八年级数学-一次函数的应用教学建议
- 格式:doc
- 大小:15.00 KB
- 文档页数:2
第十九章《一次函数》内容分析与教学建议广州市真光中学苏国东一、教材分析(一)本章地位和作用函数知识在中学数学教学中占有极为重要的地位,既是教学的重点,也是教学的难点之一。
本章学生第一次接触函数,是初中函数部分的起始章,是后续学习二次函数和反比例函数的基础。
对函数概念和函数图像的理解贯穿于整个函数的教学中,随着具体函数的学习而不断加深认识,同时对函数概念中体现的变化与对应思想的理解又决定了具体的一次函数、反比例函数、二次函数的学习能否顺利地进行。
一次函数是学生接触的第一类具体函数形式,由具体实例抽象出统一的函数形式、利用函数图像归纳函数性质、利用函数图像和性质解决实际问题,这种由特殊到一般再到特殊的研究方法是研究函数的基本方法。
变化对应、数形结合等思想方法贯穿函数学习的始终,要尽可能地使学生加深认识。
(二)新版教材的变动《一次函数》在旧版教材中是在初二上学期学习的内容,《反比例函数》是在初二下学期学习的内容。
而在新版教材中《一次函数》移至初二下学期,《反比例函数》移至初三下学期,使学生学习函数的难点后移。
新旧教材本章内容与课时安排有所调整,“用函数观点看方程(组)与不等式”并入“一次函数”一节,题目作了修改。
19.1节是基础部分,19.2节是重点内容,19.3节是拓展提高部分。
具体如下:k 的性质显得更为妥当。
二、本章知识结构框图三、内容分析(一)函数的相关概念1.理解函数的概念及对应关系:①两个变量相互联系,一个变量发生变化时另一个变量也随之变化;②函数与自变量之间是单值对应关系,自变量的值确定后,函数值是唯一确定的。
2.能根据实际问题列出解析式,写出自变量的取值范围(使解析式有意义、实际问题有意义),给出自变量的一个值,会求出相应的函数值(学生对函数与函数值可能混淆)。
3.能较准确地画出简单函数的图象,学会利用图象分析变量之间的数量关系。
函数图象直观反映变量间的单值对应关系,提供了数形结合地研究问题的方法。
一次函数的应用1、教学内容本节课是学习了人教版义务教育课程标准实验教材《数学》八年级上册第十一章《一次函数》后设计的一节复习课。
主要学习内容是把实际问题建立函数模型和根据函数图象的信息,运用数形结合的思想来解决问题。
2、学生分析学习本节课前学生已经学习了一次函数的概念、图象、性质以及一次函数与方程(组)、不等式的关系,对一次函数的知识已经有了全面的了解。
但还不能灵活运用所学知识来解决实际问题,特别是把实际问题建立函数模型的能力和运用数形结合的思想来解决问题的意识还比较弱。
学生最感兴趣的是用函数知识解决发生在身边的实例。
3、设计思想本节课的特色是充分应用信息技术(如多媒体课件,播放刘翔奥运夺冠过程的录像,播放“龟兔赛跑”的Flash动画等)来创设问题的情境,激发学生的学习兴趣,激活学生的思维。
本节课精心设计了七个题目,由浅入深,让学生探究,把学生的思维不断引向深入……,通过老师的点拨使学生的思维得到升华,努力培养学生掌握基本的数学思想,提高学生的数学活动能力。
在整个教学过程中,贯彻“教师为主导,学生为主体,探索为主线,思维为核心”的教学思想。
通过引导学生积极探索、讨论和交流,使全体学生能充分动手、动脑、动口,参与教学的整个过程,使数学课堂真正成为学生亲自参与的、生动活泼的数学思维活动场所。
本节课把教师的“教”和学生的“学”有机结合起来,真正体现“学生是数学学习的主人,教师是数学活动的组织者、引导者与合作者”这一新型的师生关系,体现了创新教育、主体教育和成功教育这一改革与发展的时代精神。
4、教学目标(1)知识与技能①会画实际问题的函数图象;②会根据函数图象的信息,运用数形结合的思想来解决问题。
(2)过程与方法经历画实际问题的函数图象,从实际问题函数图象中发现信息,运用数形结合的思想来解决问题,通过合作、交流编写故事等过程培养学生数形结合的思想,形成利用函数观点认识现实世界的意识和能力。
(3)情感态度与价值观通过观看刘翔奥运夺冠的录像,让学生体会到数学来源于生活,并树立努力拼搏为国争光的理想;在探究问题的过程中体会数学的应用价值;通过与同学合作编写故事,感受成功的喜悦,并建立自信心。
北师大版数学八年级上册《4.4一次函数的应用》教案一. 教材分析《4.4一次函数的应用》这一节内容,主要让学生了解一次函数在实际生活中的应用,通过具体的实例,让学生学会用一次函数解决实际问题,培养学生的动手操作能力和解决实际问题的能力。
教材中给出了丰富的实例,为学生提供了充足的学习材料。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对于一次函数的图像和表达式有一定的了解。
但学生在实际应用中,可能会对如何将实际问题转化为一次函数模型感到困惑。
因此,在教学过程中,教师需要引导学生正确地将实际问题抽象为一次函数模型,并运用一次函数的知识解决实际问题。
三. 教学目标1.了解一次函数在实际生活中的应用。
2.学会将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
3.培养学生的动手操作能力和解决实际问题的能力。
四. 教学重难点1.教学重点:一次函数在实际生活中的应用。
2.教学难点:如何将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
五. 教学方法采用案例分析法、问题驱动法、小组合作学习法等,引导学生通过自主学习、合作探讨,提高解决实际问题的能力。
六. 教学准备1.准备与一次函数应用相关的实例。
2.准备教学课件。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容,例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
让学生思考如何用数学模型来表示这个问题。
2.呈现(15分钟)呈现教材中的实例,引导学生了解一次函数在实际生活中的应用,如:手机话费套餐、出租车计费等。
让学生观察这些实例中的一次函数表达式,分析一次函数的构成和特点。
3.操练(15分钟)让学生分组讨论,每组选择一个实例,尝试将实际问题转化为一次函数模型,并求解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)请各组学生汇报他们的解题过程和结果,其他学生和教师进行评价和讨论。
通过这个环节,巩固学生对一次函数模型的理解和应用。
北师大版数学八年级上册《4.4一次函数的应用》教学设计一. 教材分析北师大版数学八年级上册《4.4一次函数的应用》这一节的内容,主要让学生掌握一次函数在实际生活中的应用,培养学生的实际问题数学化能力。
教材通过生活实例,引导学生认识一次函数在实际生活中的重要性,并通过例题和练习,让学生学会如何用一次函数解决问题。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对函数有一定的认识和理解。
但是,将函数应用到实际问题中,可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,利用一次函数进行解答。
三. 教学目标1.了解一次函数在实际生活中的应用,培养学生的实际问题数学化能力。
2.学会用一次函数解决实际问题,提高学生的数学应用能力。
3.通过实例,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
四. 教学重难点1.一次函数在实际生活中的应用。
2.如何将实际问题转化为数学问题,并用一次函数解决。
五. 教学方法采用案例教学法,通过生活实例,引导学生认识一次函数在实际生活中的应用,然后通过例题和练习,让学生学会如何用一次函数解决问题。
在教学过程中,注重学生的参与和实践,提高学生的动手能力和实际问题数学化能力。
六. 教学准备1.准备相关的教学案例和实例。
2.准备PPT,用于展示和讲解。
3.准备练习题,用于巩固和拓展。
七. 教学过程1.导入(5分钟)通过一个生活实例,引出一次函数在实际生活中的应用。
例如,一家商店进行打折活动,打折力度与顾客购买的金额有关,可以设打折力度为一次函数,让学生思考如何表示这个关系。
2.呈现(10分钟)通过PPT,呈现一次函数在实际生活中的其他应用,如温度与海拔的关系、速度与时间的关系等。
引导学生认识到一次函数在生活中的重要性。
3.操练(10分钟)给出一个实际问题,让学生尝试用一次函数解决。
例如,一家工厂的生产成本与生产数量有关,可以设生产成本为一次函数,让学生求解在某一生产数量下的成本。
人教版数学八年级下册第十九章《数学活动一次函数的应用问题》教学设计一. 教材分析人教版数学八年级下册第十九章《数学活动一次函数的应用问题》主要介绍了如何运用一次函数解决实际问题。
本章内容紧密联系生活,旨在让学生通过探究、实践,掌握一次函数的基本性质和应用,培养学生的数学应用能力。
本章内容包括一次函数的定义、图象与系数的关系、一次函数在实际问题中的应用等。
二. 学情分析八年级的学生已经掌握了函数的基本概念,对一次函数有一定的了解。
但在实际应用中,如何将生活中的问题转化为一次函数问题,以及如何运用一次函数解决实际问题,仍然是学生理解的难点。
因此,在教学过程中,教师需要引导学生将实际问题抽象为一次函数,并通过实例让学生感受一次函数在生活中的应用。
三. 教学目标1.理解一次函数的定义及其图象与系数的关系。
2.学会将实际问题转化为一次函数问题,掌握一次函数在实际问题中的应用。
3.培养学生的数学应用能力和团队协作能力。
四. 教学重难点1.一次函数的定义及其图象与系数的关系。
2.如何将实际问题转化为一次函数问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生感受一次函数在实际问题中的应用。
2.小组讨论法:鼓励学生分组讨论,培养团队协作能力。
3.引导发现法:教师引导学生发现问题、解决问题,提高学生的自主学习能力。
六. 教学准备1.教学课件:制作一次函数的图象、实际问题示例等课件。
2.教学素材:准备一些实际问题,用于课堂练习和拓展。
3.教学设备:投影仪、黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用生活实例,如购物优惠活动,引导学生思考如何用数学模型来描述这个问题。
通过分析,得出这个问题可以转化为一次函数问题。
2.呈现(10分钟)介绍一次函数的定义及其图象与系数的关系。
通过示例,让学生直观地感受一次函数的图象,并理解图象与系数之间的联系。
3.操练(15分钟)分组讨论,让学生尝试解决一些实际问题。
教师巡回指导,解答学生的疑问。
北师大版数学八年级上册4《一次函数的应用》教学设计3一. 教材分析《一次函数的应用》是北师大版数学八年级上册第四单元的内容。
本节课主要让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。
教材通过生活实例引入一次函数,让学生感受数学与生活的紧密联系,培养学生的数学应用意识。
二. 学情分析学生在七年级已经学习了直线、斜率等基本概念,对函数有了初步的认识。
但八年级的学生还未能完全将数学知识应用于实际生活中,因此,在教学过程中,教师需要引导学生将数学知识与生活实际相结合,提高学生的数学应用能力。
三. 教学目标1.让学生了解一次函数在实际生活中的应用,培养学生的数学应用意识。
2.让学生掌握一次函数的定义和性质,能运用一次函数解决实际问题。
3.培养学生的团队合作精神,提高学生的数学素养。
四. 教学重难点1.一次函数在实际生活中的应用。
2.一次函数的定义和性质。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极参与,提高学生的数学应用能力。
六. 教学准备1.准备相关的生活案例,用于引导学生思考和讨论。
2.准备一次函数的定义和性质的PPT,用于讲解和展示。
3.准备课后作业,巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如购物时如何规划路线,让学生感受数学在生活中的应用,引出一次函数的概念。
2.呈现(15分钟)呈现一次函数的定义和性质,引导学生理解并掌握一次函数的基本概念。
3.操练(10分钟)让学生通过小组合作,运用一次函数解决实际问题。
教师给予引导和指导,确保学生能够正确运用一次函数解决实际问题。
4.巩固(5分钟)通过课后作业,让学生巩固所学知识,提高学生的数学应用能力。
5.拓展(5分钟)引导学生思考一次函数在其他领域的应用,如物理学、经济学等,拓宽学生的视野。
6.小结(3分钟)对本节课的主要内容进行总结,强调一次函数在实际生活中的应用。
7.家庭作业(2分钟)布置课后作业,让学生巩固所学知识,提高学生的数学应用能力。
北师大版八年级数学上册:4.4《一次函数的应用》教学设计一. 教材分析《一次函数的应用》这一节的内容,主要让学生了解一次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
北师大版八年级数学上册的教材,通过生动的实例,引导学生理解一次函数的定义,掌握一次函数的性质,并能够运用一次函数解决实际问题。
二. 学情分析八年级的学生已经学习了初中数学的前期内容,对数学知识的接受能力较强。
但是对于一次函数的应用,部分学生可能会觉得抽象难懂,因此,在教学过程中,需要教师通过生动的实例,让学生感受一次函数的实际意义,从而提高学生的学习兴趣和理解能力。
三. 教学目标1.理解一次函数的定义,掌握一次函数的性质。
2.能够运用一次函数解决实际问题,提高学生的应用能力。
3.通过实例,让学生感受数学与生活的紧密联系,提高学生的学习兴趣。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数在实际生活中的应用。
五. 教学方法采用问题驱动的教学方法,通过实例引导学生理解一次函数的定义和性质,通过实际问题的解决,让学生掌握一次函数的应用。
同时,采用小组合作的学习方式,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的实例,如购物、出行等问题。
2.准备一次函数的图片或模型,帮助学生直观理解一次函数。
3.准备练习题,巩固学生对一次函数的应用。
七. 教学过程1.导入(5分钟)通过一个购物实例,引导学生思考如何用数学知识解决实际问题。
例如,一件商品原价80元,降价20%,求降价后的价格。
让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)呈现一次函数的定义和性质,通过图片或模型,让学生直观理解一次函数。
同时,引导学生发现生活中的线性关系,如速度、时间、路程的关系,加深学生对一次函数的理解。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用一次函数的知识解决问题。
例如,一组选择出行问题,一组选择购物问题。
八年级数学-一次函数的应用教学建议
第一课时
一次函数是刻画与研究现实世界数量关系的重要工具。
教科书用贴近学生生活的实际问题,让学生进一步体会一次函数的工具性。
为此建议:
1.对于“试着做做”“一起探究”等栏目的问题,要注意由学生独立阅读,领悟问题情境给出的数量关系。
2.对于“一起探究”的教学,应使学生体会到以下几点:(1)学会读表:看明白x与y之间的对应关系;从中看出y对于x是“匀速”变化的,从而确定是一次函数。
(2)本题也可以用待定系数法来确定该一次函数的表达式。
(3)一次函数表达式确定后,由自变量的值求其对应的函数值,就是“求代数式的值”;由函数值求对应到它的自变量的值,就是要解方程。
3.在学习本节内容与解决方法的基础上,应引导学生体会函数、方程、不等式之间的关系。
第二课时
本课时研究的主要内容是在同一个问题情境中出现两个一次函数,借助对两个一次函数进行某种比较,解决有关问题。
在这个过程中,又常利用在同一坐标系里画出两个函数的图像,使两个函数的比较以直观的形式呈现出来,这又一次展现了“数形结合”的美妙作用。
1.对于例题的教学应突出以下两点:(1)可先让学生读题后自己来解决问题。
(2)尽可能让学生自己在同一坐标系里画出两个函数的图
像,进行讨论两函数图像的关系之间有怎样的对应。
2.关于“一起探究”的教学,应从如下两个方面展开并使认识强化。
(1)用数学解决现实问题,很重要的一项任务就是求得某个过程的优化方案,而优化方案的获得,多是以“比较”为基础或手段的。
教学应从这一基本认识开始,并使这一认识得到强化。
(2)教学中的“比较”主要有两个途,一是通过数量相减比大小,二是借助图像关系比较大小。
两个一次函数比较大小,用“式”比较和用“图像”比较,正与上述两个途径一脉相承。
我们的教学可以并且应当让学生从更广的范围,更高的层次认识数学知识和数学方法的关联性与一致性。