抓住不变量解分数应用题(教师版)
- 格式:doc
- 大小:71.00 KB
- 文档页数:1
苏教版小学六年级数学下册抓不变量解分数应用题抓不变量解分数应用题培养能力,发展智力是小学数学教学的重要任务之一,而应用题则是锻炼学生思维的“磨刀石”。
应用题教学主要帮助学生解决“想什么”和“怎样想”的问题。
小学数学应用题教学就是把应用题的教学过程变成使学生在教师的指导下积极分析综合、比较概括、抽象推理及正确判断等思维方法的训练过程,以达到培养学生能力、发展学生智力的目的。
应用题教学对于训练学生的逻辑思维能力,巩固所学的知识有着重要的意义。
因此应用题教学在整个小学数学教学中占有重要的地位,它既是重点又是难点。
所以,掌握一定的解答应用题的方法和技巧是有必要的。
在小学数学应用题中犹以分数应用题为学生的一大难点。
其中一类分数应用题以其特有的结构和数理关系使多数学生难以入手。
为此,经过多年的实践和摸索,笔者总结了一套行之有效的方法,让教者易教,学者易学。
那就是找准题目中的不变量,以不变量为突破口,根据数量间的数理关系解决问题。
其流程如下:前后对比,问题得解量率对应,问题得解已知或能直接计算题目中的问题计算出不变量以不变量为单位“1”代入变化后数量关系中不变量找出其变化后的对应分率选中其中一个变量求出变化后的一个变量找出其变化前后各占“1”的分率找出其变化前后的数量算出分率差算出数量差例1、鸡栏里有公鸡和母鸡共80只,其中公鸡占总数的9/20,后来又买回若干只公鸡后,母鸡占总只数的14/25,问又买回多少只公鸡?首先,找准不变量:母鸡只数,可以直接计算出来,为80×(1-9/20)=44只。
然后,计算出来的公鸡44只代入变化后的关系中,找出其对应分率(1-14/25=11/25)。
接着,算出变化后的总只数:44÷11/25=100只。
最后,对比变化前后总只数,得出结论:100-80=20只。
将这种方法运用到对小学生来讲比较抽象的浓度问题中,学生理解起来就容易多了。
例如:一种浓度为45%的溶液800克,加入适量水后,浓度变为30%,求加了多少克水?可以把溶质和溶剂的质量分别想象成公鸡和母鸡的只数,溶液的质量就是总只数,这样运用类比的方法,小学生学习起来就既实在又有趣了。
抓不变量解答分数应用题
一、和不变:
二、部分量不变:
练:甲乙两个书架的书的本数的比是4:5,当从甲书架借出100本后,两个书架的书的本数的比是7:10.原来两个书架各有几何本书?
三、差不变:
1、XXX和XXX每月工资收入比为3:2,他们两家每月支出为1200元,两家每月结余的钱数比为9;4,XXX和XXX每月工资各为多少元?
一、抓住和不变
甲还比乙多10吨,甲乙原来各有几何吨?
练:有10千克蘑菇,它们的含水量是99%,稍经晾晒,含水量下降到98%,晾晒后的蘑菇重多少千克?
2、现有质量分数为20%的食盐水80克。
把这些食盐水变成质量分数为75%的食盐水,需求再加食盐几何克?
练:有一堆糖果,其中奶糖占45%,再放16块水果糖后,奶糖就占25%,那么,这堆糖中奶糖有多少块?
三、抓住差不变
XXX和XXX每月工资收入比为3:2,他们两家每月支出为1200元,两家每月结余的钱数比为9;4,XXX和XXX 每月工资各为多少元?
综合练:
1.由奶糖和巧克力混合成的一堆糖中,如果增加10个奶糖,巧克力就占总数的60%,再增加30个巧克力,则巧克力占总数的75%。
那末,原来混合糖中奶糖和巧克力各有几何个?
2、现有浓度为20%的食糖水160克,把这些食糖水变为浓度为75%的食糖水,需加食糖多少克?
5、有盐水750千克,含盐20%,加入一些水后含盐8%,加水多少了克?。
六年级利用寻找不变量解答分数应用题——教师版〖书海导航〗分数解决问题中有一些题目看似很复杂,但实际如果我们仔细去分析,看看题中哪些是变量,哪个是不变量。
通过抓住不变量解题,往往可以使解题过程十分简单。
解答时关键要“统一不变量,再看变量”或让不变量做分母等方法进行解答。
〖孤岛寻宝〗[例1] 将4361 的分子与分母同时加上某数后得79,求所加的这个数。
寻宝路线图:解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是分母的79 ,由此可求出新分数的分子和分母。
”分母:(61-43)÷(1-79 )=81分子:81×79 =6381-61=20或63-43=20解法二:4361 的分母比分子多18,79的分母比分子多2,因为分数的分子与分母的差不变,所以将79 的分子、分母同时扩大(18÷2=)9倍。
① 79 的分子、分母应扩大:(61-43)÷(9-7)=9(倍)② 约分后所得的79 在约分前是:79 =7×99×9 =6381③ 所加的数是81-61=20答:所加的数是20。
〖巧练密笈〗1.分数97181 的分子和分母都减去同一个数,新的分数约分后是25 ,那么减去的数是多少?1.分数113 的分子、分母同加上一个数后得35 ,那么同加的这个数是多少?〖孤岛寻宝〗[例2] 将一个分数的分母减去2得45 ,如果将它的分母加上1,则得23 ,求这个分数。
寻宝路线图:解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得45 ”可知,分母比分子的54 倍还多2。
由“分母加1得23 ”可知,分母比分子的32 倍少1,从而将原题转化成一个盈亏问题。
分子:(2+1)÷(32 -54 )=12分母:12×32-1=17解法二:两个新分数在未约分时,分子相同。
六年级上册数学试题-专题训练分数应用题之抓住不变量苏教版分数应用题之“抓住不变量”列份数,统一不变量”以不变量为单位“总量不变:量未知份数列份数,统一不变量的”以不变量为单位“量未知量已知:先求出不变量差量不变列份数,统一不变量”以不变量为单位“量未知量已知:先求出不变量分量不变”抓住不变量“三种类型111 一、分量不变(量已知)1、甲乙两人共有160元,其中甲占916 ,甲用去一些后,甲剩下的是两人剩下总数的815,甲用去多少元?2、苹果和梨共有180千克,其中苹果占59 ,梨卖了一些后,剩下的梨占剩下总数的38,梨卖了多少千克?3、某车间有150名工人,其中男工占25 ,男工又调进一些后,这时男工占全车间的47,男工调进多少人?4、把含盐225 的盐水240克稀释成含盐350,应加水多少克?5、某班54人,其中男生占49 ,女生转走几人后,女生占全班的1325,转走几名女生?二、分量不变(量未知)1、甲钱是乙钱的45 ,甲用去20元后,甲钱是乙钱的710,原来两人各有多少元?2、苹果是梨的34 ,梨卖了60千克后,苹果是梨的78,原来各有多少千克?3、鸡是鸭的57 ,鸭卖了90只后,鸭是鸡的1115,原来各有多少只?4、某车间男工占全车间人数的59 ,女工又调进40人后,这时男工占全车间的511,原来全车间有多少人?5、甲乙两人有若干元钱,其中甲占47 ,甲用去80元后,甲占两人剩下总数的25,原来两人共有多少元?6、运来一指批苹果和梨,其中苹果占总数的511 ,苹果卖了60千克后,梨占剩下总数的23,原来共有多少千克?1、苹果40千克,梨60千克,各吃了同样多后,苹果是梨的59,各吃了多少千克?2、苹果40千克,梨60千克,各买来同样多后,苹果是梨的34,共买来多少千克?3、苹果比梨少20千克,苹果和梨都吃了15千克后,苹果是梨的59,原来各有多少千克?4、苹果比梨少20千克,又都买来20千克后,苹果是梨的34,原来各有多少千克?5、兄弟二人从祖父那里领来了相同数目的零用钱。
抓不变量解答分数应用题一、抓住和不变1、甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多10吨,甲乙原来各有多少吨?练习:甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多1/5,甲乙原来各有多少吨?2、某校五年级学生参加大扫除的人数是未参加的1/4,后来又有2个同学主动参加,实际参加的人数是未参加人数的1/3,问某班五年级有学生多少人? 练习:煤气收款员到一幢楼里收煤气差价款,他走出楼时一算,没交款的户数占已交款户数的1/8。
如果少收2户,则没交款的户数恰好占已交款户数的1/6,这幢楼有多少住户?2、甲、乙两人原有钱的比是3:4,后来甲又给乙50元,这时甲钱是乙的1/2,原来两人各有多少元钱?3、小明放一群鸭子,岸上的只数是水中的3/4,从水中上岸9只后,水中的只数与岸上的只数同样多,这群鸭子有多少只?二、抓住部分不变1、有科技书和文艺书360本,其中科技书占总数的1/9,现在又买来一些科技书,此时科技书占总数的1/6。
又买来多少本科技书?练习:有10千克蘑菇,它们的含水量是99%,稍经晾晒,含水量下降到98%,晾晒后的蘑菇重多少千克?2、现有质量分数为20%的食盐水80克。
把这些食盐水变为质量分数为75%的食盐水,需要再加食盐多少克?练习:有一堆糖果,其中奶糖占45%,再放16块水果糖后,奶糖就占25%,那么,这堆糖中奶糖有多少块?2、在阅览室里,女生占全室人数的1/3,后来又进来5名女生,这时女生占全室人数的5/13,阅览室原有多少人?三、抓住差不变王叔叔和李叔叔每月工资收入比为3:2,他们两家每月支出为1200元,两家每月结余的钱数比为9;4,王叔叔和李叔叔每月工资各为多少元?综合练习:1.由奶糖和巧克力混合成的一堆糖中,如果增加10个奶糖,巧克力就占总数的60%,再增加30个巧克力,则巧克力占总数的75%。
那么,原来混合糖中奶糖和巧克力各有多少个?2、现有浓度为20%的食糖水160克,把这些食糖水变为浓度为75%的食糖水,需加食糖多少克?3、乙队原有人数是甲队的3/7。
抓“不变量“解题
【专题简析】
一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。
【典型例题】
【B1】将6143的分子与分母同时加上某数后得9
7,求所加的这个数。
【试一试】
1、分数181
97的分子和分母都减去同一个数,新的分母约分后是5
2。
那么减去的数是多少?B2、将一个分数的分母减去
2得54。
如果将它的分母加上1,则得3
2,求这个分数。
试一试:
1、将一个分数的分母加上2得97,分母加上3得4
3。
原来的分数是_________。
B3、在一个最简分数的分子上加一个数,这个分数就等于
75。
如果在它的分子上减去同一个数,这个分数就等于21。
求原来的最简分数是多少?
试一试:
1、一个最简分数,在它的分子上加一个数,这个分数就等于8
5。
如果在它的分子上减去同一个数,这个分数就等于21。
求这个分数。
例2
例1、。
抓不变量解答分数、百分数应用题
例1:将分数31/81的分子加上一个自然数,分母减去同一个自然数,约分后是5/9,这个自然数是多少?(这个自然数不变)
例2:分数43/63的分子减去一个数,而分母同时也减去上这个数后,所得的新分数化简后为5/9,减去的这个数是多少?(同上)
例3:小明今年10岁,他的爷爷今年70岁,多少年后,小明的年龄是他爷爷的1/4?
例4:某校成立思维训练班,报名的有45人,其中男生占3/5,要使女生能占总人数的11/20,还应招收多少名女生?
例5:某班一次集体朝会,请假人数是出勤人数的1/9,中途又有一人请假离开,这样一来,请假的人数是出勤人数的3/22。
那么,这个班共有多少人?
例6:现有浓度为20%的盐水40千克。
要蒸发多少千克的水,就可以得到浓度为40%的盐水?
例7:甲乙两箱红枣,每箱内装1998颗,要使得从乙箱中拿出若干红枣放入甲箱中后,甲箱的红枣棵数恰比乙箱多40%。
那么从乙箱中拿到甲箱的红枣数是多少?
例8:甲乙两仓库共有水泥180吨,如果甲把它的1/3给乙,则甲还比乙多1/4,甲乙原来各有多少吨?
例9:有一堆棋子,其中白棋子占总数的11/20 ,再放入30枚黑棋子后,白棋子就只占总数的40%,则这堆棋子原有黑棋子多少枚?
例10:某校六年级有甲、乙两个班,甲班人数是乙班人数的5\7,如果从乙班调3人到甲班,甲班人数就是乙班人数的4\5,甲班原有多少人,乙班原有多少人?。
分数应用题一一抓住不变量例1、3两储苹果•乙廉苹果的乖惟足甲f?苹累的2・从甲筐中取出5『克半果放人乙0* 偿后■乙g中苹卑的重S足甲蟻的#“甲、£^啟懐苹果共垂裟少千克?巩固训练-有附上购你怡原来叩粮时碑的吨數址乙捲雁的y期盟从乙轅儒州昨吨報金到fpflm卩肛晅rm的吨歆就足乙帳库的4・原来叽乙(ft 1琴备存粮育多少吨73暮十小芳ft看一車说*晚饭射.已昏的西救尼未行的7 ■罐冥看了耳页・a时已看前页艱垦素#的2*这本小说有多少萸?—_ 9斗亿二人典湎鳖芦「批琴件小性严的魁乙生产的1骨恢站瞅甲把白己生产的零件皓乙55 4甲生严的最乙生严的Y冲 Z网人齐陀产r #少F弄+杆曲级5柚”里女生占?融灿进儿窖如虫诽如占总人貓詁”龔术nr尬来巧寥少扎?聊固训S 1』察輪小学兀隼麵空^生中女电|?^看*后来乂转* 丁 15無女生*这样女,弋年饶总人数的y・霑年圾囁*仃多少M2、「粮站匣有丈米占粮徵总量的齐頃出24吨大桶所剩大米占粮食总量的%问这个椎站原来共有粮負多少吨7訐唱&K中男生占女生丸数的卡.后舉丈用1103个女生'男生人數占合唱駅总人®的沽合嚼臥丿男女生各有参少人°r;F^岸图笳馆疽科扌总爭和文艺弔共530+ .其中科技书占20燥-g黑又拡f 一®份 tl-H +这时科抽栋占总数的帥%.求此买来广多少本科技»J ?聊固训练”五年级其科学生51 A-K屮女牛■占寻,后農乂转S若干名女生电时女生占2转塞的女佈秆巧少人】盅护*宥一淮曲果•Jt中孙椭占15%*再放人用块肚果W后,奶糖就只占25%*那么这堆衲*中冇奶懈多少块?巩固训塚2 一包糖果期糖占总块ft的、枚人诣块朮果糖后网臨占站数的环奶箱药彩少^块?©A 右曲權快空•第一tW垃2i分米■第二根氏30分米•两W轶蟾剪£同样怏的一段斤第一粮制下的也廈^^弟二根* F长度的詁剪下的1段有多怏?£ 3 巩固训gw甲乙两人去看电枳T融粘«价迪甲所有铁的咅ft乙所有钱的亍当他们再自买了电影聚后・甲羁下的找比乙卿下的铁多3元•甲、乙两人买电影票前各宵參少找?22煤气牧歉员到一幢懵牧璇气畫价款.他出權时一嬴我交款的户散占已2款户数的J•如魁少收2户上世空就的户数恰好占已兗K户fc的亍这《樓有舞少户?【当堂测试】hP-H:盐水.盐占盐水的弭加J6克ttJR.盐占盐忒的匝育盘水备娄少1■克¥J I2Z £趴原有人削竝屮趴的4 .现住丛叩徐AS瑚人到乙队丽乙臥人数込环队的亍玳•乙/闊朋原来茬有圭步人7旅¥吠门[琏原汁划殖全班i的人雲加大扫除r临时乂冇两人±渤期加.惟冥臥总忧大扌T除的人数是班上余下人»的7・S9W划抽岀5;夕人釧卩大打缺£4 一牛西nuw典千克・它重董的9&%姥木分・将囲瓜放在丈阳下圖■水會履发后的两;t 匝蜻时95輛悬水分.BP么晒后西氐的ifl足多少f电"■=■ " ■ ■沁一L£『:":...■1讨\; G八暑乐"川旻嬪一班0奔班会.一6畀宦上台向£那报& J诒下则生人败楚女生人ft的芈".yj 生卜冶乐一位女生”说厂台F魁吃人數只有女主人数的令二盂年圾一飢共有事;V*A?。
抓住不变量解分数应用题
例1、公园里有杨树、柳树、桃树和梅树,已知杨树占其他三种树的
31,柳树占其他三种树的53,桃树占其他三种树的11
1,梅树有14课,问公园里杨树、柳树、桃树和梅树共有多少课? 分析:这里的分率31、53、11
1的标准量各不相同,很难直接参加列式。
但我们应观察到四种树的总量不变,故可对条件进行转化,统一标准量。
“杨树占其他三种树的31”可转化为“杨树占四种树的4
1”; “柳树占其他三种树的53”可转化为“柳树占四种树的83”;“桃树占其他三种树的111”可转化为“桃树占四种树的12
1”。
由此可推出,梅树占四种树的1-41-83-121=247。
又知道,梅树有14课。
本题可简化为:四种树总数的24
7是14棵,求四种树共有多少棵?
列式:14÷(1-41-83-121)=14÷24
7=48(棵) 例2、某班原来女生是男生的85,后来又调进4名女生,这时女生是男生的4
3,求这个班原有男生多少人? 分析:抓住男生的人数不变进行分析,分析增加的4名女生占男生的几分之几,再列式计算。
列式:4÷(
43-85)=4÷81=32(人)
例3、有两条绳子,一条长21米,一条长13米,把两条绳子剪下同样长的一段后,发现短绳子剩下部分是长绳子剩下部分的13
8,求两条绳子各剪下多少米? 分析:抓住两条绳子的差不变进行分析,先分析这个差(8米)占长绳子剩下部分的
135,求出长绳子剩下部分的长度,再求出剪去的长度。
列式:21-(21-13)÷(1-138)=21-8÷13
5=21-2054=51(米) 练习精选 1. 甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多10吨,甲乙原来各有多少吨?
【思路点拨】
现在甲是(180+10)÷2=95吨 所以, 原来甲95÷(1-1/3)=142.5吨 乙 180-142.5=37.5吨
2.现有质量分数为20%的食盐水80克。
把这些食盐水变为质量分数为75%的食盐水,需要再加食盐多少克?
【思路点拨】
盐水80克,则含盐80*0.20=16克,含水80-16=64克
变为75%盐水后水量不变,总重变为64/0.25=256克
256-80=176克, 即加盐176克
3. 乙队原有人数是甲队的3/7。
现在从甲队派30人到乙队,则乙队人数是甲队的2/3。
甲乙两队原来各有多少人?
【思路点拨】
甲队占总人数的7/(7+3)=7/10 派30人到乙队后占总人数的3/(3+2)=3/5
少了总数的7/10-3/5=1/10 所以总人数为30/(1/10)=300人
甲=300*7/10=210人 乙=300-210=90人。