,多项式的乘法满足结合律、交换律和分配律。
整式的除法则是将一个多项式除以另一个多项式,多项式的除法也满足相应的运算法则。
因式分解是另一个重要的知识点,主要包括因式分解的概念和性质,提公因式法,公式法,分组分解法和十字相乘法。
因式分解是将一个多项式分解为两个或更多的因式的过程,其性质包括分解的唯一性和可逆性。
提公因式法是将多项式的公因式提取出来,公式法是利用平方差公式和完全平方公式进行因式分解。
分组分解法则是将多项式中的某些项分为一组,然后提取公因式。
十字相乘法主要用于分解二次多项式。
人教版数学八年级上册15.3.2《整式的除法》说课稿一. 教材分析《整式的除法》是人教版数学八年级上册第15章第三节的一部分,它是初中数学中重要的基础知识。
本节内容主要介绍整式除法的基本概念、运算方法和应用。
通过本节的学习,学生能够掌握整式除法的运算规则,并能运用整式除法解决实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了整式的加减乘运算,具备一定的代数基础。
但学生在进行整式除法运算时,容易混淆运算规则,对除法运算的理解不够深入。
因此,在教学过程中,需要关注学生的学习情况,引导学生正确理解整式除法的概念和运算规则。
三. 说教学目标1.知识与技能目标:学生能够理解整式除法的基本概念,掌握整式除法的运算方法,能够熟练进行整式除法的计算。
2.过程与方法目标:通过自主学习、合作交流,培养学生运算能力和抽象思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:整式除法的基本概念,整式除法的运算方法。
2.教学难点:整式除法运算中,如何正确处理多项式的除法运算。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的教学方法。
2.教学手段:利用多媒体课件,进行直观演示和讲解,帮助学生理解整式除法的概念和运算方法。
六. 说教学过程1.导入新课:通过复习整式的加减乘运算,引出整式除法运算的概念。
2.自主学习:学生自主学习整式除法的基本概念和运算方法。
3.合作交流:学生分组讨论,总结整式除法的运算规则。
4.教师讲解:针对学生不易理解的地方,进行重点讲解和演示。
5.练习巩固:学生进行适量练习,巩固整式除法的运算方法。
6.拓展应用:引导学生运用整式除法解决实际问题。
七. 说板书设计板书设计如下:1.定义:已知两个整式A和B,若存在一个整式C,使得A = BC,则称B是A的除数,C是A除以B的商。
2.运算规则:(1)同底数幂相除,底数不变,指数相减。
初二数学整式的乘法运算在初二数学学习中,整式的乘法运算是一个重要的内容。
整式是指由数字和字母的乘方组成的代数式,乘法运算是对整式进行扩展和合并的过程。
本文将详细介绍初二数学中整式的乘法运算,帮助同学们更好地掌握这一知识点。
一、整式的基本概念在进行整式的乘法运算前,我们首先需要了解整式的基本概念。
整式是由系数和字母的乘方组成的代数式,例如:3x^2+5xy-2y+1。
其中,3、5、-2和1是系数,x^2、xy和y是字母的乘方。
整式中的字母乘方表示该字母连乘的结果,例如x^2表示x连乘两次,即x的平方。
字母的系数表示该字母乘方的倍数,例如3x^2中的系数3表示x^2的系数为3。
整式的合并是将相同字母乘方的项相加,例如5xy和3xy可以合并为8xy。
二、整式的乘法运算规则根据整式的基本概念,我们可以得出整式的乘法运算规则。
整式相乘时,需要将每个项的系数相乘,字母的乘方相加,并将结果相加得到最终的整式。
例如:(3x-2)(2x+4)的乘法运算过程如下:1. 将被乘数和乘数的每一项进行相乘:3x * 2x = 6x^23x * 4 = 12x-2 * 2x = -4x-2 * 4 = -82. 合并同类项:6x^2 + 12x - 4x - 83. 将合并后的项相加得到最终结果:6x^2 + 12x - 4x - 8 = 6x^2 + 8x - 8三、整式乘法运算的例题为了更好地理解整式的乘法运算,下面列举几个例题进行详细解析。
例题1:(2x+3y)(4x-5y)解析:按照乘法运算的规则,我们将每个项相乘并合并同类项。
2x * 4x = 8x^22x * -5y = -10xy3y * 4x = 12xy3y * -5y = -15y^2将合并后的项相加得到最终结果:2x * 4x + 2x * -5y + 3y * 4x + 3y * -5y = 8x^2 - 10xy + 12xy - 15y^2= 8x^2 + 2xy - 15y^2例题2:(a+2b)(a-2b)解析:按照乘法运算的规则,我们将每个项相乘并合并同类项。
初二数学整式的加减运算在初二数学学习中,整式的加减运算是一个非常重要的知识点。
整式是由常数、变量和它们的乘积组成的代数式,而整式的加减运算是指将两个或多个整式相加或相减的过程。
本文将介绍整式的加减运算的基本规则和注意事项,并通过例题来帮助大家更好地理解和掌握这一知识点。
一、整式的基本性质在进行整式的加减运算之前,我们首先需要了解整式的一些基本性质。
1. 同类项合并:整式中,具有相同字母和指数的项叫做同类项。
在加减运算中,我们需要将同类项合并,即将同类项的系数相加或相减,并保留字母和指数不变。
例如,对于整式3x + 2y + 5x - 3y,我们可以将其中的同类项合并得到:(3x + 5x) + (2y - 3y) = 8x - y。
2. 符号规律:在整式的加减运算中,加法和减法是相互联系的,可以通过符号规律进行转化。
对于整式a + b - c,可以转化为a + b + (-c)。
二、整式的加法运算整式的加法运算是指将两个或多个整式相加的过程。
其运算规则如下:1. 同类项合并:将整式中的同类项合并,即将同类项的系数相加,并保留字母和指数不变。
2. 去括号:如果整式中存在括号,需要先去括号,然后进行同类项的合并。
3. 同类项不存在时,整式相加结果为零。
举例说明:例1:计算整式的和:3x² + 4xy + 2y² + x² - 3xy - y²。
解:首先,将同类项进行合并,得到:(3x² + x²) + (4xy - 3xy) + (2y²- y²)。
合并同类项后,得到:4x² + xy + y²。
例2:计算整式的和:5a³ - 2a²b + 3ab² + 7a³ - 4a²b + 2ab²。
解:同样地,将同类项进行合并,得到:(5a³ + 7a³) + (-2a²b - 4a²b) + (3ab² + 2ab²)。
第十四章 整式的乘法与因式分解第19讲 整式的乘除知识导航1.幂的运算:同底数幂的乘法,幂的乘方,积的乘方;2.整式的乘法:单项式乘单项式,单项式乘多项式,多项式乘多项式;3.整式的除法:单项式除以单项式,多项式除以单项式,多项式除以多项式【板块一】幂的运算运算法则:(1)同底数幂相乘:同底数幂相乘,底数不变,指数相加,用式子表示为:m n m n a a a +⋅=(m ,n 都是正整数).(2)幂的乘方:幂的乘方,底数不变,指数相乘,用式子表示为:()n m mn a a =(m ,n 都是正整数).(3)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,用式子表示为:()n n n ab a b =(n 都是正整数).(4)同底数幂相除:同底数的幂相除,底数不变,指数相减,用式子表示为:m n m n a a a -÷=(m >n )(5)规定:01a =(a ≠0),零的零次幂无意义.(6)负整数幂的运算法则:1n na a -=(n 是正整数,a ≠0).方法技巧:1.从已知出发,构造出结果所需要的式子;2.从结果出发,构造符合已知条件的式子.题型一 基本计算【例1】计算:(1)()()32x x -⋅-;(2)()()2332a a -⋅-;(3)()22248x yy ÷; (4)323221334a b ab ⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭.【例2】计算:()()()2014201420150.12524-⨯-⨯-.题型二 逆向运用幂运算 【例3】(1)已知2228162x x ⋅⋅=,求x 的值;(2)已知4a y =,16b y =,求22a b y +的值.题型三 灵活进行公式变形【例4】已知:5210a b ==,求11a b+的值.题型四 比较大小【例5】已知552a =,334b =,225c =,试比较a ,b ,c 的大小.针对练习11.计算:(1)3224a a a a a ⋅⋅+⋅;(2)()57x x -⋅;(3)()()57x y x y +⋅--;(4)()()2332y y ⋅.2.计算:(1)6660.12524⨯⨯;(2)599329961255⎛⎫⨯ ⎪⎝⎭;(3)()()2018201720172 1.513⎛⎫⨯⨯- ⎪⎝⎭;(4)4322023452%3%4%5%103456⎛⎫⎛⎫⎛⎫⎛⎫-⨯⨯-⨯⨯-⨯⨯-⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.3.(1)若()3915n m a b ba b =,求m ,n 的值;(2)已知27a =,86b =,求()322a b +的值;(3)若a +3b -2=0,求327a b ⋅的值;(4)已知:21233324m m ++=,求m 的值;(5)已知124x y +=,1273x -=,求x -y 的值;(6)已知129372n n +-=,求n 的值.4.已知252000x =,802000y =,求11x y+的值.5.已知k >x >y >z ,且16522228k x y z +++=,k ,x ,y ,z 是整数,求k 的值.6.是否存在整数a ,b ,c 使9101628915a b c⎛⎫⎛⎫⎛⎫⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭?若存在,求出a ,b ,c 的值;若不存在,说明理由.7.比较653,524,396,2615四个数的大小.8.你能比较两个数20122011和20112012的大小吗?为了解决这个问题,我们先写出它的一般形式,即比较1n n +与(1)n +n 的大小(n 是自然数),然后,我们分析1n =,2n =,3n =,⋯中发现规律,经过归纳,猜想得出结论.(1)通过计算,比较下列各组中两个数的大小(在空格内填写“>”、“ =”、“<”号)①21 12;②32 23;③43 34;④54 45;⑤65 56….(2)从第(1)题的结果经过归纳,可猜想出1n n +与(1)n n +的大小关系是 .(3)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小20122011,20112012.9.(1)已知()432a =,()342b =,()423c =,()234d =,()324e =,比较a ,b ,c ,d ,e 的大小关系;(2)已知:220002001200220012002200120022001200220012002a =+⨯+⨯++⨯+⨯,20022002b =,试比较a 与b 的大小.【板块二】整式的乘法方法技巧:(1)单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只在一个单项式里还有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为:()m a b c ma mb mc ++=++,其中m 为单项式,a +b +c 为单项式.(3)多项式与多项式相乘:将一个多项式中的每一个单项式分别与多项式中的每一个单项式相乘,然后把积相加,公式为:()()m n a b ma mb na nb ++=+++.题型一 基本计算【例6】计算:(1)()()23234x y x y -⋅= ;(2)()()223234x y x y -⋅= ; (3)()254342x x y xy -⋅-= ;(4)()()22323253a b ab a b ⋅-+= ;(5)()()322a b x y +-= ;(6)()()332a b a b +-= .题型二 混合运算 【例7】计算:()()()()242422325235333x x x x x x +++-+++.题型三 展开后不含某项【例8】若()()2283x ax x x b ++-+的乘积中不含x 2项和x 3项,则a = ,b = .题型四 比较对应项的系数求值【例9】已知()()2226x my x ny x xy y ++=+-,求()m n mn +的值.【板块二】整式的乘法方法技巧(1)单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只在一个单项式里还有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为: m (a+b+c) =ma+mb+mc,其中m为单项式,a+b+c为多项式.(3)多项式与多项式相乘:将一个多项式中的每一个单项式分别与另一个多项式中的每一个单项式相乘,然后把积相加,公式为:(m+n)( a+b) =ma+mb+na+nb.题型一基本计算【例6】计算:(1)(-3x2y)·(4x3y2)=__________;(2)(-3x2y) 2·(4x3y2)=__________;(3)-3x2·(4x5y-2xy4)=__________;(4)(2a2b3)·(-5ab2+3a3b)=__________;(5)(3a+2b)·(2x-y)=__________;(6)(3a+b)·(3a-2b)=__________;题型二混合运算【例7】计算:(3x2+2)( 5x4+2x2+3)-(5x4+x2+3)( 3x2+3)题型三展开后不含某项【例8】若(x2+ax+8)( x2-3x+b)的乘积中不含x2和x3项,则a=__________,b=__________.题型四比较对应项的系数求值【例9】已知(x+my)( x-ny)=x2+2xy-6y2,求(m+n) mn的值题型五巧设特殊值【例10】设()5=a5x5+a4x4+a3x3+a2x2+a 1x+a0(1)a1+a2+a3+a4+a5+a0的值;(2)a0-a1+a2-a3+a4-a5的值;(3)a0+a2+a4的值;针对练习21.计算:(1)(x+2y)(4a+3b)=__________;(2)(3x-y)( x+2y)=__________;(3)(x+3)( x-4)=__________;(4)(43a2b-83a3b2+1)×(-0.25ab)=__________;(5)3a b2 [(-ab) 2-2b2 (a2-23a3b)]=__________;(6)(5x3+2x-x2-3)(2-x+4x2)=__________;2.计算:(1)(x2-2x+3)(x-1)( x+1);(2)[(12x-y)2+(12x+y)2] (12x2-2y2);(3)(-x3+2x2-5)(2x2-3x+1);(4)(x+y)( x2-xy+y2);(5)(x-y)( x2+xy+y2);(6)(-2x-y)(4x2-2xy+y2).3.(1)多项式x2+ax+2和x2+2x-b的积中没有x2和x3两项,求a,b的值;(2)若(1+x)(2x2+ax+1)的结果中x2项的系数为-2,求a的值;(3)已知多项式3x2+ax+1与bx2+x+2的积中不含x2和x项,求系数a,b的值.4.(1)已知多项式x4+x3+x2+2=(x 2+m x+1)( x 2+n x+2),求m与n的值;(2)若不论x取何值,多项式x3-2x3-4x-1与(x+1)(x2+m x+n)都相等,求m和n的值;(3)已知(x+a y)(2 x-b y)=2x2-3xy-5y 2,则2a2b-ab2的值.5.已知ab2=6,求ab (a 2b5-ab3-b)的值.6.已知x-y=-1,xy=2,求(x-1)( y+1)的值.7.已知2 a 2+3 a-6,求3a (2a+1)-(2a+1)( 2a-1)的值.8.已知x2-8x-3=0,求(x-1)( x-3)( x-5)( x-7)的值.9.已知2 x+3x (x+1)( x+2)( x+3)的值.【板块三】整式的除法方法技巧(1)单项式除以单项式:系数、同底数的幂分别相除作为商的因式,对于只在被除式中含有的字母,则连同它的指数作为商的一个因式.(2)多项式除以单项式:多项式中的每一项分别除以单项式,然后把所得的商相加,公式为:(3)多项式除以多项式:大除法.题型一基本计算【例11】计算:(1)(23a4b2-19a2b8)÷(-12ab3)2(2)(35a3b7-65a3b4-1.8a2b3)÷0.6ab2题型二大除法【例12】计算:(1)(x3-1)÷(x-1);(2)(3 x4-5x3+x2+2)÷(x2+3);。
八年级数学整式分式一、整式1、整式的定义整式是代数式的一种,由常数、变量、加法、减法、乘法和自然数次幂运算构成。
整式中,变量的指数都是非负整数。
单独的一个数或字母也是整式。
2、整式的分类整式可以分为单项式和多项式两类。
单项式是只含有一个项的整式,如3x、5等;多项式是包含两个或两个以上项的整式,如3x+2、x^2-2x+1等。
3、整式的加减整式的加减运算遵循同类项合并的原则。
同类项是指所含字母相同,并且相同字母的指数也相同的项。
在加减运算中,先将同类项合并,然后再进行运算。
4、整式的乘法整式的乘法运算遵循分配律。
单项式乘以多项式时,将单项式分别与多项式的每一项相乘,再将所得的积相加。
多项式乘以多项式时,将一个多项式的每一项分别与另一个多项式的每一项相乘,再将所得的积相加。
二、分式1、分式的定义分式是形如A/B的代数式,其中A是分子,B是分母,B不等于0。
分式表示两个整式的商。
2、分式的基本性质分式的基本性质包括分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;分式的分子与分母都加上(或减去)同一个整式,分式的值改变;分式的分子与分母同时扩大或缩小相同的倍数(0除外),分式的值不变。
3、分式的加减分式的加减运算需要先进行通分,将异分母的分式化为同分母的分式,然后再按照同分母分式的加减法则进行运算。
通分时,一般取各分母系数的最小公倍数与各字母因式的最高次幂的积作为公分母。
4、分式的乘除分式的乘法运算法则是将分子相乘作为新的分子,分母相乘作为新的分母。
分式的除法运算法则是将除数的分子与分母颠倒位置后与被除数相乘。
即“分式的除法就是分数的倒数与被除数相乘”。
5、分式的化简分式的化简主要包括约分和通分两种操作。
约分是指将分子和分母同时除以它们的最大公约数,使分式简化为最简形式;通分则是指将异分母的分式化为同分母的分式,以便进行加减运算。
在化简过程中,需要注意保持分式的等价性,即化简前后的分式值应相等。
八年级数学整式章节知识点数学是一门比较抽象的科目,对于某些学生来说,学习数学可能会感到比较困难。
而在数学中,整式也是一个比较难理解的知识点。
尤其是对于八年级的学生来说,整式更是一个比较难懂的章节。
下面,我们将为大家介绍一下八年级数学整式章节知识点。
一、整式的定义整式是由若干个单项式相加(减)得到的表示式。
其中,单项式是由若干个变量的某一次幂和一个系数相乘得到的式子。
二、整式的分类整式可以按照项式的个数,或者按照单项式的次数等多种方式进行分类。
1、按照项式的个数进行分类,整式可以分为:(1) 单项式单项式只有一个项,通常我们也称之为“一项式”。
例如:3x、2y^2等。
(2) 多项式多项式有两个以上的项,通常我们也称之为“二项式”、“三项式”等等。
例如:2x+3y、3x^2+2xy+4y^2等。
2、按照单项式的次数进行分类,整式可以分为:(1) 常数没有变量的数就是常数,例如5、7等。
(2) 一次项一次项中,变量的次数为1,例如3x、2y等。
(3) 二次项二次项中,变量的次数为2,例如4x^2、3y^2等。
(4) 高次项高次项是指变量的次数大于2的项,例如5x^3、6y^4等。
三、整式的基本运算1、整式的加法整式加法的运算规律是将同类项合并。
例如:2x^2 + 3x + 4 + 5x^2 + 2x = 7x^2 + 5x + 42、整式的减法整式减法的运算规律也是将同类项合并,但是需要注意的是,我们可以把整式减法转化为整式加法。
例如:2x^2 + 3x + 4 - (5x^2 + 2x) = 2x^2 + 3x + 4 - 5x^2 - 2x = -3x^2 + x + 43、整式的乘法整式的乘法就是将每一项相乘,然后再将相同次数的项相加。
例如:(2x+3)(4x+5) = 8x^2 + 22x + 154、整式的除法整式的除法就是将被除式和除式分别除以最高次项的系数,然后再将除法的结果相除。
例如:(4x^2+6x+3) ÷ 2x = 2x + 3/2四、整式的因式分解整式的因式分解是将一个整式根据因子分解为乘积的形式。