七年级数学整式的运算
- 格式:pdf
- 大小:1.37 MB
- 文档页数:11
七年级下册数学整式的运算知识点在数学中,整式的运算是一个非常基础且重要的概念。
整式是由多项式相加或相减得到的,其中每一项都是由常数和变量的乘积得到的。
整式的运算知识点包括加法、减法、乘法、除法等。
一、整式的加法:整式的加法是指将两个或多个整式相加得出一个新的整式。
加法的原则是将同类项合并,并将系数相加。
同类项指的是含有相同变量的项,如2x和5x就是同类项,而2x和3y就不是同类项。
例子1:将2x²+3x+4和5x²-2x+7进行加法运算。
解答:2x²+3x+4+5x²-2x+7=(2+5)x²+(3-2)x+(4+7)=7x²+x+11例子2:将3a³+5a²+2a和2a³+4a²+7a进行加法运算。
解答:3a³+5a²+2a+2a³+4a²+7a=(3+2)a³+(5+4)a²+(2+7)a=5a³+9a²+9a二、整式的减法:整式的减法是指将一个整式从另一个整式中减去得到一个新的整式。
减法的原则是将减数的各项分别乘上-1,然后再与被减数进行加法运算。
例子1:将5x²+4x-3和3x²-2x+8进行减法运算。
解答:5x²+4x-3-(3x²-2x+8)=5x²-3x²+4x-(-2x)-3-8=2x²+6x-11例子2:将4y³-2y²-5y-1和3y³+2y²+4进行减法运算。
解答:4y³-2y²-5y-1-(3y³+2y²+4)=4y³-3y³-2y²-2y²-5y-4-1=y³-4y²-5y-5三、整式的乘法:整式的乘法是指将两个整式相乘得到一个新的整式。
教案:七年级数学(北师大版)下册整式的运算教案第一章:整式的加减法1.1 教学目标1. 理解整式的加减法的概念;2. 掌握整式的加减法的运算方法;3. 能够正确进行整式的加减法运算。
1.2 教学内容1. 整式的加减法的定义;2. 整式的加减法的运算规则;3. 整式的加减法的运算方法。
1.3 教学步骤1. 引入整式的加减法概念,通过实际例子让学生理解整式的加减法的含义;2. 讲解整式的加减法的运算规则,引导学生掌握运算方法;3. 进行适量的练习,让学生巩固整式的加减法运算。
1.4 教学评价1. 判断学生对整式的加减法的概念的理解程度;2. 检查学生对整式的加减法的运算方法的掌握情况;3. 评估学生进行整式的加减法运算的准确性。
第二章:整式的乘法2.1 教学目标1. 理解整式的乘法的概念;2. 掌握整式的乘法的运算方法;3. 能够正确进行整式的乘法运算。
2.2 教学内容1. 整式的乘法的定义;2. 整式的乘法的运算规则;3. 整式的乘法的运算方法。
2.3 教学步骤1. 引入整式的乘法概念,通过实际例子让学生理解整式的乘法的含义;2. 讲解整式的乘法的运算规则,引导学生掌握运算方法;3. 进行适量的练习,让学生巩固整式的乘法运算。
2.4 教学评价1. 判断学生对整式的乘法的概念的理解程度;2. 检查学生对整式的乘法的运算方法的掌握情况;3. 评估学生进行整式的乘法运算的准确性。
第三章:整式的除法3.1 教学目标1. 理解整式的除法的概念;2. 掌握整式的除法的运算方法;3. 能够正确进行整式的除法运算。
3.2 教学内容1. 整式的除法的定义;2. 整式的除法的运算规则;3. 整式的除法的运算方法。
3.3 教学步骤1. 引入整式的除法概念,通过实际例子让学生理解整式的除法的含义;2. 讲解整式的除法的运算规则,引导学生掌握运算方法;3. 进行适量的练习,让学生巩固整式的除法运算。
3.4 教学评价1. 判断学生对整式的除法的概念的理解程度;2. 检查学生对整式的除法的运算方法的掌握情况;3. 评估学生进行整式的除法运算的准确性。
七年级上册数学整式加减计算题一、整式加减基础运算题(1 - 10)1. 计算:(3a + 2b)-(a - b)- 解析:- 去括号法则:括号前是正号,把括号和它前面的正号去掉后,原括号里各项的符号都不改变;括号前是负号,把括号和它前面的负号去掉后,原括号里各项的符号都要改变。
- 所以(3a + 2b)-(a - b)=3a + 2b - a + b。
- 然后合并同类项,3a - a+2b + b = 2a+3b。
2. 计算:2(x^2-3x + 1)-3(2x^2+x - 4)- 解析:- 先使用乘法分配律去括号,2(x^2-3x + 1)=2x^2-6x + 2,3(2x^2+x -4)=6x^2+3x - 12。
- 然后进行整式的减法:(2x^2-6x + 2)-(6x^2+3x - 12)=2x^2-6x + 2 - 6x^2-3x + 12。
- 合并同类项得(2x^2-6x^2)+(-6x - 3x)+(2 + 12)= - 4x^2-9x + 14。
3. 计算:(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2)- 解析:- 先去括号,(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2) = 5a^2-3b^2+a^2+b^2-5a^2-3b^2。
- 再合并同类项,(5a^2+a^2-5a^2)+(-3b^2+b^2-3b^2)=a^2-5b^2。
4. 计算:3x^2y-(2xy - 2(xy-(3)/(2)x^2y)+xy)- 解析:- 先去小括号,3x^2y-(2xy - 2(xy-(3)/(2)x^2y)+xy)=3x^2y-(2xy-2xy +3x^2y+xy)。
- 再去中括号,3x^2y - 2xy + 2xy - 3x^2y - xy=-xy。
5. 计算:(4m^3-2m^2+m - 1)-(2m^3+3m^2-m + 2)- 解析:- 去括号得4m^3-2m^2+m - 1 - 2m^3-3m^2+m - 2。
七年级数学整式运算嘿,小伙伴们,今天我们来聊聊七年级的数学,特别是整式运算。
听到“整式”这两个字,很多人可能会觉得有点头大,心想这又是什么玩意儿呢?别担心,我来给你们简单明了地说说。
整式其实就是由数字、字母和运算符组成的表达式,比如说 (3x^2 + 2x 5)。
听起来是不是有点复杂?但是,咱们先不慌,慢慢来,咱们把它拆开聊。
整式运算主要包括加法、减法、乘法和除法。
就像做菜,要有不同的材料才能做出美味的佳肴。
比如说,你要做个水果沙拉,就得把苹果、香蕉、橙子统统切好,再淋上点蜂蜜,那味道绝对让你停不下来。
数学也是这样,整式运算的每一个部分都有自己的位置,组合起来才能更好吃。
加法就像把好吃的水果放在一起,越多越好。
减法呢,就像是挑出那些不喜欢的东西,留下一堆你爱的果子。
至于乘法,就像是把水果切成小块,变得更好吃,甚至还能加点新口味,创造出新鲜的吃法。
说到乘法,咱们得提提“分配律”了。
这可是整式运算中的超级英雄,像是厨房里的万用刀。
比如 (a(b+c)) 这个式子,用分配律你可以把它变成 (ab + ac)。
想想看,就像你在做沙拉的时候,想把苹果和香蕉同时放进碗里,结果一切就更丰富、更美味。
再来看看减法,其实和加法很像,只不过我们得注意减去的那个部分。
像是你做了一个超大的披萨,结果有朋友不喜欢西红柿,那你就得把西红柿给剔除掉,这样大家都能开心吃饭。
整式运算还得注意“同类项”。
就好比你要去派对,大家都是好朋友,但不是每个人都喜欢一起玩。
数学里,同类项就像是那些爱玩同样游戏的小伙伴,只有他们在一起才能合并。
比如 (2x) 和 (3x) 就是同类项,合起来就是 (5x),而 (2x) 和 (3y) 这俩就没法合并,因为他们玩的游戏不同。
每次看到同类项合并的时候,心里那个舒服啊,就像把所有的干果装进一袋,合成了一种新的美味。
整式运算还有个特别的地方,那就是“指数”。
这个东西听上去好像很高深,其实不然。
简单来说,指数就是告诉你一个数要乘几次。
七年级数学整式的加减【原创实用版】目录1.整式的概念2.整式的加减运算法则3.整式的加减运算实例4.整式的加减运算技巧和方法5.整式的加减运算在实际问题中的应用正文一、整式的概念整式是指由常数、变量和它们的积或和所组成的代数式,其中变量的次数是非负整数。
整式是代数学的基本对象之一,它在数学的各个领域中都有广泛的应用。
二、整式的加减运算法则整式的加减运算是指将两个或多个整式按照一定的规则进行合并。
整式的加减运算法则主要包括以下几点:1.同类项相加减:同类项是指具有相同变量和相同次数的项,例如 3x 和 2x 就是同类项,而 3x 和 2y 就不是同类项。
在进行整式的加减运算时,我们只需要将同类项的系数相加减,变量和次数保持不变。
2.合并同类项:将所有同类项的系数相加减,得到一个新的系数,然后将新的系数与原变量和次数组合成新的项。
3.保持变量和次数不变:在进行整式的加减运算时,我们只能改变项的系数,不能改变变量和次数。
三、整式的加减运算实例例如,对于整式 3x+2y-5x+y,我们可以按照以下步骤进行加减运算:1.找出同类项:3x 和 -5x 是同类项,2y 和 y 也是同类项。
2.合并同类项:3x 和 -5x 的和为 -2x,2y 和 y 的和为 3y。
3.将新的同类项组合成新的整式:-2x+3y。
四、整式的加减运算技巧和方法在进行整式的加减运算时,我们可以使用以下一些技巧和方法,以提高运算效率和准确性:1.先找出同类项,再进行加减运算。
2.使用括号将整式分组,以避免运算错误。
3.先化简每个括号内的整式,再进行加减运算。
五、整式的加减运算在实际问题中的应用整式的加减运算在实际问题中有广泛的应用,例如在物理、化学、经济等领域的问题中,我们常常需要对一些变量进行加减运算,以得到新的变量或结果。
七年级数学整式的运算知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!七年级数学整式的运算知识点数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。
七年级数学上册整式加减运算一、整式的概念。
1. 单项式。
- 定义:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如:3x,-2a^2b,5,y等都是单项式。
- 系数:单项式中的数字因数叫做这个单项式的系数。
例如在单项式3x中,系数是3;在单项式-2a^2b中,系数是-2。
- 次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如在单项式3x中,次数是1;在单项式-2a^2b中,次数是2 + 1=3。
2. 多项式。
- 定义:几个单项式的和叫做多项式。
例如:2x+3y,a^2-2a + 1等都是多项式。
- 项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
例如在多项式a^2-2a + 1中,a^2、-2a、1都是它的项,其中1是常数项。
- 次数:多项式里,次数最高项的次数,叫做这个多项式的次数。
例如在多项式a^2-2a + 1中,次数最高的项是a^2,次数为2,所以这个多项式的次数是2。
3. 整式。
- 单项式和多项式统称为整式。
二、整式的加减运算。
1. 同类项。
- 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如:3x与5x是同类项,2a^2b与-3a^2b是同类项,4与-7是同类项。
- 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
例如:3x+5x=(3 + 5)x = 8x,2a^2b-3a^2b=(2-3)a^2b=-a^2b。
2. 去括号法则。
- 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
例如:+(a + b)=a + b,+2(a - b)=2a-2b。
- 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例如:-(a + b)=-a - b,-3(a - b)=-3a + 3b。
七年级整式的运算知识点在初中数学的学习中,整式是一个重要的知识点。
在学习整式的过程中,掌握整式的运算方法也是必不可少的。
本文将为大家详细介绍七年级整式的运算知识点。
一、整式的定义整式是指只有加减乘运算,没有除法运算的多项式。
其中每一项都是若干个常数与未知量的乘积,并且指数均为整数。
例如:$3x^2y+4xy^2-2x+5y$就是一个整式。
二、整式的加减运算1.同类项相加减原则同类项是指,由相同的字母表达式组成的项,其中字母和字母指数都相同。
例如:$2x^2y$和$3x^2y$就是同类项,而$2x^2y$和$3xy^2$就不是同类项。
同类项相加减原则:对于两个整式相加减,首先要将其中的同类项合并。
例如:$4x^2y-3xy^2+2x^2y+5xy^2$,将其合并同类项后可得$6x^2y+2xy^2$。
2.整式加减的步骤整式加减的步骤就是:先合并同类项,然后将系数与字母表达式分别相加减,得到最终结果。
例如:$(3x+4y-2)+(5x-3y+1)$,先将其中的同类项合并,得到$8x+y-1$。
三、整式的乘法运算整式的乘法运算中,我们只需将其中的每一项都乘以另一个整式的每一项,然后将结果相加即可。
例如:$(3x+2y)(2x+5)$,将其进行乘法运算后得到$6x^2+19xy+10y$。
四、整式的整除运算在整式的整除运算中,除式和被除式都是整式。
对于一般的整除式,我们需要通过长除法来计算。
例如:$\dfrac{3x^2+5xy}{x}$,通过长除法可得到商式为$3x+5y$,余数为$0$。
五、整式运算的特殊情况1.平方差公式在整式运算中,我们经常会遇到平方差公式。
它的公式为$(a+b)(a-b)=a^2-b^2$。
例如:$(3x+2)^2=(3x)^2+2\times3x\times2+2^2=9x^2+12x+4$。
2.完全平方公式完全平方公式是指,两个完全平方数的和可以用公式$(a+b)^2=a^2+2ab+b^2$表示。
七年级数学上册整式知识点(实用7篇)七年级数学上册整式知识点第1篇一、去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉。
括号里各项都不变符号,括号前是“-”号,把括号和它前面的“-”号去掉。
括号里各项都改变符号。
二、合并同类项:同类项的系数相加,所得的结果作为系数。
字母和字母的指数不变。
同类项合并的依据:乘法分配律。
三、整式运算的法则:1.整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接2.整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式。
相同字母相乘(除)要用到同底数幂的运算性质:多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加3.整式的乘方单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式单项式的乘方要用到幂的乘方性质与积的乘方性质:七年级数学上册整式知识点第2篇1、单项式对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.2、系数单项式中的数字因数叫做这个单项式的系数.3、降幂排列把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.4、升幂排列把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.5、整式单项式和多项式统称整式。
6、同类项所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.7、合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.8、去括号法则括号前是"+"号,把括号和它前面的"+"号去掉,括号里各项都不变符号;括号前是"-"号,把括号和它前面的"-"号去掉,括号里各项都改变符号.例:a+(b-2c)-(e-2d)=a+b-2c-e+2d14、添括号法则添括号后,括号前面是"+"号,括到括号里的各项都不变符号;添括号后,括号前面是"-"号,括到括号里的各项都改变符号.例:m+2x-y+z-5=m+(2x-y)-(-z+5)9、整式的加减整式加减的一般步骤:1.如果遇到括号,按去括号法则先去括号;2.合并同类项.10、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.七年级数学上册整式知识点第3篇代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。
七年级上册数学整式加减法计算题一、整式加法计算题。
1. 计算:(3x + 2y)+(4x - 3y)- 解析:- 去括号法则:括号前是正号,去掉括号后,括号里的各项不变号。
- 所以原式=3x + 2y+4x - 3y。
- 合并同类项:同类项的系数相加,字母和指数不变。
- 对于x的同类项3x和4x,系数相加得(3 + 4)x=7x;对于y的同类项2y和-3y,系数相加得(2-3)y=-y。
- 最终结果为7x - y。
2. 计算:(2a^2+3a - 1)+(a^2-2a + 3)- 解析:- 去括号得2a^2+3a - 1+a^2-2a + 3。
- 合并同类项:对于a^2的同类项2a^2和a^2,系数相加得(2 +1)a^2=3a^2;对于a的同类项3a和-2a,系数相加得(3-2)a=a;常数项-1和3相加得2。
- 结果为3a^2+a + 2。
3. 计算:(5m+3n)+( - 3m - 2n)- 解析:- 去括号得5m + 3n-3m - 2n。
- 合并同类项:m的同类项5m和-3m合并得(5-3)m = 2m;n的同类项3n和-2n合并得(3 - 2)n=n。
- 结果为2m + n。
4. 计算:(x^2y+3xy^2)+( - 2x^2y+xy^2)- 解析:- 去括号得x^2y+3xy^2-2x^2y+xy^2。
- 合并同类项:对于x^2y的同类项x^2y和-2x^2y,系数相加得(1-2)x^2y=-x^2y;对于xy^2的同类项3xy^2和xy^2,系数相加得(3 + 1)xy^2=4xy^2。
- 结果为-x^2y + 4xy^2。
5. 计算:(4a^3-2a^2+a)+( - 3a^3+a^2-2a)- 解析:- 去括号得4a^3-2a^2+a - 3a^3+a^2-2a。
- 合并同类项:对于a^3的同类项4a^3和-3a^3,系数相加得(4-3)a^3=a^3;对于a^2的同类项-2a^2和a^2,系数相加得(-2 + 1)a^2=-a^2;对于a的同类项a和-2a,系数相加得(1-2)a=-a。
七年级上整式的运算知识点整式是初中数学中重要的内容,它涉及到多项式的加减乘除等基本运算。
在七年级上学期,对整式的常见运算进行深入的学习,掌握整式的计算方法及其应用。
一、整式的定义整式是由各项的系数、变量和指数通过加减法连接而成的数学表达式。
二、整式的基本运算(一)整式的加法对于两个多项式,先将它们的同类项对齐,再将同类项的系数相加即可。
例如:$(3x^2+2x+5)+(2x^2-3x+7)=(3+2)x^2+(2-3)x+(5+7)=5x^2-x+12$(二)整式的减法将减数每一项取相反数,再按加法规则求差即可。
例如:$(3x^2+2x+5)-(2x^2-3x+7)=3x^2+2x+5+(-2x^2+3x-7)=x^2+5$(三)整式的乘法运用分配律和交换律可以快速计算整式的乘积。
例如:$(3x+2)(2x+1)=3x*2x+3x*1+2*2x+2*1=6x^2+7x+2$(四)整式的除法对于整式除法,需要先学习求余定理和带余除法。
例如:$2x^2+3x+1÷(x+1)=2x+1$……………………余数为0(五)整式的综合运用应用整式的基本运算,可以轻松计算式子的值,解方程等问题。
例如:已知$2(x+1)+3(x-1)=5(x+3)-2x$,则$x=-1$三、整式的因式分解对于整式的因式分解,可以运用提公因数、配方法和因式定理等方法。
例如:$3x^2+6x=3x(x+2)$$x^2+5x+6=(x+2)(x+3)$四、整式的简化和化简将多项式中的同类项合并,可以得到整式的简化式;而将多项式进行算式变换,化简成一个简单的表达式,可以得到整式的化简式。
例如:$(2x+1)^2=4x^2+4x+1$$2(x+1)+3(x+1)=5(x+1)$,化简后可得$x=-1$以上是七年级上整式运算的主要内容。
通过反复练习,掌握整式的基本运算和应用,可以为日后的中高考中打下坚实基础。