典型环节的MATLAB仿真
- 格式:docx
- 大小:411.26 KB
- 文档页数:9
实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK 的使用MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真环境下。
2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。
3.在simulink 仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink 下的“Continuous ”,再将右边窗口中“Transfer Fen ”的图标用左键拖至新建的“untitled ”窗口。
2)改变模块参数。
在simulink 仿真环境“untitled ”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK ,即完成该模块的设置。
图1-1 SIMULINK 仿真界面 图1-2 系统方框图3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math ”右边窗口“Gain ”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。
自动实验一——典型环节的MATLAB仿真报告引言:典型环节的MATLAB仿真是一种常见的模拟实验方法,通过使用MATLAB软件进行建模和仿真,可以有效地研究和分析各种复杂的物理系统和控制系统。
本报告将介绍一个典型环节的MATLAB仿真实验,包括实验目的、实验原理、实验步骤、实验结果和讨论等内容。
一、实验目的本实验旨在通过MATLAB仿真实验,研究和分析一个典型环节的动态特性,深入了解其响应规律和控制方法,为实际系统的设计和优化提供理论支持。
二、实验原理典型环节是控制系统中的重要组成部分,一般包括惯性环节、惯性耦合和纯滞后等。
在本实验中,我们将重点研究一个惯性环节。
惯性环节是一种常见的动态系统,其特点是系统具有自身的动态惯性,对输入信号的响应具有一定的滞后效应,并且在输入信号发生变化时有一定的惯性。
三、实验步骤1.建立典型环节的数学模型。
根据实际情况,我们可以选择不同的数学模型描述典型环节的动态特性。
在本实验中,我们选择使用一阶惯性环节的传递函数模型进行仿真。
2.编写MATLAB程序进行仿真。
利用MATLAB软件的控制系统工具箱,我们可以方便地建立惯性环节的模型,并利用系统仿真和分析工具进行仿真实验和结果分析。
3.进行仿真实验。
选择合适的输入信号和参数设置,进行仿真实验,并记录仿真结果。
4.分析实验结果。
根据仿真结果,可以分析典型环节的动态响应特性,比较不同输入信号和控制方法对系统响应的影响。
四、实验结果和讨论通过以上步骤,我们成功地完成了典型环节的MATLAB仿真实验,并获得了仿真结果。
通过对仿真结果的分析,我们可以得到以下结论:1.惯性环节的响应规律。
惯性环节的响应具有一定的滞后效应,并且对输入信号的变化具有一定的惯性。
随着输入信号的变化速度增加,惯性环节的响应时间呈指数级减小。
2.稳态误差与控制增益的关系。
控制增益对稳态误差有重要影响,适当调整控制增益可以减小稳态误差。
3.不同输入信号的影响。
实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验原理1.比例环节的传递函数为KRKRRRZZsG200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK图形如图1所示。
2.惯性环节的传递函数为ufCKRKRsCRRRZZsG1,200,10012.021)(121121212===+-=+-=-=其对应的模拟电路及SIMULINK图形如图2所示。
图1 比例环节的模拟电路及SIMULINK图形图2惯性环节的模拟电路及SIMULINK图形3.积分环节(I)的传递函数为ufCKRssCRZZsG1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK图形如图3所示。
4.微分环节(D)的传递函数为ufCKRssCRZZsG10,100)(111112==-=-=-=ufCC01.012=<<其对应的模拟电路及SIMULINK图形如图4所示。
5.比例+微分环节(PD)的传递函数为)11.0()1()(111212+-=+-=-=ssCRRRZZsGufCCufCKRR01.010,10012121=<<===其对应的模拟电路及SIMULINK图形如图5所示。
图3 积分环节的模拟电路及及SIMULINK图形图4 微分环节的模拟电路及及SIMULINK图形6.比例+积分环节(PI)的传递函数为)11(1)(11212sRsCRZZsG+-=+-=-=ufCKRR10,100121===其对应的模拟电路及SIMULINK图形如图6所示。
三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。
实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink 仿真环境常规模板。
3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。
5)选择输出方式。
用鼠标点击simulink 下的“Sinks ”,就进入输出方式模块库,通常选用“Scope ”的示波器图标,将其用左键拖至新建的“untitled ”窗口。
实验一典型环节的MATLAB仿真Experiment 1 MATLAB simulation of typical link一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。
3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
可修改可编辑教学单位电子电气工程系学生学号200895014075编号DQ2012DQ075 本科毕业设计题目学生姓名专业名称指导教师2010年月日电力电子电路典型环节的MATLAB仿真摘要:本文主要研究了电力电子电路典型环节的MATLAB仿真,首先介绍了MATLAB软件及其图形仿真界面Simulink的基础应用知识,然后介绍了用于电力电子仿真的SimPowerSystems中的各种模块库,完成了对整流电路、斩波电路典型环节的建模与仿真,并且给出了仿真结果波形。
通过MATLAB/SIMULINK软件来建立各电路的仿真模型,并且对各个模块和系统内部的参数进行设置,例如仿真算法、电子器件的选择和电源幅值和频率等,最终实现电力电子系统在MATLAB中的仿真。
仿真结果和理论分析结果相一致,验证了仿真建模的有效性和正确性。
最后,本文对研究成果进行了总结,并提出了进一步改进建议。
关键词:Matlab/Simulink,仿真,整流电路,斩波电路Abstract:This paper mainly studies the MATLAB simulation of the typical session to the power electronic circuit, This article first introduces the MATLAB software and the application of knowledge based on graphical interface Simulink simulation, and then introduced the various modules of SimPowerSystems library for the power electronic simulation, also completed Modeling and Simulation to the typical session of rectifier circuit and Chopper circuit, and show the results of the simulation waveform.Established various electric circuits through MATLAB/SIMULINK software the simulation model, and set the establishment to each module and the interior parameter of system, for example simulation algorithm, electronic device choice and electrical source peak-to-peak value and frequency and so on, finally realized simulation that the electric power electronics alternating-current circuit in MATLAB. Simulation result and theoretical analysis result consistent, has confirmed the simulation modelling validity and the accuracy.Finally, this paper summarizes the research results and makes suggestions for further improvement.Keywords:Matlab/Simulink , Simulation, Rectifier circuit, Choppercircuit目录第1章概述 (5)1.1国内外研究概况 (5)1.2本课题的研究内容 (5)1.3本课题的研究目的与意义 (6)第2章MATLAB/SIMULIK基础知识 (7)2.1MATLAB介绍 (7)2.1.1 MATLAB主要组成部分 (7)2.1.2 MATLAB的系统开发环 (8)2.2SIMULINK仿真基础 (9)2.2.1 SIMULINK启动 (10)2.2.2 SIMULINK的模块库介绍 (11)2.2.3 电力系统模块库的介绍 (12)2.2.4 SIMULINK的仿真步骤 (13)第3章整流电路的SIMULINK仿真设计 (15)3.1单相桥式整流电路的仿真 (15)3.1.1 单相桥式全控整流电路的工作原理 (15)3.1.2 建立仿真模型 (15)3.1.3 设置模型参数 (17)3.1.4 模型仿真 (18)3.2三相桥式整流电路的仿真 (21)3.2.1 三相桥式全控整流电路的工作原理 (21)3.2.2 建立仿真模型 (22)3.2.3 设置模型参数 (23)第4章斩波电路的SIMULINK仿真设计 (26)4.1降压斩波电路的仿真 (26)4.1.1 降压变换器的工作原理 (26)4.1.2 建立仿真模型 (27)4.1.3 设置模型参数 (28)4.1.4 模型仿真 (28)4.2升压斩波电路的仿真 (30)4.2.1 升压变换器的工作原理 (30)4.2.2 建立仿真模型 (30)4.2.3 设置模型参数 (31)4.2.4 模型仿真 (32)第5章仿真调试 (34)5.1模型仿真应注意的问题 (34)5.1.1 模型建立和仿真参数的设置 (34)5.1.2 仿真运行和观测仿真结果 (35)结论 (37)参考文献 (38)致谢 (40)第1章概述1.1 国内外研究概况电力电子技术综合了微电子、电路、自动控制等多学科知识,是电能变换与控制的核心技术,在工业、能源、交通、国防等各个领域发挥着越来越重要的作用。
比例积分微分环节matlab仿真
在MATLAB中,可以使用函数simulink来进行比例、积分和微分环节的仿真。
下面是一个使用simulink进行比例、积分和微分环节仿真的示例:
1. 打开MATLAB软件并创建一个新的模型文件。
2. 在模型文件中,选择从Simulink库中拖拽和放置一个"比例"块、一个"积分"块和一个"微分"块。
3. 连接这些块,将输入信号连接到比例块的输入端口,然后将比例块的输出端口连接到积分块的输入端口,以此类推连接微分块。
4. 设置比例、积分和微分的参数。
比例块可以设置比例因子,积分块可以设置积分常数和初始条件,微分块可以设置初始条件。
5. 添加一个作为输入信号的信号源,例如一个正弦波。
6. 添加一个作为输出信号的信号显示器,例如作用为查看仿真结果。
7. 设置仿真时间和仿真步长。
8. 运行仿真。
这样,你就可以通过调整比例尺度、积分常数和微分初始条件来观察系统响应的变化,并通过信号显示器来查看仿真结果。
实验题目:典型环节频域特性的仿真实验一、实验目的:1、加深了解系统频率特性的概念。
2、学习使用Matlab软件绘制Nyquist图、Bode图的基本方法。
3、掌握典型环节的频率特性。
二、实验设备:Matlab三、实验内容:用Matlab绘制典型环节(比例、积分、微分、惯性、二阶)的Nyquis图、Bode图,研究频率特性。
四、实验步骤:1.绘制比例环节传递函数g(s)=K的频率特性图。
运行Matlab,进入命令窗口,键入命令:num=[1];den=[0,0,2];G1=tf(num,den)nyquist(G1) (回车)则显示传递函数g(s)=2,及对应的Nyquist图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明频率ω的变化情况。
再键入命令:gridbode(G1) (回车)则显示对应的Bode图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明纵、横坐标。
2.绘制积分环节传递函数g(s)=1/Ts 的频率特性图。
运行Matlab,进入命令窗口,键入命令:num=[1];den=[0,3,0];G1=tf(num,den)nyquist(G1) (回车)则显示传递函数g(s)=1/4s ,及对应的Nyquist图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明频率ω的变化情况。
再键入命令:gridbode(G1) (回车)则显示对应的Bode图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明纵、横坐标。
3.绘制微分环节传递函数g(s)=Ts 的频率特性图。
运行Matlab,进入命令窗口,键入命令:gridbode(G1) (回车)则显示对应的Bode图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明纵、横坐标。
五、仿真和实验结果记录比例环节Nyquist图曲线(K=2)比例环节Bode图曲线积分环节Nyquist图曲线(T=3)积分环节Bode图曲线微分环节Nyquist图曲线(T=3)微分环节Bode图曲线惯性环节Nyquist图曲线(T=5) 惯性环节Bode图曲线二阶环节Nyquist图曲线(ξ=0.9)二阶环节Bode图曲线六、实验结果分析。
实验一 典型环节得MATLAB 仿真
一、实验目得
1 •熟悉MATLAB 桌面与命令窗口,初步了解SIMULINK 功能模块得使用方 法。
2•通过观察典型环节在单位阶跃信号作用下得动态特性,加深对各典型环节 响应曲线得理解。
3. 定性了解各参数变化对典型环节动态特性得影响。
二、SIMULINK 得使用
MATLAB 中SIMULINK 就是一个用来对动态系统进行建模、仿真与分析 得软件包。
利用SIMULINK 功能模块可以快速得建立控制系统得模型,进行仿真 与调试。
1. 运行MATLAB 软件,在命令窗口栏“》”提示符下键入simulink 命令,按 Enter 键或在工具栏单击按钮,即可进入如图1-1所示得SIMULINK 仿真环境下。
2. 选择File 菜单下New 下得Model 命令,新建一个simulink 仿真环境常规模 板。
3. 在simulink 仿真环境下,创建所需要得系统。
图1-2 系统方框图 以图1・2所示得系统为例,说明基本设计步骤如下: K Silink f.ibrnry Broker
图M SIMULINK 仿真界而
1)进入线性系统模块库,构建传递函数。
点击simulink下得u Continuous M ,
再将右边窗口中"Transfer Fen"得图标用左键拖至新建得“untitled"窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内得数字分别为传递函数得分子、分母各次幕山高到低得系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块得设置。
3)建立其它传递函数模块。
按照上述方法,在不同得simulink得模块库中,建立系统所需得传递函数模块。
例:比例环节用“Math”右边窗口“Gain”得图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下得“Source”,将右边窗口中“Step”图标用左键拖至新建得“untitled”窗口,形成一个阶跃函数输入模块。
5)选择输出方式。
用鼠标点击simulink下得“Sinks”,就进入输出方式模块库,通常选用“Scope”得示波器图标,将其用左键拖至新建得"untitled w窗口。
6)选择反馈形式。
为了形成闭环反馈系统,需选择“Math”模块库右边窗口“Sum”图标,并用鼠标双击,将其设置为需要得反馈形式(改变正负号)。
7)连接各元件,用鼠标划线,构成闭环传递函数。
8)运行并观察响应曲线。
用鼠标单击工具栏中得“”按钮,便能自动运行仿真环境下得系统框图模型。
运行完之后用鼠标双击“Scope”元件,即可瞧到响应曲线。
三、实验原理
1.比例环节得传递函数为
其对应得模拟电路及SIMULINK图形如图1-3所示。
2.惯性环节得传递函数为
其对应得模拟电路及SIMULINK图形如图1-4所示
其对应得模拟电路及SIMULINK图形如图1-5所示。
4.微分环节(D)得传递函数为
其对应得模拟电路及SIMULINK图形如图1-6所示。
5.比例+微分环节(PD)得传递函数为
其对应得模拟电路及SIMULINK图形如图1-7所示。
6.比例+积分环节(PI)得传递函数为
图1-6微分环节得模拟电路及及SIMULINK图形其对应得模拟电路及SIMULINK图形如图1-8所示。
四、实验内容
按下列各典型环节得传递函数,建立相应得SIMULINK仿真模型,观察并记录其单位阶跃响应波承]_7比例+微分环节得模拟电路及SIMULINK图形1比例环节与;
咚1眾1*伺1亠頼令玖:書盅复护由鼻久妙H INK 圉孑及
[^untitiedl t
a Ei QQ0 0ij_ 彳
,50 2
10
lime offset: 0
2惯性环节与
3积分环节4微分环节
5比例+微分环节(PD)与
6比例+积分环节(PI)与
五、实验报告
1、画出各典型环节得SIMULINK仿真模型。
2、记录各环节得单位阶跃响应波形,并分析参数对响应曲线得影响。
3、写出实验得心得与体会。
六、预习要求
1.熟悉各种控制器得原理与结构,画好将创建得SIMULINK图形。
2.预习MATLAB中SIMULINK得基本使用方法。