课前训练
1 1 1 的前n项和 求等比数列 1, , , ,…的前 项和 n. 的前 项和S 2 4 8
例题1: 例题1: 变式1: 变式1:
n 17 3 5 9 2 +1 的前n项和 项和S 求数列 2 , , 8 , 16,… 2 n 的前 项和 n. 4
若数列{a 的通项a 项和S 若数列 n} 的通项 n =2n+n,求其前 项和 n. ,求其前n项和
变式2 学案与测评》 变式2:《学案与测评》P32 第7题 题
求数列1,1+2,1+2+22,…,1+2+22+…+2n-1 ,…的前 求数列 的前 n项和 n. 项和S 项和
Байду номын сангаас
例题2: 例题2:
若数列{a 的通项a 求其前n项和 项和S 若数列{an} 的通项an =n2n,求其前n项和Sn.
变式1: 变式1
课外练习: 课外练习:
《学案与测评》P32 学案与测评》 “举一反三”第2题, ”能力提高”第8题, 举一反三” 能力提高” 举一反三 题 能力提高 题 ”拓展延伸”第9题 拓展延伸” 拓展延伸 题
课外作业
课本P61 课本P61 第4题
等比数列的前n项和
na1 等比数列{a 中 当公比 当公比q=1时,Sn=_________; 等比数列 n}中,当公比 时 n a1 an q a1(1-q ) ( 当公比q≠1时,Sn=________________=________________; 当公比 时 1-q 1 q
等比数列的前n项和 的公式推导过程中, 等比数列的前 项和Sn的公式推导过程中,用 项和 了什么方法?___________ 了什么方法 错位相减法