合肥工业大学-高等数学-下-9.1
- 格式:ppt
- 大小:2.12 MB
- 文档页数:25
高等数学合工大版答案教材高等数学合工大版是一套广泛使用的高等数学教材。
学生在学习高等数学课程时,常常会遇到一些难题,因此答案教材的重要性不言而喻。
本文将为大家提供一些高等数学合工大版答案教材的相关信息。
一、教材概述高等数学合工大版教材内容全面且系统,涵盖了高等数学的各个分支,包括微积分、线性代数、概率论与数理统计等。
每个分支都有相应的章节和习题,供学生进行学习和练习。
教材注重理论与实践相结合,旨在培养学生的数学思维和解决问题的能力。
二、答案教材的重要性1. 锻炼解题技巧:高等数学是一门理论性和实践性相结合的学科,学生在学习过程中会遇到各种复杂的问题。
答案教材提供了一种解题思路和方法,让学生能够更好地理解和掌握知识点,并培养解决问题的能力。
2. 检验学习成果:学生在完成习题后,可以通过答案教材对自己的答案进行核对。
正确的答案能验证学生的学习成果,同时也能帮助他们找出解题过程中存在的错误和不足。
3. 拓宽学习视野:答案教材通常会提供解答过程,这对学生来说是一种拓宽学习视野的方式。
通过学习他人的解题思路和方法,可以帮助学生拓展自己的思维方式,在解题过程中形成多样化的思考思路。
4. 弥补教材不足:教材编写是一个复杂的过程,难免会存在一些细节问题或者错误。
答案教材可以及时弥补教材的不足之处,为学生提供正确的解答和参考。
三、合工大版答案教材的编写特点合工大版答案教材编写遵循了一系列特点,以满足学生的学习需求。
1. 详细解析:合工大版答案教材通常会对每道习题给出详细的解析过程,涵盖每个步骤的推导和计算。
这有助于学生全面理解解答过程,并掌握解题思路。
2. 系统分类:答案教材按照教材章节进行分类,方便学生查找并对照习题解答,提高学习效率。
3. 补充说明:在某些复杂或容易出错的问题上,合工大版答案教材还会补充一些相关的说明和提示,帮助学生更好地理解和掌握解题要点。
4. 错误订正:如果教材中存在一些错误或者解答不准确的问题,合工大版答案教材会进行相应的订正和修正,确保学生得到正确的解答和参考。
合工大有名教材
合工大即合肥工业大学,以下是合工大比较有名的教材:
《高等数学》(上、下册)-合肥工业大学教材。
作为一门基础课程,《高
等数学》对于自考学生来说至关重要。
这本教材全面系统地介绍了高等数学的各个方面,内容详实,讲解清晰。
建议自考学生根据教材的章节进行系统学习,辅以做题训练,加深对知识点的理解和应用。
《线性代数》-李春葆编著。
《线性代数》是自考中的一门必修课程,对于
理解和应用矩阵、向量等数学概念非常重要。
这本书详细介绍了线性代数的基本理论、运算规则和应用,概念解释清晰,例题丰富,适合自学和复习。
《组合数学》(第二版)作者:刘汝佳。
这是国内著名的组合数学教材,
内容详实,涵盖了组合数学的基本概念、技巧和应用,适合作为本科生或研究生的教材使用。
《Introduction to Combinatorics》(第二版)作者:Walter D. Wallis。
这是一本内容简洁、难度适中的组合数学教材,适合初学者阅读。
除了以上列举的教材,合肥工业大学的很多其他教材也被广泛认可和使用。
此外,还可以关注教材编写者是否有教学经验和学术声誉等方面的信息。
学年第 二 学期 课程名称 高等数学(下)一、填空题(每小题3分,满分15分) 1.设函数ln(32)xy z x y e =-+,则(1,0)dz =3144dx dy -。
2.=⎰⎰dy yydx x sin 0ππ2。
3.设V 为柱体:10,122≤≤≤+z y x ,则=⎰⎰⎰υυd e z(1)e π-。
4.设()1f x x =+,ππ≤≤-x ,则其以2π为周期的傅立叶级数在点x π=处收敛于1。
二、选择题(每小题3分,共15分) 1.设⎪⎩⎪⎨⎧=+≠++=,0,0,0,,),(2222,y x y x y x xy y x f 则( .C ).A ),(lim 0y x f y x →→存在 .B ),(y x f 在点(0,0)处连续.C )0,0(),0,0(y x f f ''都存在 .D ),(y x f 在点(0,0)处可微2.曲线⎩⎨⎧=-+=+-632,922222z y x z e x y 在点(3,0,2)处的切线方程为(.B ) .A 32x y z -==- .B 326yx z -==- .C 32214x y z --==- .D {3(2)0x z y -=--= 3.设L 为圆周,122=+y x 则⎰=+Lds y x)(33( .A ).A 0 .B 1 .C 2 .D 34.设常数0a >,则级数1111(1)ln n an n n∞++=-∑( .C )。
.A 发散 .B 条件收敛 .C 绝对收敛 .D 敛散性与a 有关。
三、设),)((2xy y x f z -=,其中f 具有二阶连续偏导数,求2zx y∂∂∂。
(本题10分)解:122()zx y f yf x∂=-+∂, 2121111222122(2())22()[2()][2()]z x y f yf f x y x y f xf f y y x f xf x y y∂∂=-+=-+---+++-+∂∂∂ 221111222224()2()f x y f x y f xyf f =---+-++ 四(10分)、求函数)1(),(-=y x y x f 在由上半圆周)0(322≥=+y y x 与x 轴所围成的闭区域D 上的最大值和最小值。
高等数学合工大教材上高等数学作为工大学子的必修课之一,是一门涉及到微积分、线性代数和常微分方程等数学领域的重要学科。
而在工大教材上,这门课程的教学内容旨在为学生提供扎实的数学基础,并培养他们解决实际问题的能力。
下面将对《高等数学合工大教材》的特点和内容进行详细介绍。
一、高等数学合工大教材的特点1.严谨性:《高等数学合工大教材》以严密的逻辑结构和精准的数学推导为基础,力求提供准确无误的数学理论。
同时,在严谨性的基础上,注重理论与实际的结合,强调数学的应用性。
2.系统性:教材包含了高等数学的核心内容,从微分学、积分学到微分方程,内容层次齐全,理论体系严密。
通过系统学习,学生可以掌握高等数学的各个方面,为以后的学习和研究奠定坚实的基础。
3.综合性:《高等数学合工大教材》不仅涵盖了理论知识,还包含了大量的实例和习题,帮助学生巩固所学的知识,并培养他们的问题解决能力。
综合性的教材设计使得学生可以将所学知识应用于实际问题中,培养数学思维能力。
二、高等数学合工大教材的内容1.微分学(Differential Calculus):微分学是高等数学中的重要内容,其主要研究函数的变化率与极限、导数及其应用。
工大教材上系统地介绍了函数的概念与性质、极限与连续、导数与微分等内容,通过理论论述和实例分析,使学生能够了解微分学的基本概念,并能够应用导数解决实际问题。
2.积分学(Integral Calculus):积分学是高等数学中的另一重要分支,主要研究函数的面积、定积分和不定积分。
教材上系统地介绍了定积分的定义和性质、不定积分的计算方法以及应用,通过习题和实例训练,帮助学生掌握积分学的基本概念和运算技巧。
3.微分方程(Differential Equations):微分方程是高等数学的核心内容,也是工科学生最为重视的部分之一。
工大教材上详细介绍了一阶和二阶微分方程的理论和解法,包括常系数线性微分方程、变系数线性微分方程和一些特殊类型的微分方程。
《高等数学》练习册参考答案第一章函数练习11−1.(1);(2).(,0)(0,)22ππ−U [1,0)(0,3]−U 2.3(4)4(4)1,3,(4)6,3.x x x f x x x ⎧++++≥−+=⎨+<−⎩3.(1);(2);(3).(2,3)23(,)e e 1(2,3)(02a a a +−<<4..11,,,11x x x x x −+−5.1,0,[()]0,0,1,0;x f g x x x <⎧⎪==⎨⎪−>⎩1,1,[()]1,1,, 1.e x gf x x e x −⎧<⎪==⎨⎪>⎩6.(1);(2);(3);2cos r a θ=2cos r a θ=−2sin r a θ=(4);(5).2sin r a θ=−r a =7.,r=cos ,sin .x r y r θθθθ⎧==⎨==⎩练习12−1.奇函数.2.3.(1);(2);(3)非周期函数;(4).11,()0,0,1.x f x x x −⎧>⎪==⎨⎪<−⎩2π2π5.22,0,()30,0.a ax x f x xx ⎧−≠⎪=⎨⎪=⎩6.21lg ,100,10[()]1(lg ),10,10x x x f g x x x ⎧≥<≤⎪⎪=⎨⎪<<⎪⎩或2lg ,1,[()]lg ,00 1.x x g f x x x x ≥⎧=⎨<<<<⎩-1或练习13−1.(1);(2);2,sin y u u x ==25,21y u u x ==+(3)(4).ln ,y u v v ===1arctan ,2x y u u v −===2.(1)是;(2)不是;(3)是;(4)不是.第二章极限与连续练习21−1.(1)正确;(2)错;(3)正确.练习22−4..X ≥练习23−1..0,02.(1);(2);(3);(4);(5);(6);(7);(8).01513303(21401323..11x−练习24−1.(1);(2)..C .D 2.(1)正确;(2)错;(3)错;(4)正确;(5)错;(6)正确;(7)错;(8)错.4.(1)同阶不等价;(2)等价.5.(1)当时,;当时,;当时,;(2);(3);n m >0n m =1n m <∞812(4);(5);(6).3121!n 6..6练习25−1.(1)(2);(3);(4);(5).12π2e −8e 2.(1);(2);(3).131练习26−1.(1)是可去间断点;(2)是跳跃间断点;(3)是无穷间断点.1x =−7x =1x =2.(1)是可去间断点,是无穷间断点;0,1x x ==11,2x x =−=(2)是可去间断点,是第二类间断点.0x =(0,1,2,)2x k k ππ=+=±±L 3..4.(1);(2);(3).5.,.a b =139−0ln 221−18.,.11()x f x e−=(1)0,(1)f f −+==+∞第三章导数与微分练习31−1.(1);(2);(3);(4).78x 5414x −−65x −−5616x −2.(1);(2),.()f x =1x =()cos f x x =3x π=3.切线方程为,法线方程为.4.连续且可导.5..2x y +=0x y −=2()ag a 6.,,不可导.10练习32−1.(1;(2),.)2π+32517152.(1);(2);4323226126(6)x x x x x −−++++2cos sin x x xx −(3);(4;22cos ln sin ln cos x x x x x x x x −+(5);(6).22sec tan x x x x−23322ln 26x xx x x ++3.切线方程为,法线方程为.2y x =20x y +=4.交点处夹角为,交点处夹角为.(0,0)2π(1,1)3arctan 45.,.45(3)x +45(6)x +6.(1)错,应为;(2)错,应为;22cos x x 22(1)x x x e +(3)错,应为;(4)错,应为.2x +21111arctan1x x x −⋅++−7.(1;(2);(3);x (sin cos )axe a bx b bx +2sin 12sin x x xθθ−−+(4;(5);(6;2sin sec (cos )x x −⋅(7;(8).+232ln (1)x xx −8..()[()()()]f x x x x e f e e f e f x ′′+练习33−1..2.(1);(2).23x x −+222(32)x xe x +22232()a a x −−3..4.,.2−(2)f ϕ′′⋅+(2)f f ϕϕ′′′′′′⋅++⋅5.(1),;(2)ln 1y x ′=+()1(2)!(1)(2)n nn n y n x −−=−≥.6..14cos(42n n x π−+2练习34−1.(1);(2);(3);22cos33x x y−+2csc ()x y −+cos sin()sin sin()y x x y x x y ++−++(4;(5).2121323(3)x x x +−+−−1(ln 1)a x aa x x +−+2..3..4.5.(1);(2).1210x y −±=43212t t t −−2(1)2t t e t t−+6.,.7..cos t t −cos (cot )t t t −22()(1)2(1)t y e t yt −+−8.切线方程为,法线方程为.3πθ=56πθ=练习35−1..0.122.(1);(2);(3);(4).4211ln 42ax bx x Cx +++2sin x ln sin x 2(arcsin )x 3.(1);(2).2ln(1)1x dx x −−4..5..2(1)y dx −+(ln 21)dx −6.(1);(2);(3);(4).9.98670.4850.494960.99第四章导数的应用练习41−2.,.1223练习42−1.(1);(2);(3);(4);(5);(6);(7).232π18−112e 032..3..4.(1);(2)()f x ′′9,12a b ==−(0)f ′2()(),0,()1(0),0.2xf x f x x x g x f x ′−⎧≠⎪⎪′=⎨⎪′′=⎪⎩练习43−1.,.14360−262..234562122211222221(1)cos(2)24!6!(2)!(21)!2n n n n n x x x x x n x n n θπ−+++−+++−−++L (01)θ<<3..5..12412练习44−1.(1)单调递增,单调递减;(2)单调递增,单调递减.3(0,)43(,1)4(0,)e (,)e +∞2..4.(1)1y =(y=(2)为极大值,为极小值;1(123y =(1)0y =(3)为极大值,为极小值.3243(2)4k y k πππ++=24(24k y k ππππ−−=5.为极小值,无极大值.6.,极大值.3()255f =27.8.,.(f =f =2959..10.11.;.12.米.64a ≥R 84 2.366≈练习45−1.(1)在内凸,在内凹,为拐点;(0,1)(1,)+∞(1,7)−(2)在内凹,在内凸,为拐点.1(,2−∞1(,)2+∞1arctan 21(,)2e 2..4.不是极值点,是拐点.3,0,5a b c =−==0x 00(,())x f x 第五章不定积分与定积分练习51−1.(3);(4);(5).0()()f b a ξ−()b af x dx b a−∫2.(1);(2).ln 23π3.(1);(2).22211xx e dx edx −−>∫∫11(1)xe dx x dx >+∫∫4.(1);(2.22I e ππ≤≤22I e ≤≤练习52−1.(1);(2).2.(1);(2).21[(2)(2)]2f x f a −3cos 2sin xx+0()()x xf x f t dt +∫3.(1);(2).4.(1);(2).5.连续且可导.22sin yyx e −−t −12136.在内连续.32,[0,1),3()11,[1,2].26x x x x x ⎧∈⎪⎪Φ=⎨⎪−∈⎪⎩(0,2)7..8..1212arctan ln(1)2x x x C −+++9.(1);(2)当时,;当时,;(3)38π0a <31(27)3a −−0a ≥31(27)3a −.1)−练习53−1.(2);(3);(4);2sin cos x x xx −−()F x C +()()F x x C −Φ=(5);(6);(7);(8).()f x C +111x C µµ+++C 43−2.(1);(2);(3);212ln 2x x x C −++1arctan x C x −++2tan 22x x x C +−+(4);(5).522()ln 2ln 33x x C −+−1(sin )2x x C −+练习54−1.(1);(2);(3);522(2)5x C −−+122(1)x C ++2ln 35x x C +++(4);(5);(6);1ln cos 22x C −+1ln 2ln 12x C ++1arcsin 2x C ++(7);(8);(9);cos x e C −+31sec sec 3x x C −+11sin 2sin 8416x x C −+(10);(11);357121sin sin sin 357x x x C −++1sin 6212x x C −+(12);(13);33sec sec x x C −+ln csc 2cot 2x x C −+(14);(15);(16);21arctan(sin )2x C +1arctan 22x e C +122(arcsin )x C +(17);(18);(19)ln ln sin x C +523311(31)(31)153x x C ++++;C(20;(21);(22);C +C 13arcsin 32xC +(23).arcsin x e C −2.(1;(2);(3);(4);(5);(6);241(1)4e −5322π−835(7);(8);(9);(10).516π14π−1)8153..4..()ln f x x x C =+311()(2)32f x x C x =−−−+−练习55−1.(1);(2);(3)(1)xx eC −−++arcsin x x C +;11cos 2sin 224x x x C −++(4);(5);21tan ln cos 2x x x x C +−+ln(21)ln 21x x x x C +−+++(6);(7);x x C ++C −++(8);(9);(10)221()2(1)nx a C n −++−1(sin cos )2x x x e C −−+.2ln 1ln 21x x x C x ++−+++2..cos 2sin 244x x C x−+3.(1);(2);(3);(4);(5);(6)111(sin1cos1)22e −+2πln 22π−142π−.1ln 23练习56−1.(1;(2)C +21ln(22)arctan(1)2x x x C+++++(3);(4);(5);31ln ln 13x x C −++sin ln sin 1x C x ++1x e C x ++(6);(7);(8)ln(1)1xx x xe e C e −+++221tan 12x arc x C x +++;C(9);(10).1ln 1xC x x −++−12C 2.(1);(2);(3).14π+132ln 41721(1)24e π+−练习57−1..2..3..4..5..1218π23−1ln 242π+第六章定积分的应用练习62−1..2..3..4..5..6..12e −27412(1)e −23a π54π27..8..9..10.,.1ln 32−22a π53ln 122+12e e −+−22(2)2e e π−+−11..12.,.13..14.(1);(2);(3)163485π245π22π(1,1)21y x=−.30π15..16.17..18134242244()b x a y a b +练习63−1..2.(1)吨;(2)米.57697.5()KJ 660113.(1);(2)一倍;(3).216ah 2512ah 第七章常微分方程练习71−1.(1)一阶;(2)二阶;(3)不是;(4)一阶;(5)三阶;(6)一阶.2.(1)特解;(2)通解;(3)特解;(4)不是解.练习72−1.(1);(2);(3);2221x y Cx=−22(1)(1)x y C −−=(1)(1)x y e e C +−=(4).()1yC a x ay =+−2.2221,1,(1), 1.x xe x y e e x −⎧−≤=⎨−>⎩若若3.(1);(2);(3);(4)2(2)y C x y =+arctany xxy Ce−=1Cx y xe+=.2()102y x y x C −+−=4.(1);(2);(3);()y x x C =+2ln 2x y x =3214()13y x C x =++(4);(5).2sin 1x C y x +=−22y xy C −=5.(1;(2);(3).x C =+44114xx Ce y −=−++4121x Ce x y=−−练习73−1.(1)线性无关;(2)线性无关;(3)线性无关;(4)线性相关.2.(1);(2);(3).33112x x y C e C xe =+2112x x y C e C e =+33112x x y C e C e −=+3..12cos ln sin ln ln y C x C x x =++4..5.是.2129xy x e ∗=−+6.(1);(2);(3);24112xx y C eC e =+112()x y C C x e =+112(cos sin )22xx x y e C C =+(4);(5).12cos 2sin 2y C x C x =+3142x x y e e =+7.(1);(2);(3)112xxy C C e xe=++21122xx y C C e −=++.112sin x y C C e x −=++8..1()sin cos 22xf x x x =+练习74−1.(1);(2);33125ln 183x x x y C x C =−++331232C x x y C =++(3);(4).21arcsin()xy C e C =+11y x=−2..12()ln f x C x C =+3.(1);(2);(3).21C y C x x =+3122ln C y C x C x x x =++32115C y C x x x =++第八章向量代数与空间解析几何练习82−1.(1)不成立;(2)成立;(3)不成立.2.(1);2()a b ×rr (2).3.28.4.(1);(2).2()a b c ×⋅r r r1k =−15k k =−=或5..6..7..3π2λµ=4练习83−3..4..5..362490x y z −+−=320x z −=22(3)x y −+2(2)51z ++=6..7..(1,2,3),8r −=22244(4)y z x +=−练习84−1..2..3.平行,.217511x y z −−==321421x y z −+−==−d =4..5..111x y z −=−=−2350x y z +−=6.22220x y y +−=22220,0.x y y z ⎧+−=⎨=⎩第九章多元函数微分法及其应用练习91−1.(1);(2);2{(,)210}x y y x −+≥2{(,)0,0}x y y x x ≤≤≥(3);(4).2222{(,)}x y r x y R ≤+≤22222{(,,)0}x y z z x y x y ≤++≠且2..(,(,))24f xy f x y x y xy =++练习92−1.不正确.因为此时未必有等式成立.00lim (,)(,)x x y y f x y f x y →→=3,对任给的.令,当≤0ε>2δε=时,则有02δε<<=,0ε≤<所以.00x y →→=练习93−1.,而,所以在处不连续.(0,0)(0,0)0x y f f ==0lim (,)1(0,0)x y xf x y f →==≠(,)f x y (0,0)2.连续且两个偏导数均存在.3.,4.(1),;1(2,1)2x f =(1,2)y f =22z y x x y ∂=∂+22z xxx y ∂−=∂+(2)z z x y∂∂==∂∂(3).u u uxy z ∂∂∂===∂∂∂5.(1);222222222126,12,126z z z x y xy y x x x y y∂∂∂=−=−=−−∂∂∂∂(2),22223222224csccot 4csc cot 2csc ,x x x x x x y z z y y y y yxy x y y −−∂∂==∂∂∂.22242224csccot 4csc x x xx xy zy y yy y −+∂=∂6..22222233222,2,(12)x y x y xyxy ex ye x y e −−−−−−练习94−1.(1)正确,因为可微一定是连续的;(2)不正确,因为一阶偏导数连续是可微的充分条件而不是必要条件.(3)正确,二阶偏导数连续一定有一阶偏导数连续,从而函数在点(,)f x y 00(,)x y 处一定可微.2.(1);(2);2)dz ydx xdy =−(1)(ln(1))1x xdydz y y dx y=++++(3).2222()x y z du e xdx ydy zdz ++=++3..4..5..0.150.10.250.68dz e e e =×+×=×≈ 3.97655.296.时及均存在.(0)0ϕ=(0,0)x f (0,0)y f 练习95−1..2..6)dz t dt =+22()()z y y xf xy f x y x x ∂′′′′=−∂∂3.;.2223132333u yf xyf xy f xy zf x z ∂=+++∂∂2222222233322u x f x zf x z f y ∂=++∂5..21(,2)2y x f x x −=6.(1);123123()()dz f f yf dx f f xf dy =+++−+(2).211222(f yf f xfdu dx dy dz z x x z=−+−练习96−1.(1);cos()cos()5xy xxydy x y ye e dx x y xe −−+=−++(2).20(0,1)211,1,2(1)1y x x x ydy e d y ye e e dxxe dx===−===−=−−2.(1);(2).2,()z z z z x x z y y x z ∂∂==∂+∂+2322322()z zz y ze xy z y z e e xy −−−3..dx 4..此结果表明是的一次函数.22,0dy x ay d ydx y ax dx+=−=+y x 5..6..22()(2),33u v u v z z y z z x x z y z ϕϕϕϕϕϕ∂+∂+==∂−∂−,dx y z dy x zdz x y dz y x−−==−−7..所以.1[(t dy f f dt f f F F dy dx x t dx x t F x y dx ∂∂∂∂∂∂=+⋅=+−+⋅∂∂∂∂∂∂f F f Fdy x t t x f F F dx t y t ∂∂∂∂−∂∂∂∂=∂∂∂+∂∂∂8..f g fg h du f y x yz x g g h dx x y y z∂∂∂∂∂⋅⋅⋅∂∂∂∂∂∂=−+∂∂∂∂⋅∂∂∂练习97−1.2..1,1,1),u∂=−−=−∂ol l 2(1,1,2){1,1,}gradf e −=3..2221{,,}()()()gradu x a y b z c x a y b z c −=−−−−+−+−所以当时.4..222()()()1x a y b z c −+−+−=1gradu =2π练习98−1..1(,)26(1)(1)2f x y x y =+−−−+222[10(1)2(1)(1)2(1)]x x y y R −+−−−−+2..22(,)2y f x y y xy R =+−+练习99−1.在点处取极小值6.2.在点处取极大值.(4,2)(0,0)13.时取极小值.该点是圆222222,ab a b x y a b a b ==++z 2222a b z a b =+极小222222a b x y a b+=+与直线的切点.1x ya b+=4.最大值为3,最小值为1.5.设为椭球面上的任一点,则该点处的切平面与坐标面所围成的四面体的体000(,,)x y z 积为.要求的问题是求函数满足条件的极22200016a b c V x y z =(,,)fx y z xyz=2222221x y z a b c++=大值问题,由拉格朗日乘数法可知所求的点为000x y z ===.min V =练习910−1.切线:,法线:.11211x y π−+−==402x y π+−−=2.切线:,法线:.11214132x y z −−−==−1413250x y z −+−=3.切平面:,法线:.0001ax x by y cz z ++=000000x xy y z z axby zz −−−==4..0=n =n 5.所求的点为或222.222第十章重积分练习101−1..016I ≤≤2.(1);(2).23()()D D x y d x y d σσ+≥+∫∫∫∫2(ln())ln()D Dx y d x y d σσ+≥+∫∫∫∫3..4..(0,0)f 124I I =练习102−1.(1);(2);(3);(4);(5).20312sin 1πππ−−6071163e−2.(1);(2);210(,)x x dx f x y dy ∫∫1(,)dy f x y dx ∫(3);(4);ln 10(,)exdx f x y dy ∫∫120(,)yydy f x y dx −∫∫(5).202(,)ydy f x y dx ∫∫3.(1);(2).(1)1(16x a b a x y V dx c dy abc a b −=−−=∫∫1122001()6x V dx x y dy −=+=∫∫5.(1);(2);2cos 400(cos ,sin )d f r r rdr πθθθθ∫∫4sin 02sin (cos ,sin )d f r r rdr πθθθθθ∫∫(3).23cos 04(cos ,sin )d f r r rdr πθπθθθ∫∫6.(1);(2);230cos (cos ,sin )aa d f r r rdr πθθθθ∫∫2cos 2202()d f r rdr πθπθ−∫∫(3).13cos 203()()d f r rdr d f r rdr ππθπθθ+∫∫∫7.(1);(2);(3).8..9..(1cos1)π−223π−34(33R π−3512R π54π练习103−1.(1);(2);222121(,,)x x y dx f x y z dz −−+∫∫∫2102(,,)x y dx f x y z dz ++−∫∫(3).2211(,,)x y dx f x y z dz −+∫∫2.(1(2).3..3ln 24−202()()t t f x dx t f t +∫4.柱面,球面.1101d rdr f dz πθ∫∫∫2cos 2410cos sin ()d d r f r dr ππϕϕθϕϕ∫∫∫5.(1)0;(2);(3).6415π11926.(1);(2).7.21(12π53π练习104−1.14.2..3.(1),重心为;22(2)a π−2,03y x ==2(0,)3(2).4.(1);(2).(,55a a 46320a 443()32b a π−5.重心为,球心位于原点,球体置于上半空间.3(0,0,)86.设正方体边长为,密度为,则有所求的.a 0ρ50I a ρ=第十一章曲线积分练习111−1.(1);(2);(3);411)12+−(4);(5).2.4(122a π练习112−1..2.(1);(2);(3)-32;3.4..23323965343a 3323k a ππ−5.(1);(2).(,)(,)L yP x y xQ x y ds a−+∫∫6..C u udy dx x y ∂∂−∂∂∫ 练习113−1.(1);(2);(3);(4).112−2ab π−23429π−23(2)22a b a ππ+−2.(1)不在内部时,原式;(2)在内部时,原式.(0,0)L 0=(0,0)L 2π=练习114−1.5.2.20.3..4..3412a =−C +5..6.22(,)cos cos u x y x y y x C =++522333123x x y xy y C +−+=7..8..9..32223y a x x y xy C −−−=332yx y x e C −++=2ln y x C x−=练习115−1.,重心坐标为.22m a =(0,4aπ2.(1);22224)3z I a a k ππ=+(2).22232222222222663(2),,343434ak ak k a k x y z a k a k a k ππππππ−+===+++3..R −F 第十二章曲面积分练习121−1.(1);(2).3a π练习122−2.(1);(2)3;(3);3..42R π−1132πΣ练习123−1.(1);(2).2..12415(2)16a ππ+sin()sin yz z +3.(1)0;(2).22a h π练习124−1..2.(1);(2).4π−{4,sin ,6}x y −{2,2,sin }z z y −−−第十三章无穷级数练习131−1.(1)收敛;(2)发散;(3)收敛,发散;(4)发散.1q <1q ≥2.(1)发散;(2)收敛;(3)发散;(4)发散.3.(1)发散;(2)收敛;(3)发散;(4)收敛.练习132−1.(1)收敛;(2)收敛;(3)发散;(4)收敛;(5)收敛,发散;(6)收敛;(7)收敛;1p >1p ≤(8)发散;(9)收敛;(10)收敛.4.(1)时收敛,时发散;(2)时收敛,时发散;1a >1a ≤1αβ−>1αβ−≤(3)时收敛,时发散.1b >1b ≤练习133−1.(1)收敛;(2)收敛;(3)收敛.2.(1)绝对收敛;(2)条件收敛;(3)发散;(4)条件收敛;(5)绝对收敛;(6)条件收敛.练习134−1.(1);(2);(3);111,[,]222R =−,(,)R =+∞−∞+∞0R =(4);(5);(6).4,4,4R =−()2,(3,7)R=R =−2.(1);(2);ln(1),[1,1)x −−−2,(1,1)(1)x x −−(3);,;(4),,8.2222(2)x x +−(3232(1)x x −(1,1)−练习135−1.(1),;(2),;0(1)!n nn x n ∞=−∑(,)−∞+∞20(2)!nn x n ∞=∑(,)−∞+∞(3),;(4),;2112112(1)(2)!n n n n x n −∞−+=−∑(,)−∞+∞11n n nx ∞−=∑(1,1)−(5),;(6),11(1)(1)n n n x x n n +∞=+−+∑(1,1)−2210(1)[](2)!(21)!n n nn x x n n +∞=−++∑;(,)−∞+∞(7),;(8),.11(1)!n n nx n −∞=+∑(0)x ≠10(1)2n n n n x ∞+=−∑(2,2)−2.,.3.,.11011(1)[4)532nn n n n x ∞++=−−++∑(6,2)−−210(1)421n n n x n π+∞=+−+∑[1,1]−练习136−1.(取麦克劳林展开式的前两项).0.95106cos x 2.(取被积函数的麦克劳林展开式的前三项).0.9461练习137−1..2221414(cos sin )3n x nx nx n n ππ∞==+−∑(02)x π<<2..121(){[1(1)]cos (1)sin }4n n n b a a b a b f x nx nx nn ππ∞+=−−+=+−−+−∑(,)ππ−4.,.11()2sin n f x nx n π∞==−∑(,0,1,2,)x k k π≠=±±L5.,;21122()(cos sin 22n n n f x nx n n n πππ∞==−+∑(0,2x x ππ<≤≠,.2213222()(sin cos )cos 822n n n f x nx n n n πππππ∞==+−++∑(0,)2x x ππ<≤≠6.,.7.提示:将展成余弦级数.318()sin(21)(21)n f x n x n π∞==−−∑[0,]πsin x 8.,.9.,.22174cos(21)2(21)n n x n ππ∞=−−−∑[1,1]−214()()sin sin 24n n n x f x n πππ∞==∑[0,4]。
一、填空题(每小题3分,共15分) 1、椭球面∑:222216x y z ++=在点0(2,2,2)P 处的切平面方程是___________.2、设曲线L 的方程为221x y +=,则2[()]Lx y y ds +-=⎰ .3、设()21,0,1,0,x f x x x ππ--<≤⎧=⎨+<≤⎩则其以2π为周期的傅里叶级数在点x π=处收敛于 . 4、微分方程220y y y '''++=的通解为 . 5、设23(,,)2f x y z x y z =++,则(1,1,1)grad f = .二、选择题(每小题3分,共15分) 1、设222z x y ze ++=,则11x y dz ===( )2、二次积分20(,)dx f x y dy ⎰ 化为极坐标下累次积分为( )3、微分方程sin y y x x '''+=+的特解形式可设为( ).(A )*()sin cos y x ax b A x B x =+++ (B )*(sin cos )y ax b x A x B x =+++ (C )*(sin cos )y x ax b A x B x =+++ (D )*sin cos y ax b A x B x =+++ 4、直线1121410214x y z x y z -+-==-++=-与平面2的位置关系是( ))(A l ∥π但l 不在π上 )(B l 在平面π上 )(C l ⊥π )(D l 与π斜交5、设曲面∑的方程为222,x y z z ++=,1∑为∑在第一卦限的部分,则下列结论不正确...的是( ).(A )0xdS ∑=⎰⎰ (B )0zdS ∑=⎰⎰(C )1224z dS z dS ∑∑=⎰⎰⎰⎰ (D )22x dS y dS ∑∑=⎰⎰⎰⎰三、(本题满分10分)设(,)sin xz f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂.四、(本题满分12分)求22(,)2f x y x y =-+在椭圆域D :2214y x +≤上的最大值和最小值.五、(本题满分10分)计算二重积分:2DI y x d σ=-⎰⎰,其中:11,02D x y -≤≤≤≤.六、(本题满分12分)已知积分22(5())(x xLy ye f x dx e f x ---+⎰与路径无关,且6(0)5f = .求()f x ,并计算(2,3)22(1,0)(5())()x x I y ye f x dx e f x dy--=-+⎰.七、(本题满分12分)计算积分2232222()(2)xz dydz x y z dzdx xy y z dxdy I x y z ∑+-++=++⎰⎰,其中∑是上半球面z =,取上侧.八、(本题满分10分).求幂级数∑∞=---12112)1(n nn x n 的收敛域及和函数,并求数项级数∑∞=---1112)1(n n n 的和.九、(本题满分4分)设0(1,2,3,...)n u n ≠=,且lim 1n nnu →∞=,则级数11111(1)()n n n n u u ∞+=+-+∑是否收敛如果是收敛的,是绝对收敛还是条件收敛。
合工大高等数学教材详解高等数学是大学本科数学系列中的一门重要学科,也是理工科相关专业的基础课程之一。
作为中国著名高等学府之一,合肥工业大学(以下简称合工大)的高等数学教材具有丰富的内容和深入的讲解,为学生提供了系统、全面的学习资源。
本文将对合工大高等数学教材进行详细解读,以帮助读者更好地理解和掌握其中的知识。
第一章极限与连续在高等数学的学习中,极限与连续是最基础、最重要的概念之一。
合工大高等数学教材第一章围绕这一主题展开,通过引入函数极限的概念,讲解了极限运算的性质和求解方法。
同时,该章还深入讨论了数列极限、无穷小量和无穷大量的概念与性质,以及连续函数的定义和判定方法。
通过这一章的学习,读者能够建立起对极限与连续的初步认识,并能够灵活运用相关概念解决实际问题。
第二章导数与微分导数是高等数学中的又一重要概念,它是描述函数局部变化率的工具。
在合工大高等数学教材中,第二章详细介绍了导数的定义和基本性质,包括导数的几何和物理意义、导数的四则运算法则以及高阶导数的概念。
此外,该章还深入讨论了常见函数的导数求解方法,并通过应用实例,展示了导数在解决实际问题中的重要性。
通过学习这一章,读者能够全面了解导数的概念和性质,熟练掌握导数的求解方法,并能够运用导数解决实际问题。
第三章微分中值定理与导数应用微分中值定理是导数理论中的重要部分,它是建立在导数的连续性和介值性基础上的重要结论。
合工大高等数学教材第三章详细阐述了拉格朗日中值定理和柯西中值定理的概念、假设条件以及应用技巧。
此外,该章还介绍了应用导数解决极值问题和曲线的凹凸性质的方法与技巧。
通过学习这一章,读者能够掌握微分中值定理的基本思想和应用技巧,能够运用微分中值定理解决实际问题,同时也能对曲线的凹凸性质进行分析和判定。
第四章不定积分不定积分是高等数学中的重要内容,它是定积分的前导概念,也是求解微分方程和定积分问题的基础。
合工大高等数学教材第四章详细介绍了不定积分的概念和性质,包括基本积分法、换元积分法、分部积分法等常用求积方法。
合肥工业大学高等数学<下)试卷参考解答2001-2002学年第二学期一、填空题<每小题3分,满分15分) 1.设12zxez y ,则0,1dz2edx dy .2.空间曲面1532:222zyx 在点(1,1,2)处的法线方程为1122412x y z .二、选择题<每小题3分,满分15分)1.考虑二元函数),(y x f 的下面4条性质:①),(y x f 在点00(,)x y 处连续,②),(y x f 在点00(,)x y 处的两个偏导数连续,③),(y x f 在点00(,)x y 处可微,④),(y x f 在点00(,)x y 处的两个偏导数存在. 若用“Q p”表示可由性质P推出性质Q ,则有< .A ).A ②③① .B ③②① .C ③④① .D ③①④2.设函数(,)zf x y 在点00(,)x y 处的两个偏导数存在,则),(00y x f x =0,),(00y x f y =0是),(y x f 在点00(,)x y 处取得极值的<.B ).A 充分但非必要条件.B 必要但非充分条件.C 充分必要条件.D 既不是必要,也不是充分条件4.0)(22yx y 是<.C )微分方程.A 一阶.B 二阶.C 三阶.D 四阶5.微分方程xe x y y y 2)13(6的特解形式为< .B ).A xeb ax y 2)(*.B xeb ax x y 2)(*.C xeb ax x y 22)(*.D xxeC eC y 3221*三、<8分)设),(22yxy xf z,其中f 具有二阶连续偏导数,求2z x y. 解:1212z xf f xy,2111222122222112[2()][2()]z x x x yf f f f y f x yyyyy21112222232214(2)xx xyf f f f y y y.七、<10分)求微分方程0)(22y x y 满足初始条件(0)0,(0)1y y 的特解.解:令yp ,原方程化为220pxp,即212dpxdx p,积分得:21xCp,21pxC.又(0)1y ,得1C.211yx,12111ln 211x ydx C x x,将(0)0y 代入得10C ,所以特解为11ln 21x yx .八<10分)求函数(,,)ln ln 3ln f x y z x y z 在球面2225xyz(0,0,0)x y z 上的最大值.解:令222(,,)ln ln 3ln (5)F x y z x y zxyz.由2220,0,0, 5.xyzF F F xy z 得222120,120,320, 5.x x y y z z x y z ,解得1,1,3.x y z 由于问题的解是唯一存在的.所以此驻点就是所求的最大值点(1,1,3).此时最大值为3ln 32. 合肥工业大学试卷高等数学<下)参考解答2002-2003学年第二学期一、填空题<每小题3分,满分15分)1.设函数ln(32)xyz xye ,则(1,0)dz 3144dxdy .5.微分方程0yyx 的通解为12ln yC x C .二、选择题<每小题3分,共15分)1.设,0,0,0,,),(222222,yxy x y xxy y x f 则<.C ).A ),(lim 0y x f yx 存在.B ),(y x f 在点(0,0)处连续.C )0,0(),0,0(y x f f 都存在.D ),(y x f 在点(0,0)处可微2.曲线632,922222zyxzex y 在点(3,0,2)处的切线方程为<.B ).A 32x yz .B 326y x z .C 32214x y z .D 3(2)0x z y5.设xxxxxe ey e x y xe y 2321,)1(,为某二阶线性非齐次微分方程的三个特解,则该方程的通解为< .D ),其中321,,C C C 为任意常数..A 332211y C y C y C.B 11223C y C y y .C xxxxe eeC eC 2221.D xxxxeeC eC 221三、设),)((2xy y xf z,其中f 具有二阶连续偏导数,求2zx y.<本题10分)解:122()z xy f yf x,212(2())z x y f yf x yy1111222()[2()]f xy xy f xf 22122[2()]f y yx f xf 221111222224()2()f xy f xy f xyf f .四<10分)、求函数)1(),(y x y x f 在由上半圆周)0(322yyx与x 轴所围成的闭区域D 上的最大值和最小值. 解:在闭区域D 内,由10x y f y f x 得驻点(0,1),(0,1)0f .在D 的边界)0(322y yx 上,令22(,,)(1)(3)F x y x y xy,由22120,20,3.xy F y xF x yx y 得2,1,xy(2,1)0f . 在D 的边界x 轴上,3,0,3,0,3,03f,3,03f,比较以上各函数值,知最大值为3,03f,最小值为3,03f.合肥工业大学试卷高等数学<下)参考解答2003-2004学年第二学期一、填空题 <每小题3分,满分15分) 1.微分方程02)(3xdydx x y满足56|1xy 的特解为315yx x .5.曲面22y xz与平面042zyx平行的切平面方程是245xyz.二、选择题<每小题3分,满分15分) 1.函数),(y x f 在点),(00y x 处连续是函数),(y x f 在该点处存在偏导数的< .D ).A 充分但非必要条件.B 必要但非充分条件.C 充分必要条件.D 既不是必要,也不是充分条件2.微分方程xe xy y y 2323的特解形式为< .D ).A ()xax b e.B ()xax b xe.C ()xaxb ce .D ()xax b cxe4..若),(y x f 函数在),(00y x 的某邻域内具有二阶连续偏导数,且满足2000000[(,)](,)(,)0xy xx yy f x y f x y f x y ,则),(00y x (.A >.A 必不为),(y x f 的极值点.B 必为),(y x f 的极大值点.C 必为),(y x f 的极小值点.D 可能不是),(y x f 的极值点。